Supporting Information for ## π -Dimer Formation in an Oligothiophene Tweezer Molecule Ryo Takita, Changsik Song and Timothy M. Swager* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA E-mail: tswager@mit.edu ## **Contents** | General······ | ••••S-1 | |--|---------| | 1. Synthesis of Compounds •••••••••••••••••••••••••••••••••••• | •••S-2 | | 2. X-ray Crystal Structure of S5······ | •••S-6 | | 3. Equilibrium between <i>anti-</i> and <i>syn-</i> Isomers of 2a ; VT NMR Experiments••••• | •••S-7 | | 4. UV-vis Absorption •••••••••••••••••••••••••••••••••••• | •••S-8 | | 5. EPR Measurements •••••••••••••••••••••••••••••••••••• | •••S-8 | | 6. NMR Spectra ······ | •••S-9 | General: NMR spectra were recorded on a Varian Mercury-300, operating at 300 MHz for ¹H NMR and 75.46 MHz for ¹³C NMR, or Varian Inova-500 spectrometer, operating at 500 MHz for ¹H NMR and 125.65 MHz for ¹³C NMR. Chemical shifts were reported in the scale relative to CHCl₃ (7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR) or CH₂Cl₂ (5.32 ppm for ¹H NMR and 54.00 ppm for ¹³C NMR). High-resolution mass spectra (HRMS) were obtained at the MIT Department of Chemistry Instrumentation Facility on a Bruker Daltonics APEX II3 Tesla FT-ICR-MS. IR spectra were obtained on a Nexus 870 ATR-FT-IR spectrometer. Melting point was measured with MEL-TEMP instrument. UV-vis absorption spectra were obtained on an Agilent 8453 diode array spectrophotometer. EPR spectra were obtained on a Bruker EMX EPR spectrometer operating as the X-band with 100kHz modulation at room temperature. Electrochemical measurements were carried out using an Autolab PGSTAT 20 potentionstat (Eco Chemie) in a three-electrode cell configuration consisting of a quasi-internal Ag wire reference electrode (BioAnalytical Systems) submerged in 0.01 AgNO₃ / 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in anhydrous CH₂Cl₂, a Pt button (1.6 mm in diameter) electrode as the working electrode, and a Pt coil as the counter electrode. The ferrocene/ferrocenium (Fc/Fc⁺) redox couple was used as an external reference. All reactions were performed under an argon atmosphere with dry solvents. Column chromatography was performed with silica gel 60 (230–400 mesh) from Silicycle. Tetrahydrofuran, dichloromethane, and toluene were purified using a solvent purification system (Innovative Technologies, Inc.). TBAPF₆ was recystallized from ethanol prior to use. All other chemicals were of reagent grade and used as received. ### 1. Synthesis of Compounds: Scheme S1. "Key: (a) 3-thiophene boronic acid, $Pd_2(dba)_3$ CHCl₃ (3 mol %), $[(t-Bu)_3PH]BF_4$ (7.2 mol %), KF, THF, 96% for S2, 52% for S7 (b) NBS, CH_2Cl_2/DMF , 89% for S3, 65% for S8 (c) 2-Methyl-5-tributylstannylthiophene, $Pd(PPh_3)_4$ (5 mol %), toluene/DMF, 91% for S4, 96% for S9 (d) n-BuLi, THF, -78 °C to r.t.. then I_2 , -78 °C to r.t., 82% for S5, 40% for S10 (e) tributylstannylbithiophene, $Pd(PPh_3)_4$ (5 mol %), toluene/DMF, 74% for 2a, 93% for 1 (f) tributylstannyl-2-thiophene, $Pd(PPh_3)_4$ (5 mol %), toluene/DMF, 59% **Synthesis of 2,7-di-***tert***-butyl-9,9-dimethyl-4,5-di(thiophen-3-yl)xanthene (S2):** To the mixture of 4,5-dibromo-2,7-di-*tert*-butyl-9,9-dimethylxanthene (**S1**, 9.61 g, 20 mmol), 3-thiopheneboronic acid (6.40 g, 50 mmol, 2.5 equiv), $Pd_2(dba)_3$ •CHCl₃ (621 mg, 0.60 mmol, 3 mol %), [(*t*-Bu)₃PH]BF₄ (418 mg, 1.44 mmol, 7.2 mol %), KF (7.67 g, 132 mmol, 6.6 equiv) was added THF (80 mL, 0.25 M) at 0 °C. After stirring at room temperature for 3 days, the reaction mixture was filtered with Celite® pad and concentrated. The material was purified by flash column chromatography (silica gel, eluent: hexane only - CH_2Cl_2 /hexane) and precipitation (CH_2Cl_2 /MeOH) to give **S2** (9.30 g, 96% yield) as a white solid: mp 229-230 °C; ATR-FTIR (neat) ν 661, 778, 856, 1238, 1279, 1367, 1447, 2869, 2905, 2933, 2966 cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 1.35 (s, 18H), 1.71 (s, 6H), 7.14 (dd, J = 2.4, 3.9 Hz, 2H), 7.22 (d, J = 3.9 Hz, 2H), 7.22 (d, J = 2.4 Hz, 2H), 7.30 (d, J = 2.4 Hz, 2H), 7.41 (d, J = 2.4 Hz, 2H); ¹³C NMR (75.46 MHz, $CDCl_3$) δ 31.7, 31.8, 34.6, 35.2, 121.5, 123.7, 124.2, 124.5, 125.5, 129.1, 130.6, 138.4, 145.4, 146.2; MS (ESI (+)) m/z 487 [M+H]⁺, 509 [M+Na]⁺; HRMS (ESI): calcd. for $C_{31}H_{34}OS_2$ 509.1943 [M+Na]⁺, found 509.1964 Synthesis of 4,5-bis(2-bromothiophen-3-yl)-2,7-di-tert-butyl-9,9-dimethylxanthene (S3): After dissolving S2 (9.30 g, 19.1 mmol) in CH_2Cl_2 (120 mL), DMF (60 mL) was added. To the mixture was added dropwise the solution of *N*-bromosuccinimide (6.80 g, 38.2 mmol) in DMF (60 mL) at 0 °C. The reaction mixture was gradually warmed to room temperature and after stirring for 17 h, diluted with Et₂O, washed with H₂O, extracted with Et₂O, and dried over Na₂SO₄. After the evaporation of solvent, the crude material was purified by flash column chromatography (silica gel, eluent: hexane only - CH₂Cl₂/hexane) and precipitation (CH₂Cl₂/MeOH) to give **S3** (10.94 g, 89% yield) as a white crystalline solid: mp 209-211 °C; ATR-FTIR (neat) v 660, 716, 760, 831, 858, 1239, 1278, 1366, 1447, 2872, 2905, 2965 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.35 (s, 18H), 1.72 (s, 6H), 6.74 (d, J = 2.4 Hz, 2H), 7.03 (d, J = 2.4 Hz, 2H), 7.25 (d, J = 2.4 Hz, 2H), 7.44 (d, J = 2.4 Hz, 2H); ¹³C NMR (75.46 MHz, CDCl₃) δ 31.7, 32.0, 34.7, 35.2, 110.4, 122.2, 122.5, 124.4, 126.7, 130.0, 130.2, 138.3, 145.1, 146.0; MS (ESI (+)) m/z 667 [M+Na]⁺; HRMS (ESI): calcd. for C₃₁H₃₂Br₂OS₂ 667.0139 [M+Na]⁺, found 667.0093 **Synthesis of 2,7-di-***tert***-butyl-9,9-dimethyl-4,5-bis**(**5**'-**methyl-2,2'-bithiophen-3-yl)xanthene (S4):** To the mixture of **S3** (4.52 g, 7.0 mmol), 2-methyl-5-tributylstannylthiophene^{S1} (8.13 g, 21 mmol, 3 equiv), Pd(PPh₃)₄ (404 mg, 0.35 mmol, 5 mol %) were added toluene (10 mL) and DMF (7.5 mL). The mixture was heated to 80 °C and stirred for 50 h. After cooling and dilution with Et₂O, aq.NaF (*ca.* 20 equiv of the tin reagent) was added and stirred for a while. The organic layer was separated, dried over Na₂SO₄, and concentrated. The material was purified by flash column chromatography (silica gel, eluent: hexane only - CH₂Cl₂/hexane) and precipitation (CH₂Cl₂/MeOH) to give **S4** (4.33 g, 91% yield) as a white solid: mp 154-155 °C; ATR-FTIR (neat) ν 664, 717, 788, 860, 1253, 1282, 1449, 2870, 2924 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.25 (s, 18H), 1.68 (s, 6H), 2.29 (dd, J = 0.3, 1.2 Hz, 6H), 6.43 (dd, J = 1.2, 3.3 Hz, 2H), 6.57 (dd, J = 0.3, 3.3 Hz, 2H), 6.72 (d, J = 5.4 Hz, 2H), 6.96 (d, J = 5.4 Hz, 2H), 7.10 (d, J = 2.4 Hz, 2H), 7.38 (d, J = 2.4 Hz, 2 H); ¹³C NMR (75.46 MHz, CDCl₃) δ 15.4, 31.6, 31.9, 34.6, 35.2, 121.6, 122.1, 123.6, 125.1, 125.6, 127.3, 130.0, 131.0, 133.3, 134.3, 134.5, 139.6, 144.9, 146.6; MS (ESI (+)) m/z 701 [M+Na]⁺; HRMS (ESI): calcd. for C₄₁H₄₂OS₄ 701.2011 [M+Na]⁺, found 702.2002 Synthesis of 2,7-di-tert-butyl-4,5-bis(5-iodo-5'-methyl-2,2'-bithiophen-3-yl)-9,9-dimethylxanthene (S5): To the solution of S4 (1.36 g, 2.0 mmol) in THF (15 mL) was slowly added n-BuLi (1.6 M in hexanes, 2.6 mL, 2.0 equiv) at -78 °C. After stirring for 20 minutes at the temperature and for 20 minutes at 0 °C, the resulting dark blue solution was cooled to -78 °C and the solution of iodine (1.12 g, 4.4 mmol, 2.2 equiv) in THF (15 mL) was added via cannula. The reaction mixture was stirred for 1.5 h at the same temperature and for 2 h at room temperature. After diluted with Et₂O, the reaction was quenched with aq. Na₂SO₃, extracted with Et₂O. The organic layer was washed with 1N HCl, then brine, dried over Na₂SO₄, evaporated in *vacuo*. The resulting crude material was purified by flash column chromatography (silica gel, eluent: hexane only - CH₂Cl₂/hexane) and precipitation (CH₂Cl₂/MeOH) to give S5 (1.52 g, 82% yield) as a white solid: mp 210 °C (decomp.); ATR-FTIR (neat) ν 790, 834, 883, 1272, 134, 1447, 1480, 2871, 2915, 2966 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.24 (s, 18H), 1.63 (s, 6H), 2.22 (d, J = 1.0 Hz, 6H), 6.34 (dq, J = 1.0 ,3.5 Hz, 2H), 6.50 (d, J = 3.5 Hz, 2H), 6.83 (s, 2H), 7.01 (d, J = 2.5 Hz, 2H), 7.36 (d, J = 2.5 Hz, 2H); ¹³C NMR (125.65 MHz, CDCl₃) δ 15.3, 31.6, 32.2, 34.7, 35.0, 70.6, 122.2, 122.4, 125.0, 125.6, 127.0, 129.8, 133.4, 135.1, 139.8, 140.3, 145.2, 146.2; HRMS (ESI): calcd. for C₄₁H₄₀Ol₂S₄ 952.9944 [M+Na]⁺, found 952.9972 **Synthesis of 2a:** To the mixture of **S5** (465 mg, 0.50 mmol), 5-(tributylstannyl)-2,2-bithiophene^{S2} (1.5 mmol, 3.0 equiv), and $Pd(PPh_3)_4$ (28.9 mg, 0.025 mmol, 5 mol %) were added toluene (0.6 mL) and ^{S1} Sotgiu, G.; Zambianchi, M.; Barbarella, G.; Aruffo, F.; Cipriani, F.; Ventola, A. J. Org. Chem., **2003**, 68, 1512. ⁵² Zhu, S. S.; Swager, T. M. J.Am. Chem. Soc. **1997**, 119, 12568. DMF (0.6 mL). The reaction was heated at 80 °C, stirred for 2.5 h, and quenched by the addition of aq. NaF. The product was extracted with CH_2Cl_2 , dried over Na_2SO_4 , and purified by flash column chromatography (triethylamine-treated silica gel, eluent: hexane only – CH_2Cl_2 /hexne) to afford **2a** (375 mg, 74% yield) as an yellow solid: mp 283 °C (decomp.); ATR-FTIR (neat) v 679, 782, 832, 1273, 1364, 1449, 2868, 2915, 2966, 3070 cm⁻¹; ¹H NMR (500 MHz, CD_2Cl_2) δ 1.29 (s, 18H), 1.71 (s, 6H), 2.23 (d, J = 1.0 Hz, 6 H), 6.35 (dq, J = 1.0, 3.5 Hz, 2 H), 6.52 (d, J = 3.5 Hz, 2H), 6.83-6.85 (m, 6H), 6.94 (dd, J = 3.5, 5.0 Hz, 2H), 7.00 (dd, J = 1.0, 3.5 Hz, 2H), 7.12 (d, J = 2.5 Hz, 2H), 7.17 (dd, J = 1.0, 5.0 Hz, 2H), 7.46 (d, J = 2.5 Hz, 2H); ¹³C NMR (125.65 MHz, CD_2Cl_2) δ 15.4, 31.7, 32.4, 34.9, 35.5, 122.8, 123.8, 124.2, 124.6, 124.7, 125.4, 125.6, 127.2, 127.7, 128.3, 128.7, 130.3, 133.5, 134.4, 134.6, 135.9, 136.7, 137.9, 140.0, 145.7, 146.6; HRMS (ESI): calcd. for $C_{57}H_{50}OS_8$ 1029.1520 [M+Na]⁺, found 1029.1529 **Synthesis of 2b:** According to a similar procedure of the synthesis of **2a** using 2-(tributylstannyl)-thiophene instead of 5-(tributylstannyl)-2,2-bithiophene, **2b** was obtained in 59% yield as yellow solid: mp 255-256 °C (decomp.); ATR-FTIR (neat) v 683, 783, 811, 833, 1275, 1444, 2871, 2966, 3067 cm⁻¹; ¹H NMR (500 MHz, CD₂Cl₂) δ 1.29 (s, 18H), 1.70 (s, 6H), 2.24 (s, 6H), 6.35 (d, J = 3.5 Hz, 2H), 6.48 (d, J = 3.5 Hz, 2 H), 6.80 (s, 2H), 6.90 (dd, J = 3.5, 5.0 Hz, 2H), 6.96 (d, J = 3.5 Hz, 2H), 7.09-7.11 (m, 4 H), 7.45 (d, J = 2.5 Hz, 2H); ¹³C NMR (125.65 MHz, CD₂Cl₂) δ 15.4, 31.7, 32.4, 34.9, 35.4, 122.7, 123.7, 123.9, 124.2, 125.4, 125.5, 127.2, 127.7, 128.1, 128.6, 130. 2, 133.0, 133.8, 134.4, 137.9, 139.9, 145.7, 146.6; HRMS (ESI): calcd. for C₄₉H₄₇OS₆ 865.1765 [M+Na]⁺, found 865.1740 **Synthesis of 4-bromo-2,7-di-***tert***-butyl-5-butyl-9,9-dimethylxanthene (S6):** To the solution of **S1** (1.92 g, 4.0 mmol) in THF (20 mL) was slowly added *n*-BuLi (1.6 M in hexanes, 2.5 mL, 1.0 equiv) at -78 °C. The solution was gradually warmed to room temperature and stirred for 14 h before quenched by excess amount of H_2O . After diluted with Et_2O , the organic layer was washed with brine, dried over Na_2SO_4 , and evaporated in *vacuo*. The resulting crude material was purified by flash column chromatography (silica gel, eluent: hexane only) to afford **S6** (1.33 g, 73% yield) as a colorless oil: ATR-FTIR (neat) v 736, 873, 1200, 1276, 1367, 1451, 2874, 2934, 2961 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.99 (t, J = 7.2 Hz, 3H), 1.33 (s, 9H), 1.35 (s, 9H), 1.48 (tq, J = 7.2, 8.1 Hz, 2H), 1.64-1.77 (m, 8H), 2.85 (dd, J = 7.8, 8.1 Hz, 2 H), 7.11 (d, J = 2.4 Hz, 1 H), 7.25 (d, J = 2.4 Hz, 1 H), 7.36 (d, J = 2.1 Hz, 1H), 7.46 (d, J = 2.1 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.3, 23.2, 30.8, 31.6, 31.7, 32.0, 32.8, 34.6, 34.7, 35.5, 110.4, 119.8, 121.8, 125.4, 128.1, 129.1, 130.1, 131.7, 145.6, 145.7, 146.4, 146.5; HRMS (ESI): calcd. for $C_{27}H_{37}BrO$ 479.1920 [M+Na]⁺, found 479.1928 **Synthesis of 2,7-di-***tert***-butyl-4-butyl-9,9-dimethyl-5-(thiophen-3-yl)xanthene (S7):** According to a similar procedure of the synthesis of **S2**, **S7** was obtained in 52% yield as a white solid: mp 110-112 °C; ATR-FTIR (neat) v 664, 783, 854, 1233, 1277, 1365, 1451, 2871, 2936, 2965 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.83 (t, J = 7.2 Hz, 3H), 1.21-1.44 (m, 22H), 1.68 (s, 6H), 2.59 (dd, J = 7.5, 8.1 Hz, 2 H), 7.03 (d, J = 2.4 Hz, 1 H), 7.26 (d, J = 2.4 Hz, 1 H), 7.35 (d, J = 2.4 Hz, 1H), 7.37 (dd, J = 3.0, 5.1 Hz, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.48 (dd, J = 1.5, 5.1 Hz, 1H), 7.57 (dd, J = 1.5, 3.0 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.3, 23.0, 31.1, 31.7, 32.0, 33.0, 34.5, 34.5, 34.6, 35.1, 119.8, 121.8, 123.2, 124.0, 124.4, 125.2, 129.3, 129.5, 129.6, 130.6, 139.0, 145.1, 146.0, 146.8; HRMS (ESI): calcd. for $C_{31}H_{40}OS$ 483.2692 [M+Na]⁺, found 483.2700. Synthesis of 5-(2-bromothiophen-3-yl)-2,7-di-*tert*-butyl-4-butyl-9,9-dimethylxanthene (S8): According to a similar procedure of the synthesis of S3, S8 was obtained in 65% yield as a white solid: mp 122-123 °C; ATR-FTIR (neat) ν 731, 760, 859, 881, 1240, 1280, 1366, 1450, 2874, 2934, 2964 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3H), 1.14 (tq, J = 7.5, 7.2 Hz, 2H), 1.21-1.44 (m, 20H), 1.67 (s, 6H), 2.45 (dd, J = 7.5, 8.1 Hz, 2 H), 7.00 (d, J = 2.1 Hz, 1 H), 7.15 (d, J = 5.7 Hz, 1 H), 7.24 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 5.7 Hz, 1H), 7.43 (d, J = 2.4 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.3, 23.1, 31.0, 31.7, 31.7, 32.0, 32.9, 34.5, 34.7, 35.1, 35.1, 110.7, 119.8, 122.4, 122.4, 124.7, 125.2, 126.5, 129.3, 129.7, 130.3, 130.5, 138.9, 144.7, 145.1, 146.2, 146.6; HRMS (ESI): calcd. for C₃₁H₃₉BrOS 561.1797 [M+Na]⁺, found 561.1802. **Synthesis of 2,7-di-***tert***-butyl-4-butyl-9,9-dimethyl-5-(5'-methyl-2,2'-bithiophen-3-yl)xanthene** (S9): According to a similar procedure of the synthesis of S4, S9 was obtained in 96% yield as a white solid: mp 54-56 °C; ATR-FTIR (neat) v 670, 795, 856, 1247, 1278, 1366, 1449, 2873, 2934, 2959, 3070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.77 (t, J = 7.2 Hz, 3H), 1.11-1.30 (m, 22H), 1.66 (s, 6H), 2.31 (d, J = 0.9 Hz, 3H), 2.37 (dd, J = 7.5, 7.8 Hz, 2 H), 6.48 (dq, J = 3.6, 0.9 Hz, 1 H), 6.76 (d, J = 3.6 Hz, 1 H), 6.97 (d, J = 2.4 Hz, 1H), 7.10 (d, J = 5.1 Hz, 1H), 7.17 (d, J = 2.4 Hz, 1H), 7.21 (d, J = 5.1 Hz, 1H), 7.24 (d, J = 2.4 Hz, 1H), 7.41 (d, J = 2.4 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.3, 15.4, 23.2, 31.1, 31.7, 31.8, 32.0, 32.9, 34.6, 34.7, 35.2, 119.8, 122.0, 122.1, 123.7, 125.1, 125.4, 127.0, 129.4, 130.0, 130.2, 131.5, 133.9, 134.5, 134.6, 139.7, 144.9, 144.9, 146.8 (two carbons are missing due to overlap in the aromatic region); HRMS (ESI): calcd. for $C_{36}H_{44}OS_2$ 557.2906 [M+Na]⁺, found 557.2897. **Synthesis 2,7-di-***tert*-**butyl-4-butyl-5-(5-iodo-5'-methyl-2,2'-bithiophen-3-yl)-9,9-dimethylxanthene**(S10): According to a similar procedure of the synthesis of S5, S10 was obtained in 40% yield as a white solid: mp 61-64 °C; ATR-FTIR (neat) v 793, 877, 1224, 1274, 1366, 1448, 2872, 2931, 2959 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3H), 1.16-1.31 (m, 22H), 1.64 (s, 6H), 2.29 (d, J = 0.9 Hz, 3H), 2.43 (dd, J = 7.2, 7.8 Hz, 2 H), 6.47 (dq, J = 3.6, 0.9 Hz, 1 H), 6.72 (d, J = 3.6 Hz, 1 H), 6.99 (d, J = 2.4 Hz, 1H), 7.12 (d, J = 5.1 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H), 7.26 (s, 1H), 7.41 (d, J = 5.1 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.5, 15.3, 23.3, 31.1, 31.6, 31.7, 31.9, 32.9, 34.5, 34.6, 35.1, 69.9, 119.7, 122.1, 122.3, 125.2, 125.8, 126.7, 129.3, 129.9, 130.3, 133.2, 136.0, 139.7, 140.4, 140.9, 145.0, 145.0, 146.6, 146.6; HRMS (ESI): calcd. for $C_{36}H_{43}IOS_2$ 705.1692 [M+Na]⁺, found 705.1707. **Synthesis of 1:** According to a similar procedure of the synthesis of **2a**, **1** was obtained in 93% yield as an yellow solid: mp 167 °C; ATR-FTIR (neat) v 695, 793, 1219, 1275, 1454, 2871, 2931, 2957, 3071 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 0.69 (t, J = 7.2 Hz, 3H), 1.07-1.15 (m, 2H), 1.23-1.39 (m, 20H), 1.68 (s, 6H), 2.33 (d, J = 0.6 Hz, 3H), 2.43 (dd, J = 7.5, 7.8 Hz, 2 H), 6.51 (dq, J = 3.3, 0.6 Hz, 1 H), 6.80 (d, J = 3.3 Hz, 1 H), 6.99 (d, J = 2.4 Hz, 1H), 7.03 (dd, J = 3.6, 5.1 Hz, 1H), 7.09-7.13 (m, 1H), 7.11 (s, 1H), 7.18 (dd, J = 1.2, 3.6 Hz, 1H), 7.20-7.23 (m, 3H), 7.26 (d, J = 2.4 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H); ¹³C NMR (75.46 MHz, CDCl₃) δ 14.3, 15.4, 23.2, 31.3, 31.7, 31.8, 32.1, 33.0, 34.6, 34.7, 35.1, 119.8, 122.4, 123.2, 123.8, 124.1, 124.6, 125.2, 125.3, 125.4, 126.8, 128.1, 129.3, 130.0, 130.3, 130.3, 133.0, 133.2, 134.2, 135.0, 136.1, 136.4, 137.5, 140.1, 145.0, 145.1, 146.6, 146.7; HRMS (ESI): calcd. for C₄₄H₄₈OS₄ 743.2480 [M+Na]⁺, found 743.2508. # 2. X-ray Crystal Structure of S5 Figure S1. X-ray crystal structure of S5. Suitable crystals were grown using CH₂Cl₂/Et₂O solutions stored in fridge for two days. One of the t-butyl groups on the xanthene moiety showed disorder in the structure, however, it was omitted for clarity. # **Crystallographic Data for S5** Empirical formula (observed): C₄₁H₄₀I₂OS₄ a: 11.9286 Å b: 13.3443 Å c: 14.1759 Å alpha: 100.700 ° beta: 107.730 ° gamma: 110.300 ° calculated density: 1.622 g/cm³ color: colorless space group: P-1 z: 2 temperature: -173.0 °C volume: 1905.63 Å³ formula weight: 930.841 g/mole R(F): 0.019 $R_w(F^2)$: 0.051 goodness of fit: 1.028 ## 3. Equilibrium between anti- and syn-Isomers of 2a; VT NMR Experiments Figure S2. (a) Illustration of the equilibrium between anti- and syn-isomers via all-cisoid conformation (b) 1H NMR spectra of 2a obtained in CD₂Cl₂ at room temperature (top) and at -90 $^{\circ}$ C (bottom) (left: aromatic region, right: aliphatic region). The existence of equilibrium between *anti*- and *syn*-isomers of **2a** was revealed by NMR measurements at low temperature. As shown in Figure S2b, **2a** afforded one set of peaks in its NMR spectrum at room temperature (top). On the other hand, at –90 °C, the peaks were separated into two sets of peaks in the ratio of approx. 2:1 (bottom). This result suggests that **2a** can have two conformations at room temperature and those two conformations are in the equilibrium. Probably, the conformational changes between two isomers would occur via all-cisoid conformation as shown in Figure S2a. # 4. UV-vis Absorption 50 μL of 1 mM substrate (**1**, **2a**, or **2b**) solution (0.05 μmol) in CH₂Cl₂ was diluted with *ca*. 3.5 mL of CH₂Cl₂ in a cuvette. Absorption spectra of neutral compounds were recorded with this solution. 0.05 M of the oxidant Et₃O•SbCl₆ solution in CH₂Cl₂ was prepared. Each time 1 μL (0.05 μmol of the oxidant) of this solution was added and mixed well, and the absorption was recorded. This process was repeated until one-electron oxidation of oligothiophene moieties was completed. The spectral changes for **1**, **2a**, and **2b** are displayed in Figure 2. Superimposed spectra are shown in Figure S3a for **1** and **2a** at neutral state, and in Figure S3b for radical cation **1**^{*+} and π-dimer **2a**²⁺. Figure S3. Superimposed UV-vis absorption spectra (a) at neutral state of 1 (blue line) and 2a (red line) (b) of radical cation 1^{++} (blue line) and π-dimer $2a^{2+}$ (red line). #### 5. EPR Measurement 1.0 mM of 1, 0.5 mM of 2a, and 50 mM of the oxidant solutions Et₃O•SbCl₆ in CH₂Cl₂ were prepared. 0.5 mL of substrate (1 or 2a) solutions were charged in a quartz EPR tube under argon atmosphere and the specified equivalents of oxidant solution were added (for 1, 1.5 or 5 equivalents; for 2a, 3 or 10 equivalents). After recording EPR spectra (Figure 4a and 4c), small amount of sample solution was transferred into a cuvette and diluted with some amounts of CH₂Cl₂. Absorption spectra of these samples are shown in Figure 4b and 4d. ## 6. NMR Spectra ¹H NMR and ¹³C NMR spectra of all compounds are attached from page S-9. ppm