Stereocontrolled access to isoprostanes via a bicyclo[3.3.0]octene framework

Camille Oger, Yasmin Brinkmann, Samira Bouazzaoui, Thierry Durand, Jean-Marie Galano*

Institut des Biomolécules Max Mousseron, IBMM, UMR CNRS 5247, Université Montpellier I, Université Montpellier II, Faculté de Pharmacie, 15. Av. Ch. Flahault, F-34093 Montpellier cedex 05, France

Jgalano@univ-montp1.fr

- Preparative procedures and characterisation data for 4,6-8, 10-21, and 1 and *epi-1*.
- Copies of ¹H and ¹³C NMR spectra of 4, 6-8, 11-21 and 1 and epi-1.

General Details

All reactions requiring anhydrous conditions were conducted in oven-dried glassware with magnetic stirring under an atmosphere of nitrogen, unless mentioned otherwise. Syringes and needles for the transfer of reagents were dried at 120 °C and allowed to cool in a desiccators over P_2O_5 before use. THF and Et₂O were distilled from benzophenone ketyl; CH₂Cl₂ from CaH₂. Other solvents and reagents were used as obtained from supplier, unless otherwise noted.

Air was dried by passing through CaCl₂. Reactions were monitored by TLC, using plates pre-coated Silica Gel 60 (Merck). Visualization of reaction components was achieved with 254 nm, and treatment with acidic *p*-anisaldehyde stain, followed by gentle heating. Organic layers were dried using MgSO₄ unless otherwise stated. Column chromatography was carried out on Kieselgel 60 (40-63 µm). Petroleum ether refers to the fraction of petroleum boiling between 30 °C and 40 °C. Infrared spectra were obtained using a Perkin-Elmer Spectrum One spectrophotometer. They were reported as wavenumber (cm⁻¹) of significant peaks. Electrospray mass spectra (MS) were obtained by ionisation methods using a Finnegan LQC advantage spectrometer. Melting points were recorded on a Stuart SMP3 block, and are uncorrected. Unless otherwise stated, ¹H NMR and ¹³C NMR spectra were recorded at 303K with a Bruker AMX 300 spectrometer or at 305K with a Bruker AV400 spectrometer, in CDCl₃: the peak due to residual CDCl₃ was used as the internal reference (fixed at 7.24 ppm). The ¹H NMR spectra are reported as follows: chemical shift in parts per million (multiplicity, coupling constant(s) J (Hz), relative integral, assignment) where multiplicity is defined as: br = broad, m = multiplet, AB = AB doublet, s = singlet, d = doublet, t = triplet, or combination thereof). Selected ¹³C NMR spectra were conducted using a J modulated sequence and the central peak of the CDCl₃ triplet was used as an internal reference (77.00 ppm). The assignments of NMR spectra were assisted by homonuclear $({}^{1}H-{}^{1}H)$ and heteronuclear $({}^{1}H-{}^{13}C)$ correlation spectroscopy (COSY45, HMQC, HMBC).

3,4-Epoxycyclooctene

Peracetic acid (40% in acetic acid; 100 mL, 0.61 mol, 1.33 equiv) was added dropwise to a mechanically stirred solution of cycloocta-1,3-diene **9** (57 mL, 0.46 mol, 1.0 equiv) and Na₂CO₃ (200 g, 1.88 mol, 4.08 equiv) in CH₂Cl₂ (750 mL) at 0 °C. The reaction mixture was slowly allowed to warm up to room temperature over a period of 2 h, and then filtered and washed with CH₂Cl₂ (2 × 150 mL). The organic phase was washed with saturated aq. NaHCO₃ until neutral pH, the layers were separated and the aqueous one extracted with CH₂Cl₂ (100 mL). The organic extracts were then washed with brine (100 mL), dried and evaporated to give the corresponding monoepoxide as a yellow oil (56.7 g, 92%) which was used in the next step without further purification; R_f (50% Et₂O : petroleum ether) 0.60; $\delta_{\rm H}$ (300 MHz, CDCl₃): 5.81-5.75 (m, 1H), 5.59 (d, *J*=11.2 Hz, 1H), 3.50-3.40 (br dd, 1H), 3.13-3.08 (m, 1H), 2.37-2.26 (m, 1H), 2.11-1.95 (m, 2H), 1.85-1.57 (m, 3H), 1.49-1.34 (m, 2H).

Bicyclo[3.3.0]oct-7-en-endo-2-ol (S)-4 and (R)-4

To a 2-litre 3 neck round bottom flask equipped with an electronic thermometer and a condenser; *n*BuLi (10 M in hexanes, 100 mL, 1.00 mol) was slowly added, with a canula; to a solution of *N*,*N*– diethylamine (104.7 mL, 1.00 mol) in anhydrous Et₂O (650 mL) at 0 °C. After addition the reaction is left to stir for 1 h at 0 °C, then an external heater solution (water bath is generally used) is step up at 30 °C and the condenser equipped with a CaCl₂ moisture trap only. At this temperature, previously synthesized 3,4-epoxycyclooctene (56.7 g, ~0.46 mmol) dissolved in Et₂O (100 mL) was added dropwise at a rate that a small exotherm is keep constant. (**Attention**: the CH-insertion reaction takes place almost immediately at this temperature. After a few mls of dropping addition, the external bath can be removed and temperature is kept at around 30 °C by its own exothermicity. Adding the epoxide at room temperature, then heat up to 30 °C caused extremely fast reaction and build-up of high risk of over-pressure). After addition, the reaction is allowed to reach room temperature, and then cooled to 0 °C. Aqueous HCl (~500 mL, 5 M) was added with vigorous

stirring until an acidic pH was reached (first 100 mL are exothermic). The aqueous and organic layers were separated. The aqueous layer was extracted with Et₂O (2 x 200 mL) and the combined organic phases were washed with saturated NaHCO₃ (200 mL), brine (100 mL), dried and concentrated to leave a residue which is distilled (20 mmHg, ~82 °C) to yield approx. (42 g, 72 %, 2 steps) of bicyclo[3.3.0]oct-7-en-*endo*-2-ol (**4**): $R_{\rm f}$ (50% Et₂O/petroleum ether) 0.29; $v_{\rm max}$ cm⁻¹ 3351, 2941, 2866, 2845, 1618, 1447, 1363, 1333, 1299, 1212, 1172, 1084, 1063, 1111; $\delta_{\rm H}$ (300 MHz) 5.87-5.82 (m, 1H), 5.61-5.57 (m, 1H), 4.19 (q, *J*=5.4 Hz, 1H), 3.27-3.19 (m, 1H), 2.73-2.57 (m, 2H), 2.12-1.99 (m, 1H), 1.86-1.75 (m, 1H), 1.71-1.52 (m, 2H), 1.42-1.32 (m, 2H), $\delta_{\rm C}$ (75 MHz, CDCl₃): 134.4, 127.6, 74.7, 55.9, 41.5, 39.6, 34.9, 31.0; HRMS (ESI) calculated for C₈H₁₃O [M+H]⁺ 125.0984, found 125.0966.

Enzymatic Resolution:

To a solution of the racemic alcohol **4** (20 g, 16.14 mmol, 1.0 equiv) in 325 mL of Et₂O were successively added succinic anhydride (16.17 g, 16.16 mmol, 1.0 equiv) and the *Amano AK* lipase (1.01g). The suspension was stirred with the rotavapor for 15 h. After 50% conversion, the suspension was filtered and washed with Et₂O. The filtrate was extracted with a 2 M solution of Na₂CO₃ (2 x 100 mL) and the layers separated. The aqueous layer (containing compound **10**) was extracted with Et₂O (3 x 150 mL) and the combined organic layers were washed with a 10% solution of NaCl/Na₂CO₃ 1/1 (150 mL), dried, filtered and the solvent removed under reduced pressure. The (*S*)-**4** alcohol was obtained as a yellow oil (9.60 g, 48%, ee > 98%); $[\alpha]_D^{20} = -136$ (c 1.02 10⁻², CHCl₃). NaOH pellets were added to the aqueous layer (containing compound **10**) at 10 °C until basic pH and stirred for 1 h. Et₂O (200 mL) was added, and the layers were separated and the aqueous one extracted three times with Et₂O (150 mL). The combined organic layers were dried, filtered and the solvent removed under reduced pressure. The (*R*)-**4** alcohol was obtained as a yellow oil (9.46 g, 47%, ee > 98 %); $[\alpha]_D^{20} = +144$ (c 1.02 10⁻², CHCl₃)

Dinitroderivative synthesis:

To a solution of the alcohol **4** (201 mg, 1.62 mmol, 1.0 equiv) in 5 mL of anhydrous pyridine at 0 °C, was added the 3,5-dinitrobenzoyl chloride (1.0 g, 4.34 mmol, 2.7 equiv). After 1 h at 0 °C, the

reaction was warmed to rt during the night. Et₂O (20 mL) was added and the layers separated. The aqueous layer was extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with a HCl solution (1 M, 3 x 10 mL), a solution of saturated NaHCO₃ (3 x 10 mL), 10 mL of brine, then dried and the solvents removed under reduced pressure. The dinitroderivatives was obtained as a white powder (360 mg, 70%), v_{max} cm⁻¹ 3085, 2951, 1717, 1629, 1540, 1460, 1288, 1172, 1080, 1007; $\delta_{\rm H}$ (300 MHz) 9.21 (t, *J*=2.1 Hz, 1H), 9.11 (d, *J*=2.1 Hz, 2H), 5.86-5.77 (m, 1H), 5.52-5.40 (m, 2H), 3.55 (m, 1H), 2.95-2.65 (m, 2H), 2.25-2.10 (td, *J*=16.8 and 2.8 Hz, 1H), 2.10-1.80 (m, 3H), 1.64-1.54 (m, 1H); HPLC analysis of dinitroderivative for ee determination: (HPLC Perkin Helmer serie 200, Chiral column Chiralcel OD 0.46 cm x 25 cm, Diode Array Detector (λ =254 nm)). Flow: 0.7 mL/min; derivative from (*S*)-(-)-4: tr= 29.2 min, derivative from (*R*)-(+)-4: tr= 26.8 min.

<u>5</u>

To a 2-neck round bottomed flask (500 mL) equipped with a mechanic stirrer and a DrySyn® heating block, alcohol (-)-4 (8.0 g, 64.5 mmol) was added followed by DMSO (80 mL, A.C.S. reagent) and IBX in three portions (53.8 g, 0.194 mol). The digital probe of the DrySyn® heating block was set-up at 90 °C, and the flask covered with aluminum foil. The reaction was allowed to proceed for 14 h and a pale brown solution resulted. The resulting mixture was filtered and the resulting white cake was rinsed DMSO (60 mL) until the filtrate remains colorless (note: the white cake, approx. 35 g, was recycled into IBX by oxone oxydation). To the filtrate was added a cold solution of saturated NaCl (200 mL), and Et₂O (200 mL) and the mixture mechanically stirred for 15 min. The layers were then separated, and the aqueous extracted with Et₂O (3 x 100 mL). The combined organic layers were filtered, and then a 10% solution of NaHCO₃ (100 mL) and a 10% solution of Na₂S₂O₃ (100 mL) were added to the combined organic layers. After 1 h, the layers were separated and the aqueous layer extracted with Et₂O (2 x 100 mL). The combined organic layers were dried, filtered, and concentrated to give an oily residue (5.6 g). ¹H NMR revealed the complete conversion into enone (-)-(5) with up to 5 to 10 % of ketone [R_f (50% Et₂O/petroleum ether) 0.51] resulting from an incomplete oxidation. No chromatographic purification was required at this stage for the next reaction. For characterization and yield determination, purification by column chromatography on silica with petroleum ether-Et₂O (8-2) as eluents gave (–)-5 (5.3 g, 65%); $[\alpha]_D^{23}$ = -564 (c. 1.0 10^{-2} , CHCl₃); $R_{\rm f}$ (50% Et₂O/petroleum ether) 0.37, $\nu_{\rm max}$ cm⁻¹ 3059, 2918, 2853, 1696, 1583, 1178, 694; $\delta_{\rm H}(300 \text{ MHz}) \delta = 7.49 \text{ (dd, } J = 5.6 \text{ and } 2.6 \text{ Hz}, 1\text{H}), 6.01 \text{ (dd, } J = 5.6 \text{ and } 1.8 \text{ Hz}, 1\text{H}),$ 5.67-5.62 (m, 2H), 3.56-3.53 (m, 1H), 3.44-3.41 (m, 1H), 2.66 (br ddd, J=17.4, 11.1 and 2.4 Hz, 1H), 2.2- (dm, *J*=17.0 Hz, 1H); $\delta_{C}(75 \text{ MHz}, \text{CDCl}_{3})$: 209.5, 166.5, 131.5, 130.8, 128.3, 58.0, 43.5, 35.4; HRMS (ESI) calculated for C₈H₉O [M+H]⁺ 121.0653, found 121.0641.

<u>6</u>

To a solution of the *tert*-butyl hydroperoxide (70 wt. % in water, 600 μ L, 4.19 mmol, 1.0 equiv) in CH₂Cl₂ (5 mL) was added water (3 mL). The layers were separated and the organic one dried over MgSO₄, filtered, and washed with dry CH₂Cl₂ until 10 mL of solvent were obtained. To this solution was added enone (–)-5 (500 mg, 4.17 mmol, 1.0 equiv). DBU (100 μ L, 0.668 mmol, 0.16 equiv) was added slowly (over 5 min). After 16 h at rt, the solution was extracted with HCl solution (1 M, 5 mL). The organic layer was washed with a solution of Na₂SO₃ (500 mg / 10 mL H₂O), brine then dried, filtered and the solvents evaporated under reduced pressure. This reaction can be scale-up to 1 g of enone **5**. We are routinely preparing multigram quantity of **6** by running 5 reactions overnight (crude **5** is divided in 5 fractions) with only one work-up as shown above.

Remaining saturated ketone (from IBX oxidation) coelute with epoxide **6**. No chromatographic purification was required at this stage for the next reaction because subsequent reduction step will ease up the chromatographic separation of unwanted intermediates.

For characterization and yield determination purification by column chromatography on silica with petroleum ether-Et₂O (7-3) as eluents gave (–)-**6** in 82 % yield; $[\alpha]_D^{23} = -378$ (*c*. 1.0 10⁻², CHCl₃); *R*_f (50% Et₂O/petroleum ether) 0.49; ν_{max} cm⁻¹ 3058, 2925, 2855, 1734, 1615, 1448, 1368, 1173, 836; $\delta_H(300 \text{ MHz})$ 5.79-5.75 (m, 1H), 5.59-5.56 (m, 1H), 3.67 (br s, 1H), 3.36 (d, *J*=2.7 Hz, 1H), 3.34 (m, 1H), 3.28-3.21 (m, 1H), 2.74-2.61 (ddq, *J*=17.6, 10.2 and 2.3 Hz, 1H), 2.31 (dm, *J*=17.5 Hz, 1H); $\delta_C(75 \text{ MHz}, \text{CDCl}_3)$: 207.8, 132.6, 126.6, 60.9, 56.4, 56.0, 40.0, 34.1; HRMS (ESI) calculated for C₈H₉O₂ [M+H]⁺ 137.0603, found 137.0607.

<u>8a</u>

To a solution of epoxide (–)-6 (4.2 g, 30.9 mmol, 1.0 equiv) in THF (200 ml) at –80 °C, was added dropwise a solution of LiAlH₄ (1 M in THF, 58.3 mL, 58.3 mmol, 7.6 equiv per hydride). The temperature was allowed reach 0 °C and the reaction quenched with Na₂S₂O₃•5H₂O (25 g) added by portion. After 30 min, the precipitate was filtered and the cake washed with AcOEt. The filtrate was dried, evaporated under reduced pressure, and the crude residue purified by column chromatography on silica with petroleum ether-Et₂O (2-8) then 100% Et₂O as eluents to give *cis*-**8a** (2.99 g; 71%) and *trans*-**8a** (0.16 g; 4%).

To be noted: if reduction is performed on crude material (no column chromatography from 1,3-COD) reduced by products coming from saturated ketone and remaining enone **5** (as well as some other alcohols or by-products) are easily removed by column chromatography; thanks to their lower polarities than diols **8**; cis-**8a** $[\alpha]_D^{23} = -35.5$ (*c*. 1.0 10^{-2} , CHCl₃); R_f (100% Et₂O) 0.25; ν_{max} cm⁻¹ 3351, 2921, 1431, 1178, 1067, 953, 692; δ_H (300 MHz, CDCl₃) 5.56-5.48 (m, 2H), 4.04 (m, 2H), 3.38-3.33 (m, 1H), 3.05-2.98 (m, 2H, OH), 2.93-2.85 (m, 1H), 2.68 (br dd, *J*=17.5 and 10.3 Hz, 1H), 1.96 (br dm, *J*=17.6 Hz, 1H), 1.82 (br dm, *J*=14.3 Hz, 1H), 1.65 (dt, *J*=14.3 and 4.3 Hz, 1H); δ_c (75 MHz, CDCl₃): 130.8, 130.5, 81.3, 77.7, 60.3, 48.9, 39.2, 38.0; HRMS (EI) calculated for C₈ H₁₃O₂ [M+H]⁺ 141.0916, found: 141.0921.

trans-**8a**; R_f (100 % Et₂O) 0.13; ν_{max} cm⁻¹ 3341, 2921, 1441, 1330, 1082, 1059, 996; δ_H (300 MHz, CDCl₃) 5.67 (br dd, *J*=5.6 and 1.9 Hz, 1H), 5.57 (br dd, *J*=5.6 and 2.2 Hz, 1H), 4.46-4.39 (m, 1H), 3.83 (br s, 1H), 3.77-3.65 (br m, OH), 3.30 (br s, 1H), 2.64-2.55 (m, 1H), 2.50-2.44 (m, 1H), 2.05 (br d, *J*=16.9 Hz, 1H), 1.75 (br dt, *J*=12.2 and 4.2 Hz, 1H), 1.53 (ddd, *J*= 13.0, 8.6 and 4.6 Hz, 1H); δ_C (75 MHz, CDCl₃): 132.0, 128.6, 77.8, 72.9, 53.6, 48.5, 41.2, 38.8.

Epoxide **6** (1.9 g, 13.9 mmol, 1.0 equiv) was dissolved in THF (80 mL). The resulting solution was cooled to -78 °C and LiAlH₄ (1 M in THF, 6 mL, 6.0 mmol, 2.3 equiv per hydride) was added dropwise at the same temperature. After 20 min the reaction was quenched by adding a solution of NaOH (1 M). The reaction mixture was warmed up to room temperature and a solution of Na/K tartrate (1 M) was added to allow a better phase separation. After stirring for 2 h at room temperature, layers were separated and the aqueous one was extracted with Et₂O (2 x 30 mL). The combined organic layers were washed with brine, dried, filtered and the solvent was evaporated

under reduced pressure. Crude compounds **7** were obtained as colourless oil (1.9 g, dr: 95/5). $R_{\rm f}$ (50% Et₂O/petroleum ether) 0.43; $\nu_{\rm max}$ cm⁻¹ 3389, 3049, 2931, 2848, 1616, 1397, 1063, 856, 705; $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3)$: δ : 5.76-5.73 (m, 1H), 5.65-5.61 (m, 1H), 3.94 (br dd, *J*=7.5 Hz, 1H,), 3.63 (t, *J*=2.3 Hz, 1H), 3.41 (d, *J*=2.4, 1H), 3.10 (ddd, *J*=10.0, 8.0 and 5.4 Hz, 1H), 2.75 (m, 1H), 2.48 (ddm, *J*=17.2 and 9.0 Hz, 1H), 2.16 (dm, *J*=17.2 Hz, 1H); $\delta_{\rm C}(75 \text{ MHz}, \text{CDCl}_3)$: δ 131.4, 129.8, 78.8, 62.5, 62.2, 58.1, 43.6, 34.2; HRMS (EI) calculated for C₈H₁₁O₂ [M+H]⁺ 139.0759, found: 139.0743.

Crude compounds **7** (1.9 g, 13.7 mmol, 1.0 equiv) and a catalytic amount of PPTS were dissolved in dry CH₂Cl₂ (30 mL) at room temperature. Ethoxyvinylether (30 mL) was added dropwise at the same temperature. After completion of the reaction (TLC, 3 h), solid NaHCO₃ (excess) was added, followed by a saturated solution of NaHCO₃. Layers were separated and the aqueous one was extracted three times with CH₂Cl₂. The combined organic layers were washed with brine, dried, filtered and the solvent was eliminated under reduced pressure. Crude **11** was purified by flash chromatography (cyclohexane/AcOEt: 9.5/0.5) to remove *endo*-**11** byproduct, using deactivated silica gel (treated with a 1% solution of NEt₃ prior use). Exo-**11** was obtained as colourless oil (2.48 g, 80% (2 steps)); $R_{\rm f}$ (40% Et₂O/petroleum ether) 0.48; $\nu_{\rm max}$ cm⁻¹ 3049, 2978, 2933, 1446, 1392, 1337, 1131, 1095, 1057, 943, 862, 724; $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.84-5.77 (m, 1H), 5.68-5.64 (m, 1H), 4.89 (q, *J*=5.3 Hz, 1H), 4.84 (*dia* q, *J*=5.4 Hz, 1H), 3.94 (m, *J*=4.5 Hz, 1H), 3.78-3.48 (ABX3 systems of *dias*, 2H), 3.62 (d, *J*=2.4 Hz, 1H), 3.40 (t, *J*=2.7 Hz, 1H), 3.18-3.10 (m, 1H), 2.83 (m, 1H), 2.51 (ddm, *J*=17.2 and 10.0, 1H), 2.24-2.12 (m, 1H), 1.39 (2x d, *J*=5.4 Hz, 3H), 1.22 (t, *J*=7.2 Hz, 3H); $\delta_{\rm C}$ (75 MHz, CDCl₃) 131.9, 129.9, 99.0, 98.7, 82.0, 81.2, 61.3, 60.5, 60.2, 60.19, 59.9, 59.6, 54.5, 54.2, 43.6, 43.5, 33.9, 33.8, 20.1, 19.96, 15.12.

Compound 11 (2.48 g, 11.8 mmol, 1.0 equiv) was dissolved in Et₂O (80 mL). The resulting solution was cooled to -78°C and LiAlH₄ (1 M in Et₂O, 11.8 mL, 4.0 equiv per hydride) was added dropwise to the reaction mixture. The reaction mixture was allowed to reach room temperature and was stirred overnight. Then, the reaction mixture was cooled to 0 °C and hydrolysed with NaOH (1 M). For a better phase separation a Na/K tartrate solution (1 M) was added and the resulting solution was stirred for 2 h. Lavers were separated and the aqueous one was extracted Et₂O (2 x 30 mL). The combined organic layers were washed with brine, dried, filtered and the solvent was evaporated under reduced pressure yielding crude alcohol **8b** (2.39 g, colourless oil). $R_{\rm f}$ (40% Et₂O/petroleum ether) 0.32; ν_{max} cm⁻¹ 3430, 3049, 2976, 2932, 1446, 1377, 1337, 1055, 980, 875, 695; δ_{H} (300 MHz, CDCl₃) δ 5.59-5.55 (m, 1H), 5.52-5.45 (m, 1H), 4.76 (2 x q, J=5.3 Hz, 1H), 4.05-4.01 (m, 1H), 3.88 (br dd, J=10.3 Hz and 4.1 Hz, 1H), 3.62 (ABX3 systems of *dias*, 1H), 3.48 (ABX3 systems of *dias*, 1H), 3.43-3.33 (m, 1H), 3.16 and 3.05 (2 x d, 1H, J=10.5 and 10.6 Hz, 1H), 2.92-2.84 (bs, 1H, OH), 2.68 (ddm, J=17.6 and 10.2 Hz, 1H), 1.99 (dm, J=17.6 Hz, 1H), 1.89-1.81 ((m, 1H), 1.74-1.59 (m, 1H), 1.30 (2 x d, *J*=5.3, 3H), 1.19 (2 x t, *J*=7.1 Hz, 3H); δ_C(75 MHz, CDCl₃) 131.0, 130.5, 98.6, 80.8, 60.4, 57.8, 57.1, 49.3, 38.4, 38.1, 20.5, 15.2; HRMS (EI): calculated for C_{12} $H_{21}O_3$ $[M+H]^+$ 213.1491, found: 213.1469.

Crude alcohol **8b** above (2.39 g, 11.3 mmol, 1.0 equiv), imidazole (3.05 g, 44.8 mmol, 4.0 equiv) and a catalytic amount of DMAP were dissolved in DMF (8 mL) followed by addition of a solution of *tert*-butyldimethylsilyle chloride (2.54 g, 17.0 mmol, 1.5 equiv) in DMF (10 mL). The resulting reaction mixture was stirred at room temperature overnight. The solution was then cooled to 0 °C, H₂O was added, followed by a saturated solution of NaHCO₃. Phases were separated and the aqueous layer was extracted three times with Et₂O. The combined organic layers were washed three times with H₂O, and with brine. The organic layers were dried, filtered and the solvent was eliminated under reduced pressure affording crude **8c**. Purification by flash chromatography (cyclohexane/AcOEt: 9.5/0.5) with deactivated silica gel (treated with a 1% solution of NEt₃ prior use) afforded pure **8c** as a colourless oil (3.08 g, 80%, 2 steps); R_f (40% Et₂O/petroleum ether) 0.83; ν_{max} cm⁻¹ 2930, 2898, 172, 1376, 1251, 1040, 1084, 937, 835, 773, 695; δ_H (300 MHz, CDCl₃): 5.72-5.65 (m, 1H), 5.61-5.56 (m, 1H), 4.78-4.69 (m, 1H), 3.83-3.75 (m, 1H), 3.71-3.59 (m, 2H), 3.54-

3.42 (m, 1H), 3.18-3.07 (m, 1H), 2.67-2.45 (m, 2H), 2.18 (dm, J=16.6 Hz, 1H), 2.14-2.03 (m, 1H), 1.78-1.63 (m, 1H), 1.31 (2 x d, J=5.4 Hz, 3H), 1.20 (2 x t, J=7.1 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); δ_{C} (75 MHz, CDCl₃) 132.7, 132.6, 129.8, 129.6, 98.7, 98.5, 79.0, 78.5, 78.2, 60.1, 59.7, 56.8, 56.5, 48.7, 42.8, 41.8, 37.2, 37.0, 25.8, 20.4, 20.3, 15.2, -3.1, -4.6, -4.7.

To the diol **8a** (2.06 g, 14.7 mmol, 1.0 equiv) in dry DMF (20 mL) at 0 °C, were added successively, the imidazole (5.3 g, 77.85 mmol, 5.3 equiv) and *tert*-butyldimethylsilyle chloride (6.05 g, 40.1 mmol, 2.7 equiv) by portion, then the reaction was allowed to reach room temperature. After 1.5 h, water (50 mL) and Et₂O (50 mL) were added, and the layers were separated. The aqueous layer was extracted with Et₂O (2 x 100 mL). The combined organic layers were washed with water (5 x 100 mL), brine (50 mL), dried, filtered and the solvents evaporated under reduced pressure. The crude material was left a night under high vacuum to recover 5.58 g of the protected bis-TBS diol of **8a** (rdt >100%; excess of residual silanol by-product); R_f (100% Et₂O) 0.81; v_{max} cm⁻¹ 2955, 2929, 2989, 2857, 1472, 1463, 1375, 1361, 1250, 1189, 1095, 1066, 1006; $\delta_H(300 \text{ MHz}, \text{CDCl}_3)$; 5.69-5.65 (m, 1H), 5.57-5.53 (m, 1H), 3.84-3.78 (m, 1H); 3.67-3.60 (m, 1H), 3.05-2.97 (m, 1H), 2.66-2.57 (m, 1H), 2.54, 2.43 (m, 1H), 2.19-2.10 (br d, *J*=16.8 Hz), 2.04-1.96 (m, 1H), 1.71-1.61 (m, 1H), 0.87 (s, 9H), 0.86 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H); HRMS (ESI) calculated for $C_{20}H_{41}O_2Si_2 [M+H]^+$ 369.2631, found 369.2645.

<u>12</u>

Bis-TBS diol of **8a** above (14.7 mmol, 1.0 equiv) in CH₂Cl₂/MeOH (5/1) (72 mL) at -80 °C, was left under a stream of ozone. After 1.5 h a blue coloration indicating of an excess of ozone, the reaction is flushed under nitrogen, then NaBH₄ (5.56 g, 147 mmol, 10.0 equiv) was added. The

mixture was then allowed to rise room temperature and water (30 mL) was added. The layers were separated and the aqueous one extracted with CH₂Cl₂ (2 x 50 mL). The combined organic layers were washed with brine (30 mL), dried, filtered and the solvents removed under reduced pressure. The diol **12** was obtained as a white solid (4.44 g, 75%, 2 steps from **8a**) and used as such for the next step. $[\alpha]_D^{23} = +3.4$ (*c*. 1.0 10^{-2} , CHCl₃); R_f (100% Et₂O) 0.41; mp 104.0-104.6 °C; ν_{max} cm⁻¹ 3265, 2953, 2929, 2857, 1472, 1370, 1251, 1079, 1054, 1034, 1006; δ_H (300 MHz, CDCl₃): 4.01-3.96 (m, 1H), 3.86-3.80 (m, 1H), 3.76-3.63 (m, 3H), 3.59-3.54 (m, 1H), 2.33-2.24 (m, 1H), 2.21-2.15 (m, 2H), 1.76-1.65 (m, 1H), 1.57-1.45 (m, 3H), 0.87 (s, 9H), 0.86 (s, 9H), 0.04 (s, 6H), 0.03 (s, 6H); δ_C (75 MHz, CDCl₃) 76.8, 74.1, 62.3, 62.1, 51.1, 45.2, 44.3, 31.0, 25.8, 17.9, -4.12, -4.43, -4.70, -4.78; HRMS (ESI) calculated for C₂₀H₄₅O₄Si₂ [M+H]⁺ 405.2778, found 405.2844.

Iridium catalyst

To a solution of $[Cp*IrCl_2]_2$ (100 mg, 0.126 mmol, 1.0 equiv) and 2,2-diphenyl glycinol (53 mg, 0.252 mmol, 2.0 equiv) in CH₂Cl₂ (2.5 mL) was added a solution of KOH (200 mg, 3.5 mmol, 28.0 equiv) in distilled water (2.5 mL). After stirring for 30 min at room temperature, the layers were separated and the aqueous one extracted CH₂Cl₂ (2.5 mL). The combined organic layers were dried over CaH₂. Evaporation of solvent gave a red solid (132 mg, 93%) which is used without further purification.

13a and 13b

A mixture of Ir complex (11 mg, 0.07 mmol, 0.8 mol %) and diol **12** (1.0 g, 2.48 mmol, 1.0 equiv) in 9 mL of butanone freshly distilled and degassed was heated at reflux for 16 h. The resulting solution was then removed under reduced pressure, and the residue was purified on a small path of silica (to remove Ir catalyst) (petroleum ether/Et₂O, 9/1) to give the lactones **13a** and **13b** (920 mg, 92%) as a white solid; R_f (100% Et₂O) 0.43; mp 108.4 °C; v_{max} cm⁻¹ 2954, 2930, 2857, 1748, 1472, 1387, 1361, 1251, 1084, 1036, 1006; δ_H (300 MHz, CDCl₃): 4.18 (d, *J*=3.2 Hz, 2H), 3.99-3.91 (m, 1H), 3.64-3.57 (m, 1H), 2.54-2.44 (m, 3H), 2.36-2.27 (m, 1H), 2.08-2.00 (m, 1H), 1.62 (q, *J*=11 Hz, 1H) 0.86 (s, 18H), 0.04-0.03 (m, 12H); δ_C (75 MHz, CDCl₃): 172.8, 76.5, 71.4, 67.7, 44.4, 43.2, 41.7, 32.3, 25.6, 17.8, -4.5, -4.6,-4.9; HRMS (ESI) calculated for C₂₀H₄₁O₄Si₂ [M+H]⁺ 401.2571, found 401.2543.

<u>15a</u>

To a mixture of the lactones above **13a** and **13b** (920 mg, 2.30 mmol, 1.0 equiv) in CH₂Cl₂ (50 mL) at -78 °C, was slowly added DIBAL-H (1 M in toluene, 3.45 mL, 3.45 mmol, 1.5 equiv). After 30 min at the same temperature, the reaction was guenched by adding a solution of NH₄Cl. The reaction mixture was warmed up to room temperature and a solution of Na/K tartrate (1 M) was added. After stirring for 1 h, the layers were separated and the aqueous one was extracted with CH_2Cl_2 (3 x 40 mL). The combined organic layers were washed with brine, dried and the solvent was removed under reduced pressure. The crude material was purified by column chromatography on silica with dichloromethane to give lactol 15a (820 mg, 89%) as colourless oil; $\left[\alpha\right]_{D}^{23} = -38.4$ (c. 1.0 10⁻², CHCl₃); *R*_f (83% CH₂Cl₂/EtOAc) 0.55; v_{max} cm⁻¹ 3385, 2953, 2929, 2886, 2857, 1472, 1462, 1388, 1360, 1251, 1108, 1067, 1018; 829, 771; $\delta_{H}(300 \text{ MHz}, \text{CDCl}_3)$; 5.16-5.13 (m, 0.46H), 4.69-4.63 (m, 0.54), 4.22-4.09 (m, 1H), 4.06 (dd epi 1, J=11.8 and 3.9 Hz, 0.46H), 3.97 (dd epi 2, J=12.1 and 1.5 Hz, 0.56H), 3.84-3.76 (m, 1H), 3.68 (dd, J=12.1 and 3.0 Hz, 0.56H), 3.53 (dd, J=11.8 and 2.7 Hz, 0.46H), 2.88 (d, J=5.3 Hz, 0.56H, OH), 2.52 (br d, 0.46H, OH), 2.45-2.30 (m, 1H), 2.29-2.21 (m, 0.46H), 2.10-1.99 (m, 1.63H), 1.64-1.50 (m, 1.5H), 1.42-1.33 (m, 0.51), 1.02-0.92 (m, 0.60), 0.86 (s, 18H), 0.03 (s, 3H), 0.02 (s, 3H), 0.01 (s, 6H); δ_C(75 MHz, CDCl₃): 95.2, 91.2, 76.3, 75.8, 63.7, 58.6, 44.3, 44.2 (2x), 44.1, 44.0, 39.5, 32.8, 29.6, 25.8, 18.0, -4.5, -4.8 (3x); HRMS (ESI) calculated for $C_{20}H_{43}O_4Si_2$ [M+H]⁺ 403.2700, found 403.2672.

Lactol **15b**; $[\alpha]_D^{23} = -18.4$ (*c*. 0.5 10⁻², CHCl₃); R_f (83% CH₂Cl₂/EtOAc) 0.60; mp 99.4 °C; v_{max} cm⁻¹ 3400, 2952, 2930, 2887, 2857, 1472, 1462, 1388, 1361, 1254, 1113, 1072, 1035; 836, 774; δ_H (300 MHz, CDCl₃): 5.02 (br m, 0.6H), 4.90 (dd, *J*=8.0 and 2.8 Hz, 0.4H), (4.56, q, *J*=8.0 Hz, 0.4H), 4.17 (br q, *J*=7.8 Hz, 0.6H), 3.97-3.89 (m, 1H), 3.85-3.79 (m, 1H), 3.50 (dt epi 1, *J*=11.3 and 4.1 Hz, 0.6H), 3.40 (td, epi 2, *J*=11.7 and 2.6 Hz), 2.53-2.35 (m, 2H), 2.26-2.10 (m, 1H), 2.07-1.98 (m, 0.4H), 1.59-1.35 (m, 3H), 1.26-1.04 (m, 1H), 0.87-0.86 (3 singulets, 18H), 0.09-0.01 (5 singulets, 12H); δ_C (75 MHz, CDCl₃): 95.9, 92.8, 76.0, 71.6, 63.7, 58.4, 49.3, 47.4, 44.8, 44.4, 44.2, 41.2, 25.8, 25.7, 25.1, 25.0, -3.7, -4.5, -4.7, -4.9.

16

A solution of (4-carboxybutyl)triphenylphosphonium bromide (3.54 g, 8.0 mmol) in degassed THF (15 mL) was treated at 0 °C with a solution of potassium tert-butoxide (1M in THF, 16 mL, 16.0 mmol). After the mixture was stirred for 30 min at this temperature, a solution of the lactol **15a** (800 mg, 2.0 mmol) in THF (10 mL) was added via canula. The resulting mixture was then stirred at 0 °C for 1 h, quenched with addition of saturated aqueous NH₄Cl solution, diluted with water, ad*J*usted to pH 3 with 1 N HCl, and then extracted with EtOAc. The combined organic extracts were washed with brine, dried, filtered, and concentrated in vacuo. To the crude material was added a solution of Et₂O/MeOH (5/1) (10 mL) and TMSCHN₂ (1 M in Et₂O) was added until no bubbling is observed (N₂ formation). The crude material was purified by column chromatography on silica with dichloromethane-EtOAc (99-1) to give alcohol **16** (650 mg, 65%) as colorless oil (the first approx. 100 mg were discarded, because we believed them to be contaminated with some *E* isomer). A more polar compound is also obtained in 12% yield (120 mg) and was identified as compound **20** (see below); **16** $[\alpha]_D^{23} = -0.8$ (*c*. 1.0 10^{-2} , CHCl₃); *R*_f (90% CH₂Cl₂/EtOAc) 0.49; v_{max} cm⁻¹ 3468, 2954,

2929, 2887, 2857, 1741, 1472, 1361, 1252, 1065, 836, 774; $\delta_{H}(300 \text{ MHz, CDCl}_{3})$: 5.45-5.31 (m, 2H), 4.03 (br q, *J*=6.6 Hz, 1H), 3.79 (br q, *J*=5.4 Hz, 1H), 3.73-3.61 (m, 2H), 3.65 (s, 3H), 2.34-2.24 (m, 4H), 2.11-1.86 (m, 5H), 1.77 (br s, OH, 1H), 1.73-1.62 (m, 2H), 1.65 (dt, *J*=13.4 and 6.0 Hz, 1H), 0.86 (s, 9H), 0.85 (s, 9H), 0.04 (s; 6H), 0.00 (s, 6H); $\delta_{C}(75 \text{ MHz, CDCl}_{3})$: 174.1, 129.7, 129.5, 75.7, 74.8, 62.5, 51.5, 50.2, 48.2, 44.5, 33.4, 26.7, 25.8 (+ hidden CH₂), 24.7, 17.9, -4.3, -4.4, -4.7, -4.8; HRMS (ESI) calculated for C₂₆H₅₃O₅Si₂ [M+H]⁺ 501.3432, found 501.3418.

 $R_{\rm f}$ (90% CH₂Cl₂/EtOAc) 0.36; $\nu_{\rm max}$ cm⁻¹ 3428, 2953, 2929, 2896, 2857, 1742, 1472, 1361, 1252, 1093, 836, 774; $\delta_{\rm H}$ (300 MHz, CDCl₃): 5.41-5.29 (m, 2H), 4.08-4.02 (m, 1H), 3.90 (br q, *J*=4.6 Hz, 1H), 3.74-3.58 (m, 2H), 3.63 (s, 3H), 2.31-2.17 (m, 4H), 2.14-1.93 (m, 5H), 1.71-1.61 (m, 2H), 1.53 (dt, *J*=13.7, 4.6 Hz, 1H), 0.86 (s, 9H), 0.84 (s, 9H), 0.02 (s; 6H), 0.00 (s, 6H); $\delta_{\rm C}$ (75 MHz, CDCl₃): 173.9, 129.8, 129.4, 76.9, 75.8, 62.9, 51.4, 50.6, 49.1, 43.3, 33.5, 26.8, 25.8, 25.8 (CH₂), 24.8, 18.1, 17.9, -4.6, -4.7, -5.5; HRMS (ESI) calculated for C₂₆H₅₃O₅Si₂ [M+H]⁺ 501.3432, found 501.3414..

The silyl migration was confirmed by acetylation of the free alcohol of **20** to give compound **21**. ¹H NMR showed a chemical shift of one hydrogen confirming a free secondary alcohol for compound **20** (see ¹H NMR spectra provided).

To a solution of the alcohol **16** (600 mg, 1.2 mmol, 1.0 equiv) in CH_2Cl_2 (30 mL) was added dropwise the Dess-Martin periodinane (6.0 mL, 0.3 M. in CH_2Cl_2 , 1.8 mmol, 1.5 equiv). After 1 h at room temperature, a 10% solution of NaHCO₃ (50 mL) and 10% solution of Na₂S₂O₃ (50 mL) were added. The layers were separated and the aqueous one were extracted with CH_2Cl_2 (20 mL). The combined organic layers were washed brine, dried, filtered and the solvent removed under reduced pressure. The aldehyde was used as such for the next reaction. To a solution of NaH (60% in oil, 120 mg, 3.00 mmol, 2.5 equiv) in THF (30 mL) was added dimethyl-2-oxoheptyl phosphonate (994 mg, 3.60 mmol, 3.0 equiv) at room temperature. After 30 min., the aldehyde in THF (10 mL) was transferred via canula to the reaction mixture. After 1 h, water (20 mL) and Et₂O (40 mL) were added, the layers separated and the aqueous one extracted once with 20 mL of Et₂O. The combined organic layers were extracted with brine, dried, filtered and the solvent removed under reduced pressure. For characterization, purification by column chromatography on silica with dichloromethane as eluent gave enone 18 (585 mg, 82%, 2 steps) as an oil; $\left[\alpha\right]_{D}^{23} = +1.4$ (c. 1.0 10^{-2} , CHCl₃); *R*_f (90% cyclohexane /EtOAc) 0.49; v_{max} cm⁻¹ 3029, 2918, 2853, 1730, 1700, 1583, 1446, 1334, 1179, δ_H(300 MHz, CDCl₃): 6.63 (dd, *J*=15.7 and 9.9 Hz, 1H), 6.13 (d, *J*=15.7 Hz, 1H), 5.38-5.27 (m, 2H), 3.97 (ddd, J=7.1 and 5.2 Hz, 1H), 3.83 (br ddd, J=5.7 Hz, 1H), 3.63 (s, 3H), 2.82-2.74 (m, 1H), 2.47 (t, J=7.3 Hz, 2H), 2.35 (dt, J=7.1 Hz, 1H), 2.26 (d, J=7.4 Hz, 2H), 2.16-1.95 (m, 4H), 1.91-1.82 (m, 1H), 1.69-1.52 (m, 5H), 1.33-1.23 (m, 4H), 0.89-0.82 (m, 3H), 0.85 (s, 3H), 0.83 (s, 3H), 0.01 (s, 6H), -0.02 (s, 3H), -0.03 (s, 3H); $\delta_{C}(75 \text{ MHz}, \text{CDCl}_{3})$: 200.1, 173.9, 145.3, 131.4, 129.6, 129.0, 75.6, 75.4, 52.7, 51.4, 50.8, 44.3, 40.8, 33.4, 31.5, 26.8, 26.4, 25.8, 24.7, 23.9, 22.4, 17.9, 13.9, -4.5, -4.6, -4.7, -4.8.

17a and 17b

To a solution of the enone **18** (500 mg, 0.84 mmol, 1.00 equiv) in 10 mL of MeOH, was added the cerium chloryde heptahydrate (319 mg, 0.85 mmol, 1.01 equiv). The mixture was cooled at 0 °C and NaBH₄ was added (33.4 mg, 0.211 mmol, 1.05 equiv). After 10 min, the reaction was quenched with 12 mL of water and 25 mL of Et₂O were added. The layers were separated and the aqueous one extracted three times with Et₂O (20 mL). The combined organic layers were washed with brine, dried, filtered and the solvent removed under reduce pressure. The crude was purified by column chromatography on silica with dichloromethane-up to 1% EtOAc to give the alcohol **17a** (206 mg, 41%) and **17b** (226 mg, 45%) as a colourless oil; **17a** $[\alpha]_D^{23} = +13.8$ (*c*. 1.0 10⁻², CHCl₃); *R*_f (95% CH₂Cl₂/EtOAc) 0.59; v_{max} cm⁻¹ 3480 , 2954, 2929, 2857, 1742, 1462, 1250, 1105, 1063; $\delta_H(300)$

MHz, CDCl₃): 5.50 (dd, *J*=15.4 and 5.8 Hz, 1H), 5.46 (m, 3H), 4.09-4.01 (m, 1H), 3.90 (dt, *J*=6.9 and 4.8 Hz), 3.78 (m, 1H), 3.64 (s, 3H), 2.65-2.57 (m, 1H), 2.35-2.26 (m, 3H), 2.08-1.98 (m, 4H), 1.93-1.82 (m, 1H), 1.70-1.61 (m, 2H), 1.51-1.38 (m, 3H), 1.27 (br s, 6H), 0.86-0.85 (m, 3H), 0.86 (s, 9H), 0.85 (s, 9H), 0.01 (s, 6H), 0.00 (s, 6H); $\delta_{\rm C}$ (75 MHz, CDCl₃): 174.1, 135.4, 129.7, 129.4, 128.9, 76.1, 75.9, 72.7, 52.4, 51.4, 50.2, 44.2, 37.4, 33.5, 31.8, 26.7, 26.3, 25.8, 25.1, 24.8, 22.6, 18.0 (2x), 14.0, -4.4, -4.6, -4.8.

17b $[\alpha]_D^{23} = +10.0 (c. 1.0 10^{-2}, CHCl_3); R_f (95\% CH_2Cl_2/EtOAc) 0.54; v_{max} cm^{-1} 3480, 2954, 2928, 2857, 1741, 1462, 1250, 1107, 1064 <math>\delta_H(300 \text{ MHz}, CDCl_3)$: 5.50 (dd, *J*=16.4 and 6.3 Hz, 1H), 5.40 (dd, *J*=16.4 and 9.0 Hz, 1H), 5.37-5.27 (m, 2H), 4.06-4.00 (m, 1H), 3.88 (dt, *J*=7.0 and 4.6 Hz, 1H), 3.81-3.75 (m, 1H), 3.64 (s, 3H), 2.64-2.58 (m, 1H), 2.35-2.26 (m, 3H), 2.14-1.86 (m, 5H), 1.70-1.60 (m, 3H), 1.53-1.47 (m, 2H), 1.28 (br s, 6H), 0.90-0.84 (m, 2H), 0.86 and 0.84 (2 x s, 18H), 0.01 (s, 6H), -0.01 (2 x s, 6H); $\delta_C(75 \text{ MHz}, CDCl_3)$: 174.2, 135.6, 129.9, 129.8, 128.9, 76.2, 75.8, 73.0, 52.4, 51.5, 50.2, 44.3, 37.4, 33.4, 31.8, 26.7, 26.2, 25.8, 25.1, 24.8, 22.6, 18.0 (2x), 14.0, -4.4, -4.6.

19a and 19b

To a solution of the silylated ether **17a** (200 mg, 0.34 mmol, 1.0 eq.) was added TBAF (1 M in THF, 2.72 mL, 2.72 mmol, 8.0 eq, 4.0 equiv per TBS). After 2 h, CaCO₃ (906 mg, 1.03 mmol, 27 equiv), the Dowex 50W resina (2.8 g) and 2 mL of MeOH were added. After 1 h, the precipitate was filtered over a pad of Celite, washed with EtOAc and the solvent evaporated over reduced pressure to give triol **19a** (112 mg, 91%) after column chromatography on silica with EtOAc as eluent. The same transformation was performed with **17b** to give triol **19b** in a similar yield.

A crude mixture of **17a** and **17b** (starting from 320 mg of enone **18**) obtained from Luche reduction was desilylated following the same procedure, and a purification by column chromatography on silica with EtOAc gave the triol **19a** (73 mg, 37%, 2 steps) and triol **17b** (81 mg, 41%, 2 steps) as easily separable compounds. To be noted: compound **17a** is less polar then **17b**, but **19a** is more polar than **19b**.

19b, $[\alpha]_D^{23} = -13.4$ (*c*. 1.0 10⁻², CHCl₃); R_f (100% EtOAc) 0.20; v_{max} cm⁻¹ 3354, 2928, 2858, 1721, 1436, 1246, 1169, 972; δ_H (300 MHz, CDCl₃): 5.58 (dd, *J*=15.4 and 6.3 Hz, 1H), 5.48-5.34 (m, 3H),

4.11-3.94 (m, 3H), 3.65 (s, 3H), 2.80-2.73 (m, 1H), 2.46-2.36 (m, 1H), 2.30 (t, *J*=7.1 Hz, 2H), 2.20-2.21 (m, 1H), 2.08-1.99 (m, 4H), 1.71-1.60 (m, 4H), 1.55-1.42 (m, 2H), 1.28 (br s, 6H), 0.86 (br t; 3H); $\delta_{C}(75 \text{ MHz}, \text{CDCl}_{3})$: 174.3, 135.9, 129.6, 129.3, 128.4, 76.0, 75.9, 72.5, 52.9, 51.5, 50.6, 42.3, 37.2, 33.3, 31.7, 26.6, 25.1, 24.6; 22.5, 13.9; HRMS (ESI) calculated for $C_{21}H_{34}O_{5}$ [M+H]⁺ 369.2641, found 369.2650.

19a ; $[\alpha]_D^{23} = -5.5$ (*c*. 1.0 10^{-2} , CHCl₃); *R*_f (100% EtOAc) 0.14; ν_{max} cm⁻¹ 3356, 2927, 2857, 1722, 1436, 1245, 1171;): 5.56 (dd, *J*=15.3 and 6.5 Hz, 1H), 5.48-5.34 (m, 3H), 4.08-3.92 (m, 3H), 3.65 (s, 3H), 2.79-2.72 (m, 1H), 2.47-2.37 (m, 1H), 2.29 (t, *J*=7.3 Hz, 2H), 2.19-1.97 (m, 4H + 3 OH), 1.71-1.59 (m, 4H), 1.57-1.40 (m, 4H), 1.27 (br s, 6H), 0.86 (br t; 3H); $\delta_C(75 \text{ MHz}, \text{CDCl}_3)$: 174.2, 136.2, 129.6, 129.2, 76.0, 73.0, 53.1, 51.5, 50.7, 42.2, 37.1, 33.3, 31.7, 26.6, 25.1, 24.7, 22.6, 13.9; HRMS (ESI) calculated for C₂₁H₃₄O₅ [M+H]⁺ 369.2641, found 369.2640.

15-F_{2t}-IsoP 1 and epi-15-F_{2t}-IsoP

To a solution of the triol methyl ester **19a** (62 mg, 0.168 mmol, 1.0 equiv) in 2 mL of THF/H₂O (1/1) was added LiOH.H₂O (42 mg, 1.01 mmol, 6.0 equiv). After 3 h at rt, the solution was cooled at 0 °C and a HCl solution (1 M) was added until a acidic pH. The layers were separated and the aqueous one extracted with AcOEt (3 x 5 mL). The combined organic layers were dried, filtered and the solvents evaporated. The crude was purified by column chromatography on silica (AcOEt/MeOH, 9/1) to give 15-F_{2t}-IsoP **1** as an oil (46.5 mg, 78%).

The same transformation was performed with **19b** (55 mg) to give epi-15- F_{2t} -IsoP (42.9 mg, 81%) in a similar yield.

15-F_{2t}-IsoP **1**; $[\alpha]_D^{23} = +13.1$ (*c*. 1.0 10⁻², MeOH); *R*_f (90% EtOAc/MeOH) 0.22; ν_{max} cm⁻¹ 3329, 2928, 2858, 1705, 1551, 1405, 1379, 1240,1058, 1014, 970, 909, 730; $\delta_H(300 \text{ MHz, CDCl}_3)$: 5.57 (dd, *J*=15.4 and 6.0 Hz, 1H), 5.50-5.35 (m, 3H), 4.08 (q, *J*=6.1 Hz), 4.05-4.00 (m, 1H), 3.9-3.94 (m, 1H), 2.80-2.73 (m, 1H), 2.49-2.39 (m, 1H), 2.81 (t, *J*=6.5 Hz, 2H), 2.17-1.95 (m, 5H), 1.65 (t, *J*=6.7 Hz, 3H), 1.52-1.45 (m, 2H), 1.27 (br s, 6H), 0.86 (t, *J*=6.5 Hz, 3H); $\delta_C(75 \text{ MHz, CDCl}_3)$: 177.1, 135.4, 129.7, 129.3, 129.2, 76.0, 75.9, 72.9, 53.0, 50.6, 42.1, 37.0, 32.7, 31.6, 26.6, 26.2, 25.1, 24.3, 22.5, 13.9; HRMS (ESI) calculated for C₂₀H₃₄O₅Na [M+Na]⁺ 377.2304, found 377.2299.

epi-15-F_{2t}-IsoP, $[\alpha]_D^{23} = +1.4$ (*c*. 1.0 10⁻², MeOH); *R*_f (90% EtOAc/MeOH) 0.27; ν_{max} cm⁻¹ 3362, 2931, 1708, 1435, 1407, 1237, 1066, 972; $\delta_H(300 \text{ MHz}, \text{CDCl}_3)$: 5.56 (dd, *J*=15.4 and 6.4 Hz, 1H), 5.51-5.36 (m, 3H), 4.09 (q, *J*=6.3 Hz, 1H), 3.99 (m, 2H); 2.80-2.73 (m, 1H), 2.47-2.37 (m, 1H), 2.30 (t, *J*=6.5 Hz, 2H), 2.20-2.03 (m, 4H), 1.98-1.87 (m, 1H), 1.70-1.59 (m, 3H), 1.54-1.46 (m, 2H); 1.27 (br s, 6H), 0.86 (t, *J*=6.7 Hz, 3H); $\delta_C(75 \text{ MHz}, \text{CDCl}_3)$: 177.0, 135.4, 129.8, 129.5, 129.1, 76.2 (2x), 72.9, 53.3, 50.7, 42.2, 37.1, 32.7, 31.7, 26.7, 26.3, 25.1, 24.3, 22.6, 14.0; HRMS (ESI) calculated for C₂₀H₃₄O₅Na [M+Na]⁺ 377.2304, found 377.2306.

Acquisition Time (sec) 10.3547	Comment	1H sur CO1	-146 pur F2	Date	04/09/2008	10:58:26	
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56
Temperature (grad C) 0.000							

Acquisition Time (sec)	1.7695	Comment	Jmod sur C	O1-90F1	Date	04/09/2008	11:05:42	
Frequency (MHz)	75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz) 18518.52	
Temperature (grad C)	H H H	OH					100 100 100 100 100 100 100 100 100 100	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.5		
140 135 130	125 1	20 115 110 1	05 100	95 90 85 80	75 70 65 (	60 55	50 45 40 35 30 25	20 15 10

Acquisition Time (sec	) 10.3547	Comment	1H sur CC	1-109 pur		Date	03/09/2008	15:48:38	
Frequency (MHz)	300.13	Nucleus	1H	Original Points Coun	t 32768	Points Count	32768	Sweep Width (Hz)	3164.56
Temperature (grad C)	0.000								
80.6			H		2				
-9.19				5.80 5.78 5.78	-5.476.46 -5.46 -5.43			3.53 ) -2.75 .70	.18 2.14 
				-5.81 -5.77	5.41		73.55	2.85	2. 50 1.158
1.83 				1.00 	1.96 		0 L	99 1.98 	
9.0 8	6.5 8	.0 7.5	7.0	6.5 6.0	5.5	5.0 4.5	4.0	3.5 3.0	2.5 2.0 1.5 1.0

Acquisition Time (sec) 10.3547	Comment	enantiopure e	enone from minus alcool	Date	23/07/2008	15:16:26	
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56
Temperature (grad C) 0.000							



 -166.51	~131.45 ~130.84 ~128.34	Chloroform-d 8 2 4		-43.49	1 69 14
	H				
	Ĥ		ł		

Acquisition Time (sec) 1.7695	Comment	colonne IBX	oxidation	Date	23/07/2008	13:44:36	
Frequency (MHz) 75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52
Temperature (grad C) 0.000							

5 Aug 2	2008
---------	------

Acquisition Time (sec	<b>;)</b> 10.3547	<b>Comment</b> jm	ng280 3 1			Date	23/07/200	8 14:30:04	Frequency (MHz)	300.13
Nucleus	1H	Original Points Count 32	2768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		



5 Aug	2008
-------	------

Acquisition Time (sec) 1.7695	Comment	fraction 3 e	poxydattion	Date	23/07/2008	15:57:42	
Frequency (MHz) 75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52
Temperature (grad C) 0.000							





Acquisition Time (sec)	1.7695	Comment	LiAIH4 reduction	on de ketoepoxide de -78 a	t -25C	Date	23/07/2008 17	:37:02	
Frequency (MHz)	75.47	Nucleus	13C	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	18518.52
Temperature (grad C)	0.000								
Frequency (MHz) Temperature (grad C)	75.47 0.000		<u>13C</u>	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	18518.52 //hm//dapht/w/hw/hw/hy/hywywm/Mu//m/huy/hhy
	<u> </u>								
145 140 135	130 125	120 115 110	105 100	0 05 00 85	80 7	5 70 65 6	SO 55 4	50 45 40	35 30 25 20

cquisition Tim	e (sec) 10.3547	Comment jmg284	11	Date	23/07/2008 14:	31:42	Frequency (MHz) 300.13
ucleus	1H	Original Points Count 32768	Points Count	32768 Sweep Width (Hz)	3164.56 <b>Tem</b>	nperature (grad C) 0.000	
	HO H	5.67	5	-3.83	]]	}	
	HO H		1.46 4.39	-3.30	64 <u>7</u> 2.61 22.56 2.47		
1		1.01	0.98	1.10 0.29 1.54	1.06	1.00 1.01 1.15	



1



and all the

3 Sep	2008
-------	------



3 Sep	2008
-------	------

Acquisition Time (sec) 1.7695	Comment Dept	135 sur yas072 exp 9	<b>Date</b> 03/09/20	08 15:54:12
Frequency (MHz) 75.47	Nucleus 13C	Original Points Count 32768	Points Count 32768	Sweep Width (Hz) 18518.52
Frequency (MHz) 75.47   Temperature (grad C) 0.000   68 68   62 12   68 68   67 12   12 12   13 12   14 12	Nucleus 13C		<b>Folluts Cont</b> 35/98	Sweep Width (Hz) 18518.52
and the second of the second	guddwrainiallwyrglawddwrainiallau arllwr ar yw arlwr	hault-yearnessianananananananananananananananananana	hanningh hann b	กรามัการ ไปการและเป็นการแห่งอาการ และกระบบการและกรรรมการแกรง เป็นการและการและการและการและการและการและการและการ -
~o_l				
135 130 125 120	115 110 105 100	95 90 85 80 75 70	65 60 55 50	45 40 35 30 25 20 15 10 5

3 Sep 2	2008
---------	------



3	Sep	200	)8
---	-----	-----	----

Acquisition Time (sec) 1.7695	Comment	Dept135 su	r yas073 exp3	Date	03/09/2008	15:54:44	
Frequency (MHz) 75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52
Temperature (grad C) 0.000							
















5 Aug 2	2008
---------	------

Acauisition Time (sec) 1.7695	Comment	ima287 3	1		Date	23/07/2008 14	1:32:40	Frequency (MHz) 75.47
Nucleus 13C	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	18518.52		Temperature (grad C) 0.000
Nucleus 13C		32768 TBS		32768	Sweep Width (Hz)		-17.94	Temperature (grad C) 0.000   0.000 0.000   0.000 0.000
	www.www.www.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1 100000000000000000000000000000000000	WW		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~





3 Sep 2008







6	Aug	20	08
		-	



6	Aug	2008
_		





17	Aug	2008
----	-----	------

Acquisition Time (sec) 1.7695	Comment	Jmod sur idem	_R okach	Date	12/08/20	008 16:17:00		
Frequency (MHz) 75.47	Nucleus	13C <b>O</b>	riginal Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52	
<b>Jemperature (grad C)</b> 0.000	T129.70			-77.00 7-75.71 74.80	-62.49	~51.48 ~50.18 ~48.21 ~44.45 ~33.43	26.74 26.81 24.72 17.90 17.80	-4.44
			4.28 4.44 4.69 4.81					
			<u>₩</u>					
	-2.5 -3.0	-3.5 -4.0		-6.0 -6.5	-7.0			
								Î
มาสำหราชาไปสาวปรับประมาณการให้สาวอย่างให้เราสารไปสาวประมาณการให้สาว เ	un-facillyfunereuruilwryfuneryd bwybin	n)maaviikkamkankkamaadamaankakk	แมสมุรรณที่สุขาวจรู้ในปุ่นไม่รู้การจากสามหมุมสารปการจากเขาไม	which and the provided in the	and the second	adhalbandhunan marinenskana kanada nag	rand hand and the second from the second from the second second second second second second second second second	nt former
·····				Chloroform-d		······		



2.5

3.0

5.5

4.0

3.5

4.5

5.0

1.5

2.0

0.0

0.5

1.0

3 Sep 2	2008
---------	------

Acquisition Time (sec) 1.7695	Comment		Date	12/08/2008	16:21:56	
Frequency (MHz) 75.47	Nucleus 13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52
Temperature (grad C) 0.000						



3 Sep 2008

Acquisition Time (sec) 10.3547	Comment jmg303	11	Date	23/07/2008	8 14:40:06	Frequency (MHz)	300.13
Nucleus 1H	Original Points Count 32768	Points Count 32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		
				ſ			
AcO TBSO 21	[™] OTBS CO₂Me						
	yM			W	M	MM	
	، 1.11 المحلي	5.48		0.30		50 	13.77

Acquisition Time (sec	<b>:)</b> 10.3547	Comment	jmg296 6	1		Date	23/07/200	8 14:36:08	Frequency (MHz)	300.13
Nucleus	1H	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		



5	Sep	2008
~	OOP	2000



5 Sep 20	800
----------	-----

Acquisition Time (sec) 10.3547	Comment	jmg275 1 1	dnqs C6D6	Date	23/07/2008 14:28:06			
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz) 3164.56		
Temperature (grad C) 0.000								

TBSO O TBSO CO₂Me









21 Aug 2008
-------------



Acquisition 1	Time (sec) 1.7695	Comment jmg308	51		Date	23/07/2008 14:42:18			Frequency (MHz)	75.47
Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52			Temperature (grad C)	0.000
-174.10					Chloroform-d 76:08 77:27 77:27 72:27	~52.39 ~51.43 ~50.15				L-4.1 L-4.56
	-	TBSO H OH 17a	`CO₂Me							
	NYMAANYYKANYYKANYYKANYKANA	mage in the second with the second seco	€{{4} ¹ {44 ¹ }{64 ¹ }{641}}	V649 ¹² W4414/V44 <mark>16481</mark> 8414 <mark>1648</mark> 1841	window many habit	ntw/www.www.manuture.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com		wwww.www.wyhay.v		n-day-waranteen for formation for the
••••••	160 450		····	100 00			·····		·····	·····
170	100 150	140 130 120		90	80 70	50 50	40	30	20 10	U













Acquisition Tim	ne (sec) 1.7695	Comment jmg308 2	1		Date	23/07/2008 14:42:04		Frequency (MHz)	75.47
Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52		Temperature (grad C)	0.000
					Chloroform-d				
.19					0 2 2 0	38	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 20 20 20 20 20 20 20 20 20 20 20 20 2	<del>7</del> 0
174		135 129 128			77.0 76.7 73.0	52.3 50.3	44.2 33.3 31.1 26.1	14.0.22.1	4 4 4 0
1 - Constanting		Î ÎI			ς ςγ <i>2</i> ,	ちてて		ن نسخ تستيشكا	4
		TBSO							
			$\checkmark = \checkmark$						
				~ <i>·</i>					
			$\checkmark$ $\swarrow$	$\sim$					
		TBSO	HOH						
		17	7b						
		1			<u>II  </u>				
		<u> </u>							1
					<u>!</u>				
						lil			
								1	
1									
	منابيها والمتراج		a bar tanaha s		<b>M</b>			[W]	المرابع بالمرابع
rninnininininininininininininininininin	raventy he have not a second and the second s	งระดา/ <i>งาข</i> าว _{ไฟไหนไ} งไกไปปฏิโกร์ไปปฏิโกร์ เรื่องการที่สามารถเป็นการที่สามารถเป็นการที่สามารถเป็นการที่สามารถเป็นการที่สามารถเป็นสามารถเป็นสามารถเป็นสามาร	anna-annannyanan'i fanananyanyanya	MMMYWMMMWMMMMMMMMM	annan manananan mananananananan	Kantonalinanananananalahali w va Maraha	una inadamanda adana ina renjedari.	xxxx vmfxvnvn nvvvsmvl mnh/hvmvv/hvmhvnv	www.mhumMhMhumMhMun.am/
470	400		440		·····				
170	150 150	140 130 120	10 10	v 90	δU /Ü	bU 5U	40 30	20 10	U





Acquisition Tim	<b>ie (sec)</b> 10.3547	Comment jmg	311 4 1		Date	23/07/200	8 14:43:46	Frequency (MHz)	300.13
Nucleus	1H	Original Points Count 327	68 Points Coun	nt 32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		
-2.79 -2.78 -2.76	-2.75 -2.72 -2.72	-2:47 -2:44 -2:33 -2:33 -2:33 -2:33 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:47 -2:39 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:32 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22 -2:22			7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	-1.57 -1.50 -1.47 -1.44	127		



Acquisition Time (sec) 1.7695	Comment	jmg311 2	1		Date	23/07/2008 14:43:38		Frequency	(MHz)	75.47
Nucleus 13C	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	18518.52		Temperatur	e (grad C)	0.000
œ	œ	o <del>−</del>			Chloroto	orm-d				
4.1	6.1	0.0 0.7			.00	л. 10.	.10 .50 .73 .73	.08 .33 .08	.64 .12 .66	.94
	13	2 2 2 2 2			۲. ۲.	e/_	42 50 51	-37	222	13
		19a	CO ₂ Me	l/lloh/mmmlm/m						

Acquisition Time (sec) 10.3547	Comment jmg311 3	1	Date	23/07/2008 14:43:42	Frequency (MHz)	300.13
Nucleus 1H	Original Points Count 32768	Points Count 32768	Sweep Width (Hz)	3164.56 Temperature (grad C) 0.000		
		11.00	.02 .98 .94 .65	71 000 000 000 000 000 000 000 000 000 0	.68 .66 .63 .63 .63 .63 .63 .63 .63 .63 .63	88. 86. 86. 86.
		444				
		~				
		CO ₂ Me				
		~ <				
	HO	~				
	HO HO H					
	19b					
						1
						1
	li IN .	ļ				/ V
			Mw r		!// W _ // \	r
	₩₩ <u>,</u> ¥ <b>,</b>	.,V ^V	/			
	hl		human			
	1.00 2.87	2.	99 2.76	0.93 1.93 4.16 2.42	4.01 2.21 5.85	2.83
7.0 6.5	6.0 5.5	5.0 4.5	4.0 3.5	3.0 25 20	1.5 1	.0

Acquisition	n Time (sec) 10.3547	Comment	jmg311 3	1		Date 23/07/2008 14:43:42				Frequency (MHz)	300.13
Nucleus	1H	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperatur	e (grad C) 0.000		
	2007 2007 2007 2007 2007 2007 2007 2007	-5.27							74.11 74.09 4.07 4.02 3.98 3.94		
		HO		[∼] CO₂Me							
		НО НО	, H	$\checkmark$							
		19b									
	ļ										
	., I M	1							ļ		
									M Man		
		M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					~ V	· Auronounoverse	//
	1.00 2.	87							2.99		2.76

Acquisition Time (sec	<b>;)</b> 10.3547	Comment	jmg311 3	1			Date	23/07/20	08 14:43:42	Frequency (MHz)	300.13
Nucleus	1H	Original Points Count	32768	Points Count		32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		
		-2:46 -2:44 -2:44 -2:33 -2:33 -2:33 -2:33 -2:33	~2.19 ~2.16		—1.92		7 - 1.71 - 1.68 - 1.63 - 1.63 - 1.63	ン1.51 1.50 1.48 1.42	1.28	~	


Acqui	sition Time (sec) 1.7695	Comment jmg311 1	1	Date	23/07/2008 14:43:34		Frequency (I	MHz)	75.47
Nucleu	us 13C	Original Points Count 32768	Points Count 32768	Sweep Width (Hz)	18518.52		Temperature	e (grad C)	0.000
				Chloro	form-d				
-174.27				00.77	-72.48 -72.48	-52.92 -51.53 -50.59 -42.25	-37.16 -33.28 -31.68 -26.63	~25.13 ~24.64 ~22.53	-13.94
180	170 160	150 140 130	120 110 100	90 80	70 60	50 40	30	20	10



Acquisition Time	(sec) 10.3547	Comment	jmg312 10	)1		Date	23/07/2008	3 20:10:38	Frequency (MHz)	300.13
Nucleus	1H	<b>Original Points Count</b>	32768	Points Count	32768	Sweep Width (Hz)				
6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7				-4.75			74.11	4.00 4.07 4.07 4.02 4.02 4.02 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.9		





Acquisition Time (s	<b>ec)</b> 10.3547	Comment	jmg312 10	1		Date	23/07/200	8 20:10:38	Frequency (MHz)	300.13
Nucleus	1H	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		
		-2.80 -2.77 -2.73		~2.49 ~2.47 ~2.42 ~2.39 ~2.39	-2.31 -2.29 -2.17 -2.17	2:10 2:08 2:09 2:00 2:00 2:00 2:00 2:00 2:00 2:00		2.5.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5 4.5.5	—1.27 —1.24	









Acquisition	Time (sec) 10.3547	Comment	jmg317 3	1		Date	23/07/200	8 19:00:02	Frequency (MHz)	300.13
Nucleus	1H	<b>Original Points Count</b>	32768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperature (grad C) 0.000		
	-5.57 -5.57 -5.52 -5.52 -5.48 -5.48	-5.42 -5.38 -5.36							7-1-4-06 4-06 7-3-3-99 7-3-399 7-1-4-06 7-1-4-06 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-4-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-3-05 7-05 7-05 7-05 7-05 7-05 7-05 7-05 7	



27 Aug 2	2008
----------	------



Acquisition Time (sec,	) 1.7695	Comment	jmg337 5 ⁻			Date	23/07/2008 19:00:10	Frequency (MHz)	75.47
Nucleus	13C	<b>Original Points Count</b>	32768	Points Count	32768	Sweep Width (Hz)	18518.52	Temperature (grad C)	0.000

