Supporting information for

Stereocontrolled access to isoprostanes via a bicyclo[3.3.0]octene framework

Camille Oger, Yasmin Brinkmann, Samira Bouazzaoui, Thierry Durand, Jean-Marie Galano*

Institut des Biomolécules Max Mousseron, IBMM, UMR CNRS 5247, Université Montpellier I, Université Montpellier II, Faculté de Pharmacie, 15. Av. Ch. Flahault, F-34093 Montpellier cedex 05, France
Jgalano@univ-montp1.fr

- Preparative procedures and characterisation data for $\mathbf{4 , 6 - 8}, \mathbf{1 0 - 2 1}$, and $\mathbf{1}$ and epi-1.
- Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}, \mathbf{6 - 8}, 11-21$ and $\mathbf{1}$ and epi-1.

General Details

All reactions requiring anhydrous conditions were conducted in oven-dried glassware with magnetic stirring under an atmosphere of nitrogen, unless mentioned otherwise. Syringes and needles for the transfer of reagents were dried at $120^{\circ} \mathrm{C}$ and allowed to cool in a desiccators over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from benzophenone ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. Other solvents and reagents were used as obtained from supplier, unless otherwise noted.
Air was dried by passing through CaCl_{2}. Reactions were monitored by TLC, using plates pre-coated Silica Gel 60 (Merck). Visualization of reaction components was achieved with 254 nm , and treatment with acidic p-anisaldehyde stain, followed by gentle heating. Organic layers were dried using MgSO_{4} unless otherwise stated. Column chromatography was carried out on Kieselgel 60 (40$63 \mu \mathrm{~m}$). Petroleum ether refers to the fraction of petroleum boiling between $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. Infrared spectra were obtained using a Perkin-Elmer Spectrum One spectrophotometer. They were reported as wavenumber $\left(\mathrm{cm}^{-1}\right)$ of significant peaks. Electrospray mass spectra (MS) were obtained by ionisation methods using a Finnegan LQC advantage spectrometer. Melting points were recorded on a Stuart SMP3 block, and are uncorrected. Unless otherwise stated, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 303 K with a Bruker AMX 300 spectrometer or at 305 K with a Bruker AV400 spectrometer, in CDCl_{3} : the peak due to residual CDCl_{3} was used as the internal reference (fixed at 7.24 ppm). The ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift in parts per million (multiplicity, coupling constant(s) $J(\mathrm{~Hz})$, relative integral, assignment) where multiplicity is defined as: $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet, $\mathrm{AB}=\mathrm{AB}$ doublet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, or combination thereof). Selected ${ }^{13} \mathrm{C}$ NMR spectra were conducted using a J modulated sequence and the central peak of the CDCl_{3} triplet was used as an internal reference (77.00 ppm). The assignments of NMR spectra were assisted by homonuclear $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right)$ and heteronuclear $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ correlation spectroscopy (COSY45, HMQC, HMBC).

3,4-Epoxycyclooctene

Peracetic acid (40% in acetic acid; $100 \mathrm{~mL}, 0.61 \mathrm{~mol}, 1.33$ equiv) was added dropwise to a mechanically stirred solution of cycloocta-1,3-diene 9 ($57 \mathrm{~mL}, 0.46 \mathrm{~mol}, 1.0$ equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($200 \mathrm{~g}, 1.88 \mathrm{~mol}, 4.08$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(750 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly allowed to warm up to room temperature over a period of 2 h , and then filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 150 mL). The organic phase was washed with saturated aq. NaHCO_{3} until neutral pH , the layers were separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic extracts were then washed with brine (100 mL), dried and evaporated to give the corresponding monoepoxide as a yellow oil ($56.7 \mathrm{~g}, 92 \%$) which was used in the next step without further purification; $R_{f}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$: petroleum ether) $0.60 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $5.81-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40$ (br dd, 1H), 3.13-3.08 (m, 1H), 2.37-2.26 (m, 1H), 2.11-1.95 (m, 2H), 1.85-1.57 (m, 3H), 1.49-1.34 ($\mathrm{m}, 2 \mathrm{H}$).

Bicyclo[3.3.0]oct-7-en-endo-2-ol (S)-4 and (R)-4

(-)-4

(+)-4

To a 2-litre 3 neck round bottom flask equipped with an electronic thermometer and a condenser; $n \mathrm{BuLi}(10 \mathrm{M}$ in hexanes, $100 \mathrm{~mL}, 1.00 \mathrm{~mol}$) was slowly added, with a canula; to a solution of $N, N-$ diethylamine ($104.7 \mathrm{~mL}, 1.00 \mathrm{~mol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(650 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After addition the reaction is left to stir for 1 h at $0^{\circ} \mathrm{C}$, then an external heater solution (water bath is generally used) is step up at $30{ }^{\circ} \mathrm{C}$ and the condenser equipped with a CaCl_{2} moisture trap only. At this temperature, previously synthesized 3,4-epoxycyclooctene ($56.7 \mathrm{~g}, \sim 0.46 \mathrm{mmol}$) dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added dropwise at a rate that a small exotherm is keep constant. (Attention: the CH -insertion reaction takes place almost immediately at this temperature. After a few mls of dropping addition, the external bath can be removed and temperature is kept at around $30^{\circ} \mathrm{C}$ by its own exothermicity. Adding the epoxide at room temperature, then heat up to $30^{\circ} \mathrm{C}$ caused extremely fast reaction and build-up of high risk of over-pressure). After addition, the reaction is allowed to reach room temperature, and then cooled to $0{ }^{\circ} \mathrm{C}$. Aqueous $\mathrm{HCl}(\sim 500 \mathrm{~mL}, 5 \mathrm{M})$ was added with vigorous
stirring until an acidic pH was reached (first 100 mL are exothermic). The aqueous and organic layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$ and the combined organic phases were washed with saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, brine (100 mL), dried and concentrated to leave a residue which is distilled $\left(20 \mathrm{mmHg}, \sim 82^{\circ} \mathrm{C}\right)$ to yield approx. $(42 \mathrm{~g}, 72 \%, 2$ steps) of bicyclo[3.3.0]oct-7-en-endo-2-ol (4): $R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ petroleum ether) 0.29 ; $\mathrm{v}_{\max } \mathrm{cm}^{-1} 3351$, $2941,2866,2845,1618,1447,1363,1333,1299,1212,1172,1084,1063,1111 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.87-$ $5.82(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 2 \mathrm{H})$, 2.12-1.99 (m, 1H), 1.86-1.75 (m, 1H), 1.71-1.52 (m, 2H), 1.42-1.32 (m, 2H), $\delta_{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $134.4,127.6,74.7,55.9,41.5,39.6,34.9,31.0$; HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 125.0984, found 125.0966 .

Enzymatic Resolution:

To a solution of the racemic alcohol $4\left(20 \mathrm{~g}, 16.14 \mathrm{mmol}, 1.0\right.$ equiv) in $325 \mathrm{~mL}^{2} \mathrm{Et}_{2} \mathrm{O}$ were successively added succinic anhydride ($16.17 \mathrm{~g}, 16.16 \mathrm{mmol}, 1.0$ equiv) and the Amano $A K$ lipase (1.01 g). The suspension was stirred with the rotavapor for 15 h . After 50% conversion, the suspension was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was extracted with a 2 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 100 \mathrm{~mL})$ and the layers separated. The aqueous layer (containing compound 10) was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$ and the combined organic layers were washed with a 10% solution of $\mathrm{NaCl} / \mathrm{Na}_{2} \mathrm{CO}_{3} 1 / 1(150 \mathrm{~mL})$, dried, filtered and the solvent removed under reduced pressure. The $(S)-4$ alcohol was obtained as a yellow oil ($9.60 \mathrm{~g}, 48 \%$, ee $>98 \%$); $[\alpha]_{\mathrm{D}}{ }^{20}=-136$ (c $1.0210^{-2}, \mathrm{CHCl}_{3}$). NaOH pellets were added to the aqueous layer (containing compound 10) at 10 ${ }^{\circ} \mathrm{C}$ until basic pH and stirred for $1 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added, and the layers were separated and the aqueous one extracted three times with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The combined organic layers were dried, filtered and the solvent removed under reduced pressure. The $(R)-4$ alcohol was obtained as a yellow oil $(9.46 \mathrm{~g}, 47 \%$, ee $>98 \%) ;[\alpha]_{\mathrm{D}}{ }^{20}=+144\left(\mathrm{c} 1.0210^{-2}, \mathrm{CHCl}_{3}\right)$

Dinitroderivative synthesis:

To a solution of the alcohol 4 ($201 \mathrm{mg}, 1.62 \mathrm{mmol}, 1.0$ equiv) in 5 mL of anhydrous pyridine at 0 ${ }^{\circ} \mathrm{C}$, was added the 3,5 -dinitrobenzoyl chloride ($1.0 \mathrm{~g}, 4.34 \mathrm{mmol}, 2.7$ equiv). After 1 h at $0^{\circ} \mathrm{C}$, the
reaction was warmed to rt during the night. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the layers separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with a HCl solution ($1 \mathrm{M}, 3 \times 10 \mathrm{~mL}$), a solution of saturated $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL}), 10 \mathrm{~mL}$ of brine, then dried and the solvents removed under reduced pressure. The dinitroderivatives was obtained as a white powder ($360 \mathrm{mg}, 70 \%$), $\nu_{\max } \mathrm{cm}^{-1} 3085,2951,1717,1629,1540,1460,1288,1172,1080$, $1007 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 9.21(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.40(\mathrm{~m}$, $2 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.10(\mathrm{td}, J=16.8$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.80(\mathrm{~m}, 3 \mathrm{H})$, 1.64-1.54 (m, 1H); HPLC analysis of dinitroderivative for ee determination: (HPLC Perkin Helmer serie 200, Chiral column Chiralcel OD $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, Diode Array Detector ($\lambda=254 \mathrm{~nm}$)). Flow: $0.7 \mathrm{~mL} / \mathrm{min}$; derivative from $(S)-(-)-4: \operatorname{tr}=29.2 \mathrm{~min}$, derivative from $(R)-(+)-4: \mathrm{tr}=26.8 \mathrm{~min}$.

5

To a 2-neck round bottomed flask (500 mL) equipped with a mechanic stirrer and a DrySyn® heating block, alcohol (-)-4 ($8.0 \mathrm{~g}, 64.5 \mathrm{mmol}$) was added followed by DMSO (80 mL , A.C.S. reagent) and IBX in three portions $(53.8 \mathrm{~g}, 0.194 \mathrm{~mol})$. The digital probe of the DrySyn® heating block was set-up at $90^{\circ} \mathrm{C}$, and the flask covered with aluminum foil. The reaction was allowed to proceed for 14 h and a pale brown solution resulted. The resulting mixture was filtered and the resulting white cake was rinsed DMSO (60 mL) until the filtrate remains colorless (note: the white cake, approx. 35 g , was recycled into IBX by oxone oxydation). To the filtrate was added a cold solution of saturated $\mathrm{NaCl}(200 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the mixture mechanically stirred for 15 min . The layers were then separated, and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were filtered, and then a 10% solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and a 10% solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(100 \mathrm{~mL})$ were added to the combined organic layers. After 1 h , the layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried, filtered, and concentrated to give an oily residue (5.6 g). ${ }^{1} \mathrm{H}$ NMR revealed the complete conversion into enone (-)-(5) with up to 5 to 10% of ketone [R_{f} ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) 0.51] resulting from an incomplete oxidation. No chromatographic purification was required at this stage for the next reaction. For characterization and yield determination, purification by column chromatography on silica with petroleum ether- $\mathrm{Et}_{2} \mathrm{O}(8-2)$ as eluents gave (-)-5 (5.3 g, 65\%); $[\alpha]_{\mathrm{D}}{ }^{23}$ $=-564\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ petroleum ether $) 0.37, \nu_{\max } \mathrm{cm}^{-1} 3059,2918,2853,1696$, $1583,1178,694 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) \delta=7.49(\mathrm{dd}, J=5.6$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=5.6$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.67-5.62(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{br} \mathrm{ddd}, J=17.4,11.1$ and 2.4 Hz ,
$1 \mathrm{H}), 2.2-(\mathrm{dm}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 209.5,166.5,131.5,130.8,128.3,58.0,43.5$, 35.4; HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$121.0653, found 121.0641.
$\underline{6}$

To a solution of the tert-butyl hydroperoxide ($70 \mathrm{wt} . \%$ in water, $600 \mu \mathrm{~L}, 4.19 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added water (3 mL). The layers were separated and the organic one dried over MgSO_{4}, filtered, and washed with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until 10 mL of solvent were obtained. To this solution was added enone (-) $\mathbf{5}$ ($500 \mathrm{mg}, 4.17 \mathrm{mmol}, 1.0$ equiv). DBU ($100 \mu \mathrm{~L}, 0.668 \mathrm{mmol}, 0.16$ equiv) was added slowly (over 5 min). After 16 h at rt , the solution was extracted with HCl solution ($1 \mathrm{M}, 5$ $\mathrm{mL})$. The organic layer was washed with a solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(500 \mathrm{mg} / 10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$, brine then dried, filtered and the solvents evaporated under reduced pressure. This reaction can be scale-up to 1 g of enone 5 . We are routinely preparing multigram quantity of $\mathbf{6}$ by running 5 reactions overnight (crude 5 is divided in 5 fractions) with only one work-up as shown above.
Remaining saturated ketone (from IBX oxidation) coelute with epoxide 6. No chromatographic purification was required at this stage for the next reaction because subsequent reduction step will ease up the chromatographic separation of unwanted intermediates.
For characterization and yield determination purification by column chromatography on silica with petroleum ether- $\mathrm{Et}_{2} \mathrm{O}(7-3)$ as eluents gave $(-)-6$ in 82% yield; $[\alpha]_{\mathrm{D}}{ }^{23}=-378\left(\right.$ c. $\left.1.010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) $0.49 ; v_{\max } \mathrm{cm}^{-1} 3058,2925,2855,1734,1615,1448,1368,1173,836$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.79-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.56(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.61(\mathrm{ddq}, J=17.6,10.2$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dm}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 207.8,132.6,126.6,60.9,56.4,56.0,40.0,34.1$; HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$137.0603, found 137.0607.

8a

95:5

To a solution of epoxide (-)-6 ($4.2 \mathrm{~g}, 30.9 \mathrm{mmol}$, 1.0 equiv) in THF $(200 \mathrm{ml})$ at $-80^{\circ} \mathrm{C}$, was added dropwise a solution of LiAlH_{4} (1 M in THF, $58.3 \mathrm{~mL}, 58.3 \mathrm{mmol}, 7.6$ equiv per hydride). The temperature was allowed reach $0{ }^{\circ} \mathrm{C}$ and the reaction quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~g})$ added by portion. After 30 min , the precipitate was filtered and the cake washed with AcOEt. The filtrate was dried, evaporated under reduced pressure, and the crude residue purified by column chromatography on silica with petroleum ether- $\mathrm{Et}_{2} \mathrm{O}(2-8)$ then $100 \% \mathrm{Et}_{2} \mathrm{O}$ as eluents to give cis-8a ($2.99 \mathrm{~g} ; 71 \%$) and trans-8a ($0.16 \mathrm{~g} ; 4 \%$).
To be noted: if reduction is performed on crude material (no column chromatography from 1,3COD) reduced by products coming from saturated ketone and remaining enone 5 (as well as some other alcohols or by-products) are easily removed by column chromatography; thanks to their lower polarities than diols $\mathbf{8}$; cis-8a $[\alpha]_{\mathrm{D}}{ }^{23}=-35.5\left(\right.$ c. $\left.1.010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right) 0.25 ; \nu_{\max } \mathrm{cm}^{-1}$ 3351, 2921, 1431, 1178, 1067, 953, 692; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.56-5.48(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H})$, 3.38-3.33 (m, 1H), 3.05-2.98 (m, 2H, OH), 2.93-2.85 (m, 1H), $2.68(\mathrm{br} \mathrm{dd}, J=17.5$ and $10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{br} \mathrm{dm}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{br} \mathrm{dm}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dt}, J=14.3$ and $4.3 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{c}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $130.8,130.5,81.3,77.7,60.3,48.9,39.2,38.0$; HRMS (EI) calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$141.0916, found: 141.0921 .
trans-8a; $R_{\mathrm{f}}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right) 0.13 ; v_{\max } \mathrm{cm}^{-1} 3341,2921,1441,1330,1082,1059,996 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.67(\mathrm{br} \mathrm{dd}, J=5.6$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{br} \mathrm{dd}, J=5.6$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H})$, $3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77-3.65(\mathrm{br} \mathrm{m}, \mathrm{OH}), 3.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.05$ (br d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (br dt, $J=12.2$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.53 (ddd, $J=13.0,8.6$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 132.0,128.6,77.8,72.9,53.6,48.5,41.2,38.8$.

Epoxide 6 ($1.9 \mathrm{~g}, 13.9 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF (80 mL). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and LiAlH_{4} (1 M in THF, $6 \mathrm{~mL}, 6.0 \mathrm{mmol}$, 2.3 equiv per hydride) was added dropwise at the same temperature. After 20 min the reaction was quenched by adding a solution of $\mathrm{NaOH}(1 \mathrm{M})$. The reaction mixture was warmed up to room temperature and a solution of Na / K tartrate (1 M) was added to allow a better phase separation. After stirring for 2 h at room temperature, layers were separated and the aqueous one was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, filtered and the solvent was evaporated
under reduced pressure. Crude compounds 7 were obtained as colourless oil (1.9 g , dr: 95/5). R_{f} ($50 \% \mathrm{Et}_{2} \mathrm{O}$ /petroleum ether) $0.43 ; v_{\max } \mathrm{cm}^{-1} 3389,3049,2931,2848,1616,1397,1063,856,705$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta: 5.76-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.61(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.63(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=2.4,1 \mathrm{H}), 3.10(\mathrm{ddd}, J=10.0,8.0$ and $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (ddm, $J=17.2$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dm}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 131.4,129.8,78.8$, 62.5, 62.2, 58.1, 43.6, 34.2; HRMS (EI) calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 139.0759$, found: 139.0743.

Crude compounds 7 ($1.9 \mathrm{~g}, 13.7 \mathrm{mmol}, 1.0$ equiv) and a catalytic amount of PPTS were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at room temperature. Ethoxyvinylether (30 mL) was added dropwise at the same temperature. After completion of the reaction (TLC, 3 h), solid NaHCO_{3} (excess) was added, followed by a saturated solution of NaHCO_{3}. Layers were separated and the aqueous one was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered and the solvent was eliminated under reduced pressure. Crude $\mathbf{1 1}$ was purified by flash chromatography (cyclohexane/AcOEt: 9.5/0.5) to remove endo-11 byproduct, using deactivated silica gel (treated with a 1% solution of NEt_{3} prior use). Exo-11 was obtained as colourless oil (2.48 $\mathrm{g}, 80 \%$ (2 steps)); R_{f} ($40 \% \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) $0.48 ; v_{\max } \mathrm{cm}^{-1} 3049,2978,2933,1446,1392$, 1337, 1131, 1095, 1057, 943, 862, 724; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 5.84-5.77 (m, 1H), 5.68-5.64 (m, 1H), $4.89(\mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (dia q, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.48$ (ABX3 systems of dias, 2 H), $3.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~m}$, $1 \mathrm{H}), 2.51(\mathrm{ddm}, J=17.2$ and $10.0,1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.39(2 \mathrm{x} \mathrm{d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.9,129.9,99.0,98.7,82.0,81.2,61.3,60.5,60.2,60.19,59.9,59.6$, 54.5, 54.2, 43.6, 43.5, 33.9, 33.8, 20.1, 19.96, 15.12.

Compound $11\left(2.48 \mathrm{~g}, 11.8 \mathrm{mmol}, 1.0\right.$ equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{LiAlH}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 11.8 \mathrm{~mL}$, 4.0 equiv per hydride) was added dropwise to the reaction mixture. The reaction mixture was allowed to reach room temperature and was stirred overnight. Then, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and hydrolysed with $\mathrm{NaOH}(1 \mathrm{M})$. For a better phase separation a Na / K tartrate solution $(1 \mathrm{M})$ was added and the resulting solution was stirred for 2 h . Layers were separated and the aqueous one was extracted $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, filtered and the solvent was evaporated under reduced pressure yielding crude alcohol $\mathbf{8 b}\left(2.39 \mathrm{~g}\right.$, colourless oil). R_{f} ($40 \% \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) $0.32 ; v_{\max } \mathrm{cm}^{-1} 3430,3049,2976,2932,1446,1377,1337,1055,980,875,695 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.59-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.76(2 \mathrm{x} \mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.88$ (br dd, $J=10.3 \mathrm{~Hz}$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (ABX 3 systems of dias, 1 H), 3.48 (ABX 3 systems of dias, $1 \mathrm{H}), 3.43-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.16$ and $3.05(2 \mathrm{x} \mathrm{d}, 1 \mathrm{H}, J=10.5$ and $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.84(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $2.68(\mathrm{ddm}, J=17.6$ and $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dm}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.81((\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.30(2 \mathrm{x} \mathrm{d}, J=5.3,3 \mathrm{H}), 1.19(2 \mathrm{x} \mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.0,130.5,98.6$, 80.8, 60.4, 57.8, 57.1, 49.3, 38.4, 38.1, 20.5, 15.2; HRMS (EI): calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 213.1491, found: 213.1469.

8c

Crude alcohol $\mathbf{8 b}$ above ($2.39 \mathrm{~g}, 11.3 \mathrm{mmol}, 1.0$ equiv), imidazole ($3.05 \mathrm{~g}, 44.8 \mathrm{mmol}, 4.0$ equiv) and a catalytic amount of DMAP were dissolved in DMF (8 mL) followed by addition of a solution of tert-butyldimethylsilyle chloride ($2.54 \mathrm{~g}, 17.0 \mathrm{mmol}, 1.5$ equiv) in DMF (10 mL). The resulting reaction mixture was stirred at room temperature overnight. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$, $\mathrm{H}_{2} \mathrm{O}$ was added, followed by a saturated solution of NaHCO_{3}. Phases were separated and the aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed three times with $\mathrm{H}_{2} \mathrm{O}$, and with brine. The organic layers were dried, filtered and the solvent was eliminated under reduced pressure affording crude 8c. Purification by flash chromatography (cyclohexane/AcOEt: 9.5/0.5) with deactivated silica gel (treated with a 1% solution of NEt_{3} prior use) afforded pure $8 \mathbf{c}$ as a colourless oil ($3.08 \mathrm{~g}, 80 \%, 2$ steps); $R_{\mathrm{f}}\left(40 \% \mathrm{Et}_{2} \mathrm{O}\right.$ /petroleum ether) 0.83 ; $v_{\max } \mathrm{cm}^{-1} 2930,2898,172,1376,1251,1040,1084,937,835,773,695 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.72-$ $5.65(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.54-$
$3.42(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{dm}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.31(2 \mathrm{x} \mathrm{d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(2 \mathrm{x} \mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 132.7,132.6,129.8,129.6,98.7,98.5,79.0,78.5,78.2,60.1,59.7$, $56.8,56.5,48.7,42.8,41.8,37.2,37.0,25.8,20.4,20.3,15.2,-3.1,-4.6,-4.7$.

To the diol $\mathbf{8 a}\left(2.06 \mathrm{~g}, 14.7 \mathrm{mmol}, 1.0\right.$ equiv) in dry DMF (20 mL) at $0^{\circ} \mathrm{C}$, were added successively, the imidazole ($5.3 \mathrm{~g}, 77.85 \mathrm{mmol}, 5.3$ equiv) and tert-butyldimethylsilyle chloride ($6.05 \mathrm{~g}, 40.1$ mmol, 2.7 equiv) by portion, then the reaction was allowed to reach room temperature. After 1.5 h , water $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ were added, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with water (5×100 mL), brine (50 mL), dried, filtered and the solvents evaporated under reduced pressure. The crude material was left a night under high vacuum to recover 5.58 g of the protected bis-TBS diol of $\mathbf{8 a}$ (rdt $>100 \%$; excess of residual silanol by-product); $R_{\mathrm{f}}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right) 0.81 ; v_{\max } \mathrm{cm}^{-1} 2955,2929$, $2989,2857,1472,1463,1375,1361,1250,1189,1095,1066,1006 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.69-$ $5.65(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.53(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 1 \mathrm{H}) ; 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.66-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.54,2.43(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{br} \mathrm{d}, \mathrm{J}=16.8 \mathrm{~Hz}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H})$, 0.87 (s, 9H), $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 369.2631$, found 369.2645.

12

12

Bis-TBS diol of 8a above ($14.7 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(5 / 1)(72 \mathrm{~mL})$ at $-80{ }^{\circ} \mathrm{C}$, was left under a stream of ozone. After 1.5 h a blue coloration indicating of an excess of ozone, the reaction is flushed under nitrogen, then $\mathrm{NaBH}_{4}(5.56 \mathrm{~g}, 147 \mathrm{mmol}, 10.0$ equiv) was added. The
mixture was then allowed to rise room temperature and water (30 mL) was added. The layers were separated and the aqueous one extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried, filtered and the solvents removed under reduced pressure. The diol $\mathbf{1 2}$ was obtained as a white solid $(4.44 \mathrm{~g}, 75 \%, 2$ steps from $\mathbf{8 a})$ and used as such for the next step. $[\alpha]_{\mathrm{D}}^{23}=+3.4\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right) 0.41 ; \mathrm{mp} 104.0-104.6^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }} \mathrm{cm}^{-1}$ 3265, 2953, 2929, 2857, 1472, 1370, 1251, 1079, 1054, 1034, 1006; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.01-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.21-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}$, $6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 76.8,74.1,62.3,62.1,51.1,45.2,44.3,31.0,25.8,17.9,-4.12,-4.43$, 4.70, -4.78; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 405.2778$, found 405.2844.

Iridium catalyst

To a solution of $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2}(100 \mathrm{mg}, 0.126 \mathrm{mmol}, 1.0$ equiv) and 2,2-diphenyl glycinol (53 mg , 0.252 mmol , 2.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added a solution of $\mathrm{KOH}(200 \mathrm{mg}, 3.5 \mathrm{mmol}, 28.0$ equiv) in distilled water (2.5 mL). After stirring for 30 min at room temperature, the layers were separated and the aqueous one extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The combined organic layers were dried over CaH_{2}. Evaporation of solvent gave a red solid ($132 \mathrm{mg}, 93 \%$) which is used without further purification.

13a and 13b

13a
$>98: 2$

A mixture of Ir complex ($11 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.8 \mathrm{~mol} \%$) and diol $12(1.0 \mathrm{~g}, 2.48 \mathrm{mmol}, 1.0$ equiv) in 9 mL of butanone freshly distilled and degassed was heated at reflux for 16 h . The resulting solution was then removed under reduced pressure, and the residue was purified on a small path of silica (to remove Ir catalyst) (petroleum ether $/ \mathrm{Et}_{2} \mathrm{O}$, 9/1) to give the lactones 13a and 13b (920 mg , $92 \%)$ as a white solid; $R_{\mathrm{f}}\left(100 \% \mathrm{Et}_{2} \mathrm{O}\right) 0.43 ; \mathrm{mp} 108.4^{\circ} \mathrm{C} ; \mathrm{v}_{\max } \mathrm{cm}^{-1} 2954,2930,2857,1748,1472$, 1387, 1361, 1251, 1084, 1036, 1006; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 4.18 (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.99-3.91 (m, $1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{q}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}) 0.86(\mathrm{~s}, 18 \mathrm{H}), 0.04-0.03(\mathrm{~m}, 12 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 172.8,76.5,71.4,67.7,44.4,43.2$, 41.7, 32.3, 25.6, 17.8, -4.5, -4.6,-4.9; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 401.2571$, found 401.2543.

15a

To a mixture of the lactones above 13a and 13b ($920 \mathrm{mg}, 2.30 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) at $-78{ }^{\circ} \mathrm{C}$, was slowly added DIBAL-H (1 M in toluene, $3.45 \mathrm{~mL}, 3.45 \mathrm{mmol}, 1.5$ equiv). After 30 min at the same temperature, the reaction was quenched by adding a solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was warmed up to room temperature and a solution of Na / K tartrate (1 M) was added. After stirring for 1 h , the layers were separated and the aqueous one was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 40 mL). The combined organic layers were washed with brine, dried and the solvent was removed under reduced pressure. The crude material was purified by column chromatography on silica with dichloromethane to give lactol 15a ($820 \mathrm{mg}, 89 \%$) as colourless oil; $[\alpha]_{\mathrm{D}}{ }^{23}=-38.4$ (c. 1.010^{-2}, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(83 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.55 ; v_{\max } \mathrm{cm}^{-1} 3385,2953,2929,2886,2857,1472,1462,1388$, $1360,1251,1108,1067,1018 ; 829,771 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.16-5.13(\mathrm{~m}, 0.46 \mathrm{H}), 4.69-4.63(\mathrm{~m}$, 0.54), 4.22-4.09 (m, 1H), 4.06 (dd epi $1, J=11.8$ and $3.9 \mathrm{~Hz}, 0.46 \mathrm{H}$), 3.97 (dd epi 2, $J=12.1$ and 1.5 $\mathrm{Hz}, 0.56 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.1$ and $3.0 \mathrm{~Hz}, 0.56 \mathrm{H}), 3.53(\mathrm{dd}, J=11.8$ and 2.7 Hz , 0.46 H), $2.88(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 0.56 \mathrm{H}, \mathrm{OH}), 2.52(\mathrm{br} \mathrm{d}, 0.46 \mathrm{H}, \mathrm{OH}), 2.45-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}$, 0.46 H), 2.10-1.99 (m, 1.63H), 1.64-1.50 (m, 1.5H), 1.42-1.33 (m, 0.51), 1.02-0.92 (m, 0.60), 0.86 (s, $18 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 95.2,91.2,76.3,75.8,63.7,58.6$, 44.3 , 44.2 (2x), 44.1, 44.0, 39.5, 32.8, 29.6, 25.8, 18.0, -4.5, -4.8 (3x); HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 403.2700$, found 403.2672.

15b

Lactol 15b; $[\alpha]_{\mathrm{D}}^{23}=-18.4\left(c .0 .510^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(83 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.60 ; \mathrm{mp} 99.4{ }^{\circ} \mathrm{C} ; v_{\max } \mathrm{cm}^{-1}$ 3400, 2952, 2930, 2887, 2857, 1472, 1462, 1388, 1361, 1254, 1113, 1072, 1035; 836, 774; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.02(\mathrm{br} \mathrm{m}, 0.6 \mathrm{H}), 4.90(\mathrm{dd}, J=8.0$ and $2.8 \mathrm{~Hz}, 0.4 \mathrm{H}),(4.56, \mathrm{q}, J=8.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.17$ (br q, $J=7.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), 3.97-3.89 (m, 1H), 3.85-3.79 (m, 1H), 3.50 (dt epi $1, J=11.3$ and 4.1 Hz , 0.6 H), 3.40 (td, epi 2, $J=11.7$ and 2.6 Hz), 2.53-2.35 (m, 2H), 2.26-2.10 (m, 1H), 2.07-1.98 (m, 0.4 H), 1.59-1.35 (m, 3H), 1.26-1.04 (m, 1H), 0.87-0.86 (3 singulets, 18 H), 0.09-0.01 (5 singulets, $12 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 95.9,92.8,76.0,71.6,63.7,58.4,49.3,47.4,44.8,44.4,44.2,41.2,25.8$, 25.7, 25.1, 25.0, -3.7, -4.5, -4.7, -4.9.

16

A solution of (4-carboxybutyl)triphenylphosphonium bromide ($3.54 \mathrm{~g}, 8.0 \mathrm{mmol}$) in degassed THF $(15 \mathrm{~mL})$ was treated at $0{ }^{\circ} \mathrm{C}$ with a solution of potassium tert-butoxide (1 M in THF, $16 \mathrm{~mL}, 16.0$ mmol). After the mixture was stirred for 30 min at this temperature, a solution of the lactol 15a (800 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (10 mL) was added via canula. The resulting mixture was then stirred at $0^{\circ} \mathrm{C}$ for 1 h , quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, diluted with water, adJusted to pH 3 with 1 N HCl , and then extracted with EtOAc. The combined organic extracts were washed with brine, dried, filtered, and concentrated in vacuo. To the crude material was added a solution of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(5 / 1)(10 \mathrm{~mL})$ and $\mathrm{TMSCHN}_{2}\left(1 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}\right)$ was added until no bubbling is observed (N_{2} formation). The crude material was purified by column chromatography on silica with dichloromethane-EtOAc (99-1) to give alcohol 16 ($650 \mathrm{mg}, 65 \%$) as colorless oil (the first approx. 100 mg were discarded, because we believed them to be contaminated with some E isomer). A more polar compound is also obtained in 12% yield (120 mg) and was identified as compound 20 (see below); $\mathbf{1 6}[\alpha]_{\mathrm{D}}{ }^{23}=-0.8\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.49 ; v_{\max } \mathrm{cm}^{-1} 3468,2954$,

2929, 2887, 2857, 1741, 1472, 1361, 1252, 1065, 836, 774; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.45-5.31(\mathrm{~m}$, 2 H), 4.03 (br q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (br q, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.73-3.61 (m, 2H), 3.65 (s, 3H), 2.34-2.24 $(\mathrm{m}, 4 \mathrm{H}), 2.11-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.77(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{dt}, J=13.4$ and 6.0 Hz , $1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s} ; 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.1,129.7,129.5$, 75.7, 74.8, 62.5, 51.5, 50.2, 48.2, 44.5, 33.4, 26.7, 25.8 (+ hidden CH_{2}), 24.7, 17.9, -4.3, -4.4, -4.7, 4.8; HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 501.3432$, found 501.3418 .

$R_{\mathrm{f}}\left(90 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.36 ; \mathrm{v}_{\max } \mathrm{cm}^{-1} 3428,2953,2929,2896,2857,1742,1472,1361,1252$, $1093,836,774 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.41-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{br} \mathrm{q}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (dt, $J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s} ; 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 173.9, 129.8, 129.4, 76.9, 75.8, 62.9, 51.4, 50.6, 49.1, 43.3, 33.5, 26.8, $25.8,25.8\left(\mathrm{CH}_{2}\right), 24.8,18.1$, 17.9, -4.6, -4.7, -5.5; HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 501.3432$, found 501.3414..

The silyl migration was confirmed by acetylation of the free alcohol of $\mathbf{2 0}$ to give compound $21 .{ }^{1} \mathrm{H}$ NMR showed a chemical shift of one hydrogen confirming a free secondary alcohol for compound 20 (see ${ }^{1} \mathrm{H}$ NMR spectra provided).

To a solution of the alcohol $16\left(600 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise the Dess-Martin periodinane ($6.0 \mathrm{~mL}, 0.3 \mathrm{M}$. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.8 \mathrm{mmol}$, 1.5 equiv). After 1 h at room temperature, a 10% solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and 10% solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ were added. The layers were separated and the aqueous one were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The
combined organic layers were washed brine, dried, filtered and the solvent removed under reduced pressure. The aldehyde was used as such for the next reaction. To a solution of $\mathrm{NaH}(60 \%$ in oil, 120 $\mathrm{mg}, 3.00 \mathrm{mmol}$, 2.5 equiv) in THF (30 mL) was added dimethyl-2-oxoheptyl phosphonate (994 mg , $3.60 \mathrm{mmol}, 3.0$ equiv) at room temperature. After 30 min. , the aldehyde in THF (10 mL) was transferred via canula to the reaction mixture. After 1 h , water $(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added, the layers separated and the aqueous one extracted once with 20 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were extracted with brine, dried, filtered and the solvent removed under reduced pressure. For characterization, purification by column chromatography on silica with dichloromethane as eluent gave enone $18(585 \mathrm{mg}, 82 \%, 2$ steps $)$ as an oil; $[\alpha]_{\mathrm{D}}{ }^{23}=+1.4\left(c .1 .010^{-2}\right.$, $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(90 \%\right.$ cyclohexane $/ \mathrm{EtOAc}$) $0.49 ; v_{\max } \mathrm{cm}^{-1} 3029,2918,2853,1730,1700,1583,1446$, $1334,1179, \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.63(\mathrm{dd}, J=15.7$ and $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-$ $5.27(\mathrm{~m}, 2 \mathrm{H}), 3.97$ (ddd, $J=7.1$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (br ddd, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (s, 3 H), 2.82-2.74 (m, 1H), 2.47 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dt}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-1.95(\mathrm{~m}, 4 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 200.1,173.9,145.3,131.4$, $129.6,129.0,75.6,75.4,52.7,51.4,50.8,44.3,40.8,33.4,31.5,26.8,26.4,25.8,24.7,23.9,22.4$, 17.9, 13.9, -4.5, -4.6, -4.7, -4.8.
$17 a$ and 17b

17a

17b

To a solution of the enone $\mathbf{1 8}$ ($500 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.00$ equiv) in 10 mL of MeOH , was added the cerium chloryde heptahydrate ($319 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.01$ equiv). The mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and NaBH_{4} was added ($33.4 \mathrm{mg}, 0.211 \mathrm{mmol}, 1.05$ equiv). After 10 min , the reaction was quenched with 12 mL of water and 25 mL of $\mathrm{Et}_{2} \mathrm{O}$ were added. The layers were separated and the aqueous one extracted three times with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried, filtered and the solvent removed under reduce pressure. The crude was purified by column chromatography on silica with dichloromethane-up to 1% EtOAc to give the alcohol 17a (206 mg , $41 \%)$ and $\mathbf{1 7 b}(226 \mathrm{mg}, 45 \%)$ as a colourless oil; 17a $[\alpha]_{\mathrm{D}}{ }^{23}=+13.8\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(95 \%$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.59 ; v_{\max } \mathrm{cm}^{-1} 3480,2954,2929,2857,1742,1462,1250,1105,1063 ; \delta_{\mathrm{H}}(300$
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $5.50(\mathrm{dd}, J=15.4$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=6.9$ and 4.8 Hz), $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 4 \mathrm{H})$, $1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.86-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.1,135.4,129.7,129.4,128.9$, $76.1,75.9,72.7,52.4,51.4,50.2,44.2,37.4,33.5,31.8,26.7,26.3,25.8,25.1,24.8,22.6,18.0$ (2x), 14.0, -4.4, -4.6, -4.8.

17b $[\alpha]_{\mathrm{D}}{ }^{23}=+10.0\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right) 0.54 ; \mathrm{v}_{\max } \mathrm{cm}^{-1} 3480,2954,2928$, 2857, 1741, 1462, 1250, 1107, $1064 \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.50(\mathrm{dd}, J=16.4$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ (dd, $J=16.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=7.0$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.75 (m, 1H), 3.64 ($\mathrm{s}, 3 \mathrm{H}$), 2.64-2.58 (m, 1H), 2.35-2.26 (m, 3H), 2.14-1.86 (m, 5H), 1.70-1.60 $(\mathrm{m}, 3 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.86$ and $0.84(2 \mathrm{x} \mathrm{s}, 18 \mathrm{H}), 0.01(\mathrm{~s}$, $6 \mathrm{H}),-0.01(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.2,135.6,129.9,129.8,128.9,76.2,75.8,73.0,52.4$, $51.5,50.2,44.3,37.4,33.4,31.8,26.7,26.2,25.8,25.1,24.8,22.6,18.0$ (2x), 14.0, -4.4, -4.6.

19 a and 19 b

To a solution of the silylated ether $\mathbf{1 7 a}(200 \mathrm{mg}, 0.34 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added TBAF (1 M in THF, $2.72 \mathrm{~mL}, 2.72 \mathrm{mmol}, 8.0 \mathrm{eq}, 4.0$ equiv per TBS). After $2 \mathrm{~h}, \mathrm{CaCO}_{3}$ ($906 \mathrm{mg}, 1.03 \mathrm{mmol}, 27$ equiv), the Dowex 50 W resina (2.8 g) and 2 mL of MeOH were added. After 1 h , the precipitate was filtered over a pad of Celite, washed with EtOAc and the solvent evaporated over reduced pressure to give triol 19a ($112 \mathrm{mg}, 91 \%$) after column chromatography on silica with EtOAc as eluent. The same transformation was performed with 17b to give triol 19b in a similar yield.

A crude mixture of 17a and 17b (starting from 320 mg of enone 18) obtained from Luche reduction was desilylated following the same procedure, and a purification by column chromatography on silica with EtOAc gave the triol 19a ($73 \mathrm{mg}, 37 \%, 2$ steps) and triol $\mathbf{1 7 b}$ ($81 \mathrm{mg}, 41 \%, 2$ steps) as easily separable compounds. To be noted: compound 17a is less polar then 17b, but 19a is more polar than 19b.

19b, $[\alpha]_{\mathrm{D}}^{23}=-13.4\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}\left(100 \%\right.$ EtOAc) $0.20 ; \nu_{\max } \mathrm{cm}^{-1} 3354,2928,2858,1721$, $1436,1246,1169,972 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.58(\mathrm{dd}, J=15.4$ and $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.34(\mathrm{~m}, 3 \mathrm{H})$,
4.11-3.94 (m, 3H), 3.65 (s, 3H), 2.80-2.73 (m, 1H), 2.46-2.36 (m, 1H), $2.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.86$ (br t; $3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 174.3,135.9,129.6,129.3,128.4,76.0,75.9,72.5,52.9,51.5,50.6,42.3$, $37.2,33.3,31.7,26.6,25.1,24.6$; 22.5, 13.9; HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 369.2641 , found 369.2650 .

19a $;[\alpha]_{\mathrm{D}}{ }^{23}=-5.5\left(c .1 .010^{-2}, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}(100 \% \mathrm{EtOAc}) 0.14 ; \mathrm{v}_{\max } \mathrm{cm}^{-1} 3356,2927,2857,1722$, 1436, 1245, 1171;): 5.56 (dd, $J=15.3$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48-5.34 (m, 3H), 4.08-3.92 (m, 3H), 3.65 (s, 3H), 2.79-2.72 (m, 1H), 2.47-2.37 (m, 1H), 2.29 (t, J=7.3 Hz, 2H), 2.19-1.97 (m, 4H + 3 OH), $1.71-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.27$ (br s, 6 H), 0.86 (br t; 3 H); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 174.2, $136.2,129.6,129.2,76.0,73.0,53.1,51.5,50.7,42.2,37.1,33.3,31.7,26.6,25.1,24.7,22.6,13.9$; HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 369.2641$, found 369.2640.

15-F $2 t$-IsoP 1 and epi-15-F F_{2}-IsoP

To a solution of the triol methyl ester 19a ($62 \mathrm{mg}, 0.168 \mathrm{mmol}, 1.0$ equiv) in 2 mL of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1/1) was added LiOH. $\mathrm{H}_{2} \mathrm{O}$ ($42 \mathrm{mg}, 1.01 \mathrm{mmol}, 6.0$ equiv). After 3 h at rt , the solution was cooled at $0{ }^{\circ} \mathrm{C}$ and a HCl solution (1 M) was added until a acidic pH . The layers were separated and the aqueous one extracted with $\operatorname{AcOEt}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried, filtered and the solvents evaporated. The crude was purified by column chromatography on silica ($\mathrm{AcOEt} / \mathrm{MeOH}, 9 / 1$) to give $15-\mathrm{F}_{2 \mathrm{t}}$-IsoP 1 as an oil ($46.5 \mathrm{mg}, 78 \%$).
The same transformation was performed with $\mathbf{1 9 b}(55 \mathrm{mg})$ to give epi-15-F $\mathrm{F}_{2 \mathrm{t}}$-IsoP $(42.9 \mathrm{mg}, 81 \%)$ in a similar yield.
$15-\mathrm{F}_{2 \mathrm{t}}$-IsoP 1; $[\alpha]_{\mathrm{D}}{ }^{23}=+13.1\left(\right.$ c. $\left.1.010^{-2}, \mathrm{MeOH}\right) ; R_{\mathrm{f}}(90 \% \mathrm{EtOAc} / \mathrm{MeOH}) 0.22 ; \mathrm{v}_{\max } \mathrm{cm}^{-1} 3329$, 2928, 2858, 1705, 1551, 1405, 1379, 1240,1058, 1014, 970, 909,$730 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.57$ (dd, $J=15.4$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.35(\mathrm{~m}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=6.1 \mathrm{~Hz}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.9-3.94(\mathrm{~m}$, $1 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.65(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 177.1$, $135.4,129.7,129.3,129.2,76.0,75.9,72.9,53.0,50.6,42.1,37.0,32.7,31.6,26.6,26.2,25.1,24.3$, 22.5, 13.9; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 377.2304$, found 377.2299.
epi-15- $\mathrm{F}_{2 \mathrm{t}}$-IsoP, $[\alpha]_{\mathrm{D}}^{23}=+1.4\left(\right.$ c. $\left.1.010^{-2}, \mathrm{MeOH}\right) ; R_{\mathrm{f}}(90 \% \mathrm{EtOAc} / \mathrm{MeOH}) 0.27 ; v_{\max } \mathrm{cm}^{-1} 3362$, 2931, 1708, 1435, 1407, 1237, 1066, 972; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 5.56 (dd, $J=15.4$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.51-5.36(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}) ; 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}) ; 1.27$ (br s, 6 H), $0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 177.0, 135.4, 129.8, 129.5, 129.1, 76.2 (2x), 72.9, 53.3, 50.7, 42.2, 37.1, 32.7, 31.7, 26.7, 26.3, 25.1, 24.3, 22.6, 14.0; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O} 5 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$377.2304, found 377.2306.

Acquisition Time (sec) 10.3547	Comment		46 pur F2	Date	04/09/	10:58:26	
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56

Acquisition Time (sec) 10.3547	Comment		ne from minus alcool	Date	23/07/2	5:16:26	
Frequency (MHz) 300.13	Nucleus	1 H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56

\iiint

 Nucleus 13C Original Points Count 32768 Points Count 32768 Sweep Width (Hz)

+	5 0 1	

Chloroform-d

$\stackrel{\stackrel{\circ}{\mathrm{C}}}{\stackrel{1}{2}}$	$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{9}{\text { ® }}}{1}$

Acquisition Time (sec) 10.3547	Comment	jmg284 11			Date	23/07/2008 14:31:42			Frequency (MHz)	300.13
Nucleus 1H	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	3164.56	T	0.000		

Acquisition Time (sec) 10.3547		Comment	LiALH4 reduction at -78C only		Date 23/07/2008 14:46:22			
Frequency (MHz)	300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56
Temperature (grad C)	0.000							

Acquisition Time (sec) 1.7695	Comment	13C sur	Date	03/09/2008 15:52:56	Frequency (MHz)		Nucleus	13 C
Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52	Temperature (grad C)	0.000		
					in		$\begin{aligned} & \hat{\sim} \\ & \tilde{\sim} \\ & \tilde{y} \end{aligned}$	

Frequency (MHz)	75.47
Temperature (grad C)	0.000

$81 \% \mathrm{~S}-$
$66.61-$

3 Sep 2008

Acquisition Time (sec) 1.7695	Comment	Dept	yas073 exp3	Date	03/09/2	15:54:44	
Frequency (MHz) 75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52

	Frequency (MHz)
Temperature (grad C)	0.000

Acquisition Time (sec) 1.7695	Comment	13C DEPT sur Yas079 exp 9		Date	03/09/2008 15:55:32		
Frequency (MHz) 75.47	Nucleus	13C	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	18518.52

Frequency (MHz)	75.47
Temperature (grad C) 0.000	

Acquisition Time (sec) 10.3547	Comment	crude TBS protection sur diol		Date	23/07/2008 14:32:22		
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56
Temperature (grad C) 0.000							

Acquisition Time (sec) 10.3547	Comment	jmg288 11			Date	23/07/2008 14:32:44			Frequency (MHz)	300.13
Nucleus 1H	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	3164.56	Temperature (grad C)	0.000		

$\mathrm{H}_{1} \mathrm{O}$

100°
$200-5$
80%

1 $\left.1111 / \begin{array}{llll}1 & 1 \\ M_{1} & 1 & 1\end{array}\right] \quad 11 m^{\prime} /$ \qquad
12.36

oº̃o 웅

$\iiint \int J$

\qquad MH \qquad

| |
| :--- | :--- |
| Temperature (grad C) |

20

Acquisition Time (sec) 10.3547	Comment	jmg275 11 dnqs C6D6		Date 23/07/2008 14:28:06			
Frequency (MHz) 300.13	Nucleus	1H	Original Points Count 32768	Points Count	32768	Sweep Width (Hz)	3164.56

Chloroform-d

$17 b$

27 Aug 2008								
Acquisition Time (sec) 1.7695	Comment	jmg337 51			Date	23/07/2008 19:00:10	Frequency (MHz)	75.47
Nucleus 13C	Original Points Count	32768	Points Count	32768	Sweep Width (Hz)	18518.52	Temperature (grad C)	0.000

$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{1}{4} \end{aligned}$	

Chloroform-d

ent-15-F2t-IsoP

80
70
60
50
40
30
20

