Highly Regioselective Protection of Sugars Catalyzed by Dimethyltin Dichloride

Yosuke Demizu, Yuki Kubo, Hiroko Miyoshi, Toshihide Maki, Yoshihiro Matsumura, Noriaki Moriyama, and Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki

852-8521, Japan

Supporting Information (*Organic Letters*)

Table of Contents

General	S2
Experimental procedure for monobenzoylation of sugars	··· S2—S5
Experimental procedure for monotosylation of sugars	· S5—S9
Experimental procedure for complete protection of α -methyl glucoside and β -methyl	xyloside
	S9—S12
Chemical transformation of α -methyl glucoside derivative 5	S12—S14
References	S14—S15
¹ H and ¹³ C NMR chart	S16—S45

General: ¹H NMR spectra were measured on a Varian Gemini 300, 400 and 500 spectrometer with TMS as an internal standard. ¹³C NMR spectra were measured on a Varian Gemini 300 and 400 spectrometer with TMS as an internal standard. IR spectra were obtained on a Shimadzu FTIR-8100A. Mass spectra were obtained on a JEOL JMS-DX 303 instrument. All reagents and solvents were used as supplied without further purification.

Experimental Procedure for Monobenzoylation of Sugar 1a

BzCl (64 μL, 0.55 mmol) was added to the stirred solution of α-methyl glucoside (**1a**) (97 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μL, 1.0 mmol) in THF (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2a** (122 mg, 82%) as a white solid.

Experimental Procedure for Monobenzoylation of Sugar 1b

BzCl (64 μL, 0.55 mmol) was added to the stirred solution of β-methyl glucoside (**1b**) (97 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μL, 1.0 mmol) in THF (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2b** (118 mg, 79%) as a white solid.

Experimental Procedure for Monobenzoylation of Sugar 1c

BzCl (64 μ L, 0.55 mmol) was added to the stirred solution of α -methyl galactoside (**1c**) (97 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2c** (115 mg, 84%) as a white solid.

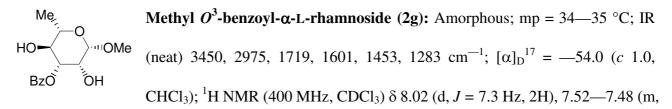
Experimental Procedure for Monobenzoylation of Sugar 1d

BzCl (64 μL, 0.55 mmol) was added to the stirred solution of β-methyl galactoside (**1d**) (97 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μL, 1.0 mmol) in THF (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2d** (135 mg, 91%) as a white solid.

Experimental Procedure for Monobenzoylation of Sugar 1e

BzCl (64 μL, 0.55 mmol) was added to the stirred solution of α-methyl mannoside (**1e**) (97 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μL, 1.0 mmol) in THF/H₂O = 9/1 (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2e** (144 mg, 97%) as a white solid.

s, 1H), 3.81–3.65 (m, 3H), 3.67 (d, *J* = 9.6 Hz, 1H), 3.29 (s, 3H).


Experimental Procedure for Monobenzoylation of Sugar 1f

BzCl (64 μL, 0.55 mmol) was added to the stirred solution of β-methyl xyloside (**1f**) (82 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μL, 1.0 mmol) in THF/H₂O = 9/1 (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2f** (129 mg, 96%) as a white solid.

Methyl *O*⁴-benzoyl-β-D-xyloside (2f): White solid; mp = 84—85 °C; IR BzO¹¹ OMe (neat) 3584, 2800, 1720, 1451, 1320, 1271 cm⁻¹; $[\alpha]_D^{21} = -81.4$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 7.2 Hz, 2H), 7.60 (t, *J* = 8.1 Hz, 1H), 7.46 (t, *J* = 8.1 Hz, 2H), 5.12—5.05 (m, 1H), 4.41 (d, *J* = 5.7 Hz, 1H), 4.23 (dd, *J* = 4.2, 13.5 Hz, 1H), 3.61—3.50 (m, 6H), 3.05 (d, *J* = 4.8 Hz, 1H), 2.68 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 133.4, 129.7, 129.4, 128.5, 103.4, 72.4, 71.9, 61.6, 56.8; [HR-FAB(+)]: *m/z* calcd for $C_{13}H_{17}O_6$ [M+H]⁺ 269.1025 : found 269.1028.

Experimental Procedure for Monobenzoylation of Sugar 1g

BzCl (64 μ L, 0.55 mmol) was added to the stirred solution of α -methyl rhamnoside (**1g**) (89 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF/H₂O = 9/1 (2.0 mL) and then stirred for 2.5 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to afford **2g** (135 mg, 96%) as a white solid.

1H), 7.47—7.30 (m, 2H), 5.22—5.10 (m, 1H), 4.61 (s, 1H), 4.09 (s, 1H), 3.77—3.70 (m, 2H), 3.33 (s, 3H), 3.00 (s, 2H), 1.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 133.2, 129.7, 129.5, 128.3, 100.6, 75.2, 71.0, 69.4, 68.3, 54.7, 17.4; [HR-FAB(+)]: *m*/*z* calcd for C₁₄H₁₉O₆ [M+H]⁺ 283.1181 : found 283.1198.

Experimental Procedure for Monotosylation of Sugar 2a

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl O^2 -benzoyl- α -D-glucoside (**2a**) (149 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF

(2.0 mL) and then stirred for 22 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford **3a** (199 mg, 88%) as a white solid.

 $\begin{array}{l} \text{Methyl } O^2 \text{-benzoyl-} O^6 \text{-}p \text{-toluenesulfonyl-}\alpha \text{-}D \text{-}glucoside (3a): White solid;} \\ \text{HO}_{\text{HO}_{\text{OBZ}}} & \text{mp } 65 \text{--} 67^\circ \text{C}; \text{ IR (neat) } 3515, 2982, 2938, 1752, 1728, 1453 \ \text{cm}^{-1}; [\alpha]_D^{22} = \\ +109.5 \ (c \ 1.0, \text{EtOH}); \ ^1\text{H NMR} \ (300 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 8.07 \ (d, \ J = 7.2 \ \text{Hz}, 2\text{H}), \\ 7.83 \ (d, \ J = 8.4 \ \text{Hz}, 2\text{H}), \ 7.59 \ (t, \ J = 7.8 \ \text{Hz}, 1\text{H}), \ 7.46 \ (t, \ J = 7.8 \ \text{Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.1 \ \text{Hz}, 2\text{H}), \\ 4.96 \ (d, \ J = 1.6 \ \text{Hz}, 1\text{H}), \ 4.86 \ (dd, \ J = 1.2, 9.9 \ \text{Hz}, 1\text{H}), \ 4.41 \text{--} 4.26 \ (m, \ 2\text{H}), \ 4.14 \text{--} 4.07 \ (m, \ 1\text{H}), \\ 3.85 \text{--} 3.80 \ (m, \ 1\text{H}), \ 3.62 \text{--} 3.58 \ (m, \ 1\text{H}), \ 3.34 \ (s, \ 3\text{H}), \ 2.75 \ (d, \ J = 3.6 \ \text{Hz}, 1\text{H}), \ 2.52 \ (d, \ J = 3.6 \ \text{Hz}, 1\text{H}), \\ 7.3.5, \ 71.6, \ 70.1, \ 69.0, \ 55.4, \ 21.6; \ \text{MS} \ [\text{HR}\text{-}\text{EI}(+)] : \ m/z \ \text{calcd for } C_{21}\text{H}_{24}\text{O}_9\text{S} \ \ [\text{M}]^+ \ 452.1141, \ found: \\ 452.1157. \end{array}$

Experimental Procedure for Monotosylation of Sugar 2c

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl O^3 -benzoyl- α -D-galactoside (**2c**) (149 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF (2.0 mL) and then stirred for 22 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford **3c** (147 mg, 65%) as a white solid.

 3H), 2.44 (s, 3H), 2.29 (s, 1H), 2.09 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 145.1, 133.5, 132.6, 129.9, 129.85, 129.4, 128.5, 127.99, 99.6, 73.4, 68.2, 67.8, 67.7, 67.1, 55.7, 21.6; MS[HR-FAB(+)]: *m/z* calcd for C₂₁H₂₅O₉S[M+H]⁺: 453.1219, found: 453.1201.

Experimental Procedure for Monotosylation of Sugar 2e

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl O^3 -benzoyl- α -D-mannoside (**2e**) (149 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol), DMAP (6.1 mg, 0.05 mmol) and DIPEA (174 µL, 1.0 mmol) in THF (2.0 mL) and then stirred for 22 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford **3e** (192 mg, 85%) as a white solid.

 $\begin{array}{l} \text{Methyl } O^{3}\text{-benzoyl-}O^{6}\text{-}p\text{-toluenesulfonyl-}\alpha\text{-}D\text{-mannoside (3e):} Amorphous; \\ \text{HO}^{11}\text{-}\text{-}\text{-}\text{OH} \end{array} \\ \begin{array}{l} \text{HO}^{11}\text{-}\text{-}\text{-}\text{OH} \end{array} \\ \begin{array}{l} \text{IR (neat) } 3509, 2998, 1771, 1721, 1599, 1453, 1362 \ cm^{-1}; \ [\alpha]_{D}^{19} = +35.2 \ (c \\ 1.0, \text{CHCl}_{3}); \ ^{1}\text{H NMR (300 MHz, \text{CDCl}_{3})} \\ \text{\delta 8.08 (d, } J = 8.1 \ \text{Hz}, 2\text{H}), 7.81 \ (d, J \\ = 7.8 \ \text{Hz}, 2\text{H}), 7.58 \ (t, J = 7.8 \ \text{Hz}, 1\text{H}), 7.45 \ (t, J = 7.8 \ \text{Hz}, 2\text{H}), 7.34 \ (d, J = 7.8 \ \text{Hz}, 2\text{H}), 5.28 \ (dd, J = \\ 4.8, 9.6 \ \text{Hz}, 1\text{H}), 4.72 \ (s, 1\text{H}), 4.42 \ \text{--}4.29 \ (m, 2\text{H}), 4.19 \ \text{--}4.02 \ (m, 2\text{H}), 3.88 \ \text{--}3.73 \ (m, 1\text{H}), 3.36 \ (s, \\ 3\text{H}), 2.80 \ (d, J = 5.4 \ \text{Hz}, 1\text{H}), 2.44 \ (s, 3\text{H}), 2.32 \ (d, J = 6.0 \ \text{Hz}, 1\text{H}); \ ^{13}\text{C NMR (75 \ \text{MHz}, \text{CDCl}_{3})} \\ 3 \ 166.7, 144.9, 133.3, 132.6, 129.9, 129.8, 129.4, 128.4, 127.9, 100.7, 74.9, 70.4, 69.1, 65.0, 55.1, \\ 21.5; \ [\text{HR-EI(+)]: } m/z \ calcd \ \text{for } C_{21}\text{H}_{24}\text{O}_{9}\text{S} \ [\text{M}]^{+} 452.1141: \ \text{found } 452.1124. \end{array}$

Experimental Procedure for Monotosylation of Sugar 2f

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl O^4 -benzoyl- β -D-xyloside (**2f**) (134 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF (2.0 mL) and then stirred for 22 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded

an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford **3f** (55 mg, 26%) and **3f'** (80 mg, 38%) as a white solid.

BZO^{III} OMe HO OTs Methyl *O*²-*p*-toluenesulfonyl-*O*⁴-benzoyl-β-D-xyloside (3f): White solid; mp = 71—72 °C; IR (neat) 3500, 1720, 1599, 1453, 1362, 1271 cm⁻¹; $[\alpha]_D^{19} =$ -96.6 (*c* 0.82, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.29—7.26 (m, 2H), 5.04—4.92 (m, 1H), 4.62—4.55 (m, 1H), 4.43—4.40 (m, 1H), 4.25—4.16 (m, 1H), 3.92—3.80 (m, 1H), 3.65—3.50 (m, 1H), 3.38 (s, 3H), 3.30—3.20 (m, 1H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 133.3, 129.9, 129.7, 128.4, 128.1, 100.0, 70.2, 69.0, 59.7, 56.4, 21.7; [HR-EI(+)]: *m/z* calcd for C₂₀H₂₂O₈S [M]⁺ 422.1035 : found 422.1057.

Methyl *O*³-*p*-toluenesulfonyl-*O*⁴-benzoyl-β-D-xyloside (3f'): White solid; mp = 104—105 °C; IR (CHCl₃) 3503, 2924, 1724, 1599, 1453, 1352, 1269 cm⁻¹; $[\alpha]_D^{19} = -128.2$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.8 Hz, 2H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 5.30—5.15 (m, 1H), 4.95 (t, *J* = 9.3 Hz, 1H), 4.30 (d, *J* = 7.3 Hz, 1H), 4.22 (dd, *J* = 5.8, 11.7 Hz, 1H), 3.65—3.58 (m, 1H), 3.55 (s, 3H), 3.38 (t, *J* = 11.2 Hz, 1H), 2.89 (s, 1H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.2, 144.6, 133.4, 129.9, 129.5, 128.9, 128.3, 127.6, 104.0, 81.8, 71.9, 69.2, 62.4, 57.2, 21.5; [HR-EI(+)]: *m/z* calcd for C₂₀H₂₂O₈S [M]⁺ 422.1035 : found 422.0992.

Experimental Procedure for Monotosylation of Sugar 2g

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl O^3 -benzoyl- α -L-rhamnoside (**2g**) (141 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 μ L, 1.0 mmol) in THF (2.0 mL) and then stirred for 22 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded

an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford **3g** (109 mg, 50%) as a white solid.

Me HO HO BzO OTs HO TOTs $Methyl O^2-p-toluenesulfonyl-O^3-benzoyl-\alpha-L-rhamnoside (3g): White solid;$ <math>mp = 127—129 °C; IR (neat) 3534, 2978, 1725, 1599, 1453, 1364, 1275, 1190 cm^{-1} ; $[\alpha]_D^{22} = +3.5$ (*c* 1.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J =7.5 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 6.98 (d, J =8.0 Hz, 2H), 5.20 (dd, J = 7.5, 9.5 Hz, 1H), 4.85—4.83 (m, 1H), 4.79 (s, 1H), 3.81—3.72 (m, 2H), 3.39 (s, 3H), 2.38 (br s, 1H), 2.17 (s, 3H), 1.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 144.8, 133.3, 132.7, 129.8, 129.1, 128.2, 127.8, 127.1, 98.6, 72.1, 70.4, 68.2, 55.1, 21.5, 17.4; [HR-FAB(+)]: m/z calcd for C₂₁H₂₅O₈S [M+H]⁺ 437.1270 : found 437.1285.

Experimental Procedure for Complete Protection of α -Methyl Glucoside and β -Methyl Xvloside

Boc₂O 0.55 mmol) added stirred solution (120)mg, was to the of methyl O^2 -benzoyl- O^6 -p-toluenesulfonyl- α -D-glucoside (**3a**) (226 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025) mmol), DMAP (67 mg, 0.55 mmol) and DIPEA (174 µL, 1.0 mmol) in THF (2.0 mL) and then stirred for 30 min at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (15% EtOAc in hexane) to afford 4 (257 mg, 93%) as a white solid.

TSOMethyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^6 -p-toluenesulfonyl- α -D-
glucoside (4): White solid; mp 67—69°C; IR (neat) 3513, 2988, 2983, 1752,
1728, 1453 cm⁻¹; $[\alpha]_D^{22} = +107.1$ (c 0.4, CHCl₃); ¹H NMR (300 MHz,
CDCl₃) δ 8.06 (t, J = 6.9 Hz, 2H), 7.82 (d, J = 8.4 Hz, 2H), 7.61—7.52 (m, 1 H), 7.43 (t, J = 8.7 Hz,
2H), 7.41—7.35 (m, 2H), 5.28 (t, J = 9.3 Hz, 0.5H), 5.04 (d, J = 3.8 Hz, 0.5H), 4.92—4.84 (m, 1H), 4.64 (t, J = 9.3 Hz, 0.5H), 4.41—4.20 (m, 2H), 4.23—4.20 (m, 0.5H),

4.01—3.97 (m, 0.5H), 3.85—3.80 (m, 0.5H), 3.79—3.72 (m, 0.5H), 3.32 (s, 3H), 2.72 (d, J = 5.4 Hz, 0.5H), 2.55 (d, J = 5.4 Hz, 0.5H), 2.46 (s, 3H), 1.50 (s, 5H), 1.40 (s, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 166.1, 165.7, 153.5, 153.1, 145.0, 144.9, 133.4, 132.8, 129.95, 129.89, 129.84, 129.8, 129.1, 128.4, 128.3, 128.0, 127.96, 96.8, 83.7, 83.1, 75.1, 73.7, 73.5, 71.7, 69.9, 69.3, 68.3, 68.0, 67.1, 55.52, 55.46, 27.7, 27.6, 27.5, 21.6; MS [HR-FAB(+)] : m/z calcd for C₂₆H₃₃O₁₁S [M+H]⁺: 553.1744, found: 553.1726.

(PhO)₂(O)PCl (155 μ L, 0.75 mmol) was added to the stirred solution of methyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^6 -p-toluenesulfonyl- α -D-glucoside (**4**) (276 mg, 0.5 mmol), pyridine (60 μ L, 0.75 mmol) and DMAP (92 mg, 0.75 mmol) in CH₂Cl₂ (2.0 mL) and then stirred for 22 h at rt. Water (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (10% EtOAc in hexane) to afford **5** (373 mg, 95%) as a white solid.

 $(PhO)_{2}(O)PO^{IIIO} \longrightarrow OBz$ Methyl O^{2} -benzoyl- O^{3} -t-butoxycarbonyl- O^{4} -diphenylphosphoryl- O^{6} -p-toluenesulfonyl- α -D-glucoside (5): White solid; mp 55—58 °C; IR (neat) 3069, 2982, 2845, 1763, 1721, 1599, 1598, 1454 cm⁻¹;

 $[\alpha]_{D}^{20} = +101.3 (c 1.0, CHCl_3); {}^{1}H NMR (300 MHz, CDCl_3) \delta 8.02 (d, J = 7.2 Hz, 0.9H), 7.96 (d, J = 7.2 Hz, 1.1H), 7.83 (d, J = 8.4 Hz, 1.1H), 7.73 (d, J = 8.4 Hz, 0.9H), 7.59-6.78 (m, 15H), 5.62 (t, J = 9.6 Hz, 0.5H), 5.28 (q, J = 9.0 Hz, 0.5H), 5.06 (d, J = 3.6 Hz, 0.5H), 5.02-4.92 (m, 1.5H), 4.86 (dd, J = 3.5, 10.1 Hz, 0.5H), 4.57 (q, J = 3.5 Hz, 0.5H), 4.36-3.99 (m, 3H), 3.35 (s, 1.3H), 3.27 (s, 1.7H), 2.46 (s, 1.7H), 2.41 (s, 1.3H), 1.27 (s, 5H), 1.15 (s, 4H); {}^{13}C NMR (75 MHz, CDCl_3) \delta 165.5, 165.4, 157.7, 152.5, 152.0, 150.5, 150.4, 150.3, 149.9, 144.9, 144.8, 133.5, 133.1, 132.7, 130.1, 129.9, 129.8, 129.7, 129.6, 129.51, 129.50, 129.2, 128.8, 128.6, 128.3, 128.1, 127.99, 125.6, 125.5, 125.4, 125.0, 154.4, 120.5, 120.45, 120.4, 120.2, 120.1, 119.8, 119.75, 100.5, 96.4, 96.3, 83.5, 82.8, 76.0, 75.9, 74.0, 73.9, 72.6, 72.5, 71.77, 71.74, 71.69, 71.5, 67.9, 67.8, 67.6, 67.1, 55.6, 55.5, 125.8, 126.9, 126.9, 126.9, 126.5, 12$

27.5, 27.2, 21.6, 21.5; MS[HR-FAB(+)]:*m*/*z* calcd for C₃₈H₄₂O₁₄PS [M+H]⁺: 785.2033, found: 785.2021.

TsCl (105 mg, 0.55 mmol) was added to the stirred solution of methyl β -D-xyloside (**1f**) (82 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 µL, 1.0 mmol) in THF containing 1% H₂O (2.0 mL) and then stirred for 20 h at 50 °C. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (50% EtOAc in hexane) to give **2f**' (129 mg, 81%) as a white solid.

Methyl O^4 -*p*-toluenesulfonyl-β-D-xyloside (2f^{*})^{S2}: ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 4.40—4.30 (m, 1H), 4.22 (d, J = 6.6 Hz, 1H), 4.00 (dd, J = 4.8, 6.0 Hz, 1H), 3.70—3.60 (m, 1H), 3.49 (s, 3H), 3.39—3.30 (m, 2H), 3.25 (s, 1H), 3.08 (s, 1H), 2.45 (s, 3H).

BzCl μL. 0.65 mmol) stirred solution methyl (76 was added to the of O^4 -p-toluenesulfonyl- β -D-xyloside (**2f'**) (159 mg, 0.5 mmol), Me₂SnCl₂ (5.5 mg, 0.025 mmol) and DIPEA (174 µL, 1.0 mmol) in THF (2.0 mL) and then stirred for 24 h at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to afford 6 (129 mg, 87%) as a white solid.

Methyl O^2 -benzoyl- O^4 -*p*-toluenesulfonyl-β-D-xyloside (6): White solid; mp = 144—146 °C; IR (neat) 3500, 1725, 1599, 1453, 1364, 1271 cm⁻¹; [α]_D²⁰ = -8.8 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 2H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.8 Hz, 1H), 7.44—7.39 (m, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 4.98 (t, *J* = 4.4 Hz, 1H), 4.66 (s, 1H), 4.47 (s, 1H), 4.16 (d, *J* = 12.7 Hz, 1H), 3.92 (s, 1H), 3.65 (dd, *J* = 5.5, 15.9 Hz, 1H), 3.45 (s, 3H), 3.30—3.20 (m, 1H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.5, 145.2, 133.3, 129.9, 129.2, 128.4, 127.9, 99.7, 70.0, 68.6, 59.6, 56.3, 21.6; [HR-EI(+)]: *m/z* calcd for C₂₀H₂₂O₈S [M]⁺ 422.1035 : found 422.1057.

 Boc_2O (66 mg, 0.33 mmol) was added to the stirred solution of methyl O^2 -benzoyl- O^4 -p-toluenesulfonyl- β -D-xyloside (6) (126 mg, 0.3 mmol), Me₂SnCl₂ (3.0 mg, 0.0075) mmol), DMAP (37 mg, 0.33 mmol) and DIPEA (95 µL, 0.6 mmol) in THF (1.5 mL) and then stirred for 40 min at rt. 3% aqueous HCl (20 mL) was added to the solution and extracted with EtOAc (20 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (15% EtOAc in hexane) to afford 7 (130 mg, 83%) as an amorphous.

Methyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^4 -*p*-toluenesulfonyl-β-D-TSO¹¹, ^OOBz Nulside (7): Amorphous; IR (neat) 2982, 1750, 1599, 1453, 1370, 1281, 1256 cm⁻¹; [α]_D²¹ = +29.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, *J* = 6.9 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 5.08—5.06 (m, 2H), 4.57—4.48 (m, 2H), 4.28 (dd, *J* = 4.8, 6.1 Hz, 1H), 3.58 (dd, *J* = 6.0, 8.7 Hz, 1H), 3.45 (s, 3H), 2.44 (s, 3H), 1.24 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 152.0, 145.1, 133.2, 132.7, 129.9, 129.8, 129.1, 128.2, 127.9, 101.5, 82.8, 74.5, 73.2, 71.0, 62.5, 56.7, 27.3, 21.6; [HR-FAB(+)]: *m/z* calcd for C₂₅H₃₁O₁₀S [M+H]⁺ 523.1638 : found 523.1627.

Chemical Transformation of α-Methyl Glucoside Derivative 5

Methyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^4 -diphenylphosphoryl- O^6 -p-toluenesulfonyl- α -D-glucoside (5) (78 mg, 0.1 mmol) was added to the stirred solution of NaN₃ (10 mg, 0.15 mmol) and 15-crown-5 (2 mg, 0.01 mmol) in DMF (1.0 mL) and then stirred for 20 h at 50 °C. Water (15 mL) was added to the solution and extracted with Et₂O (15 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (10% EtOAc in hexane) to afford **8** (62 mg, 95%) as colorless oil. $(PhO)_{2}(O)PO^{III}OMe$ BocO OBz
Methyl O²-benzoyl-O³-t-butoxycarbonyl-O⁴-diphenylphosphoryl-6-deoxy-6-azido- α -D-glucoside (8): Colorless oil; IR (neat) 2928, 2105, 1754, 1728, 1591, 1491, 1455, 1372 cm⁻¹; $[\alpha]_{D}^{18} = +116.8$ (c

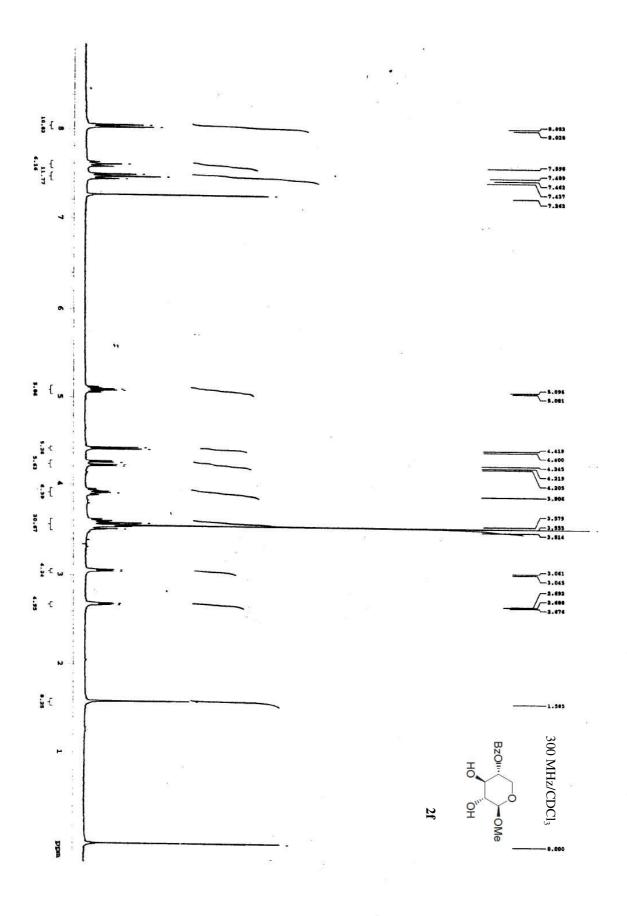
1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.3 Hz, 0.9H), 7.99 (d, *J* = 8.3 Hz, 1.1H), 7.60—7.10 (m, 13H), 5.65 (t, *J* = 9.8 Hz, 0.5H), 5.33 (q, *J* = 9.2 Hz, 0.5H), 5.20—4.70 (m, 2.5H), 4.67 (q, *J* = 9.2 Hz, 0.5H), 4.01—3.97 (m, 1H), 3.42 (s, 1.4H), 3.38 (s, 1.6H), 3.49—3.38 (m, 1H), 3.28—3.26 (m, 1H), 1.28 (s, 5H), 1.17 (s, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 152.3, 133.5, 133.2, 130.2, 129.8, 129.6, 129.3, 128.7, 128.3, 128.2, 125.8, 125.6, 125.4, 125.0, 120.7, 120.6, 120.4, 119.9, 119.8, 96.6, 83.5, 82.8, 76.0, 74.9, 72.7, 72.0, 69.2, 69.1, 68.6, 55.7, 51.0, 50.4, 27.3, 27.2; [HR-FAB(+)]: *m*/*z* calcd for C₃₁H₃₅N₃O₁₁P [M+H]⁺ 655.1931 : found 655.1950.

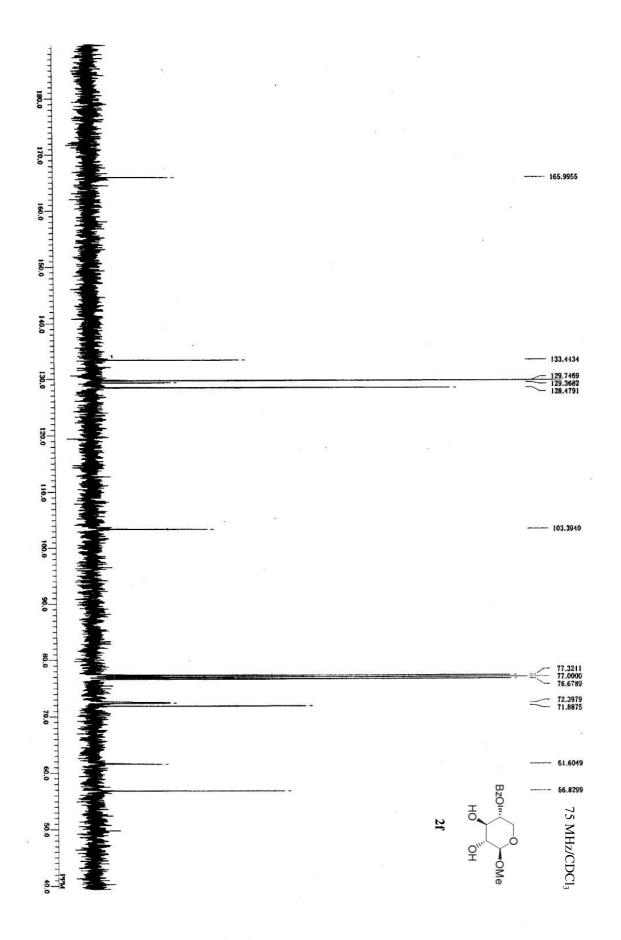
Methyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^4 -diphenylphosphoryl-6-deoxy-6-azido- α -D-glucoside (8) (328 mg, 0.5 mmol) was added to the stirred solution of Ph₃P (262 mg, 1.0 mmol) and H₂O (18 μ l, 1.0 mmol) in THF (4.0 mL) at rt. After being stirred for 6 h, the mixture was evaporated, which was purified by column chromatography on silica gel (80% EtOAc in hexane) to afford 9 (220 mg, 70%) as colorless oil.

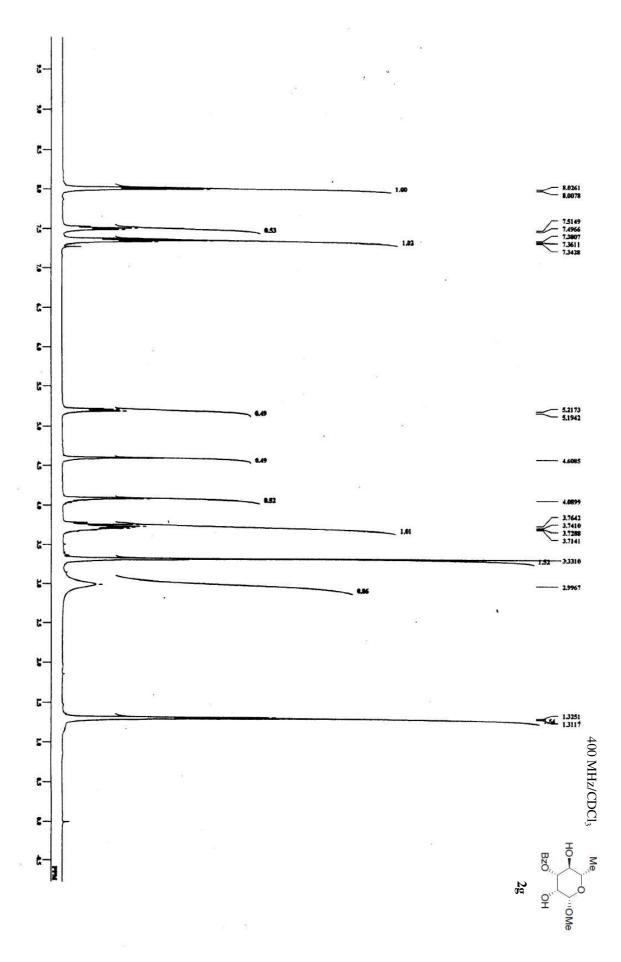
 $(PhO)_{2}(O)PO^{III}OMe$ BocO OBz
Methyl O^{2} -benzoyl- O^{3} -t-butoxycarbonyl- O^{4} -diphenylphosphoryl-6-deoxy-6-amino- α -D-glucoside (9): Colorless oil; IR (neat) 3200, 2980, 1752, 1748, 1593, 1491, 1281 cm⁻¹; $[\alpha]_{D}^{28} = +21.7$ (c 1.5,

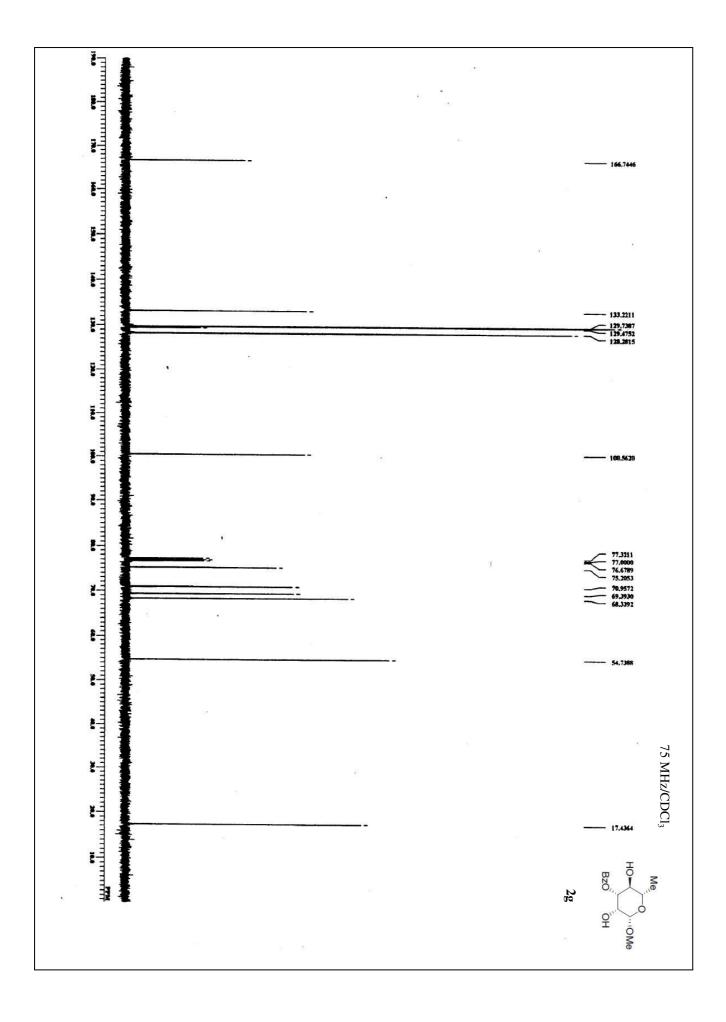
CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.02 (dd, J = 7.2, 23.7 Hz, 2H), 7.58—7.10 (m, 10H), 6.91 (d, J = 4.2 Hz, 2H), 6.81 (d, J = 7.2 Hz, 1H), 5.67 (t, J = 8.7 Hz, 0.5H), 5.35 (q, J = 8.7, 17.4 Hz, 0.5H), 5.15 (d, J = 4.2 Hz, 0.5H), 5.10—4.90 (m, 2.5H), 4.73 (q, J = 8.7, 17.4 Hz, 0.5H), 3.85 (bs, 2H), 3.37 (s, 1.5H), 3.32 (s, 2H), 3.02—2.70 (m, 2H), 1.46 (s, 1H), 1.41 (s, 1H), 1.27 (s, 4H), 1.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 152.7, 130.2, 130.0, 129.9, 129.7, 129.6, 129.4, 129.2, 129.0, 128.3, 128.2, 125.7, 125.0, 120.6, 120.5, 120.3, 119.9, 119.8, 115.5, 96.7, 83.6, 82.6, 72.6, 120.5, 120.5, 120.3, 119.9, 119.8, 115.5, 96.7, 83.6, 82.6, 72.6, 120.5

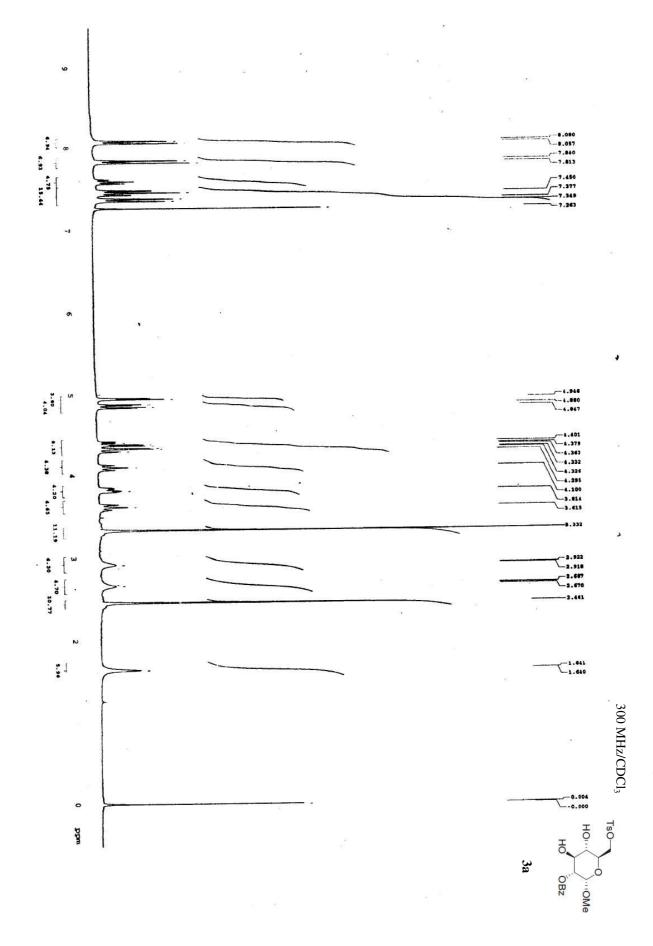
72.0, 55.8, 55.7, 28.4, 27.3, 27.2; [HR-FAB(+)]: m/z calcd for $C_{31}H_{37}NO_{11}P$ [M+H]⁺ 630.2104 : found 630.2097.


Methyl O^2 -benzoyl- O^3 -*t*-butoxycarbonyl- O^4 -diphenylphosphoryl-6-deoxy-6-azido- α -D-glucoside (**8**) (328 mg, 0.5 mmol) was added to the stirred solution of phenyl acetylene (0.11 mL, 1.0 mmol), CuSO₄ (40 mg, 0.25 mmol) and (+)-sodium L-ascorbate (50 mg, 0.25 mmol) in *t*-BuOH/H₂O = 2/1 (1.8 mL) and then stirred for 24 h at rt. Water (15 mL) was added to the solution and extracted with EtOAc (15 mL x 3), and then dried over MgSO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel (25% EtOAc in hexane) to leave **10** (283 mg, 75%) as a white solid.


Methyl O^2 -benzoyl- O^3 -t-butoxycarbonyl- O^4 -diphenylphosphoryl-6-deoxy-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-α-D-glucoside (10): (PhO)₂(O)PO¹¹ OMe White solid; mp = 61—63 °C; IR (neat) 2988, 1752, 1727, 1591, 1489, OBz BocO 1281 cm^{-1} ; $[\alpha]_D^{27} = +57.7 (c \ 1.0, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, J = 9.0 Hz, 0.5 H), 7.96 (d, J = 9.0 Hz, 2H), 7.84 (t, J = 9.9 Hz, 2H), 7.60–7.12 (m, 14H), 6.91 (d, J = 4.5 Hz, 2H), 6.89-6.82 (m, 0.5H), 5.69 (t, J = 9.9 Hz, 0.5H), 5.51-5.40 (m, 0.5H), 5.12-5.10 (m, 1.5H), 4.98 $(t, J = 9.6 \text{ Hz}, 1\text{H}), 4.76 \text{ (dd}, J = 4.5, 9.9 \text{ Hz}, 0.5\text{H}), 4.67-4.63 \text{ (m}, 0.5\text{H}), 4.54-4.48 \text{ (m}, 0.5\text{H}), 4.67-4.63 \text{ (m}, 0.5\text{H}), 4.54-4.48 \text{ (m}, 0.5\text{H}), 4.67-4.63 \text{ (m}, 0.5\text{H}), 4.54-4.48 \text{ (m}, 0.5\text{H}), 4.54-4.58 \text$ 4.38—4.20 (m, 2H), 3.06 (d, J = 8.1 Hz, 3H), 1.33 (s, 5.5H), 1.17 (s, 3.5H); ¹³C NMR (100 MHz, CDCl₃) & 165.6, 152.5, 133.5, 133.2, 130.4, 130.2, 130.1, 130.0, 129.6, 129.3, 128.8, 128.5, 128.3, 128.2, 128.1, 126.0, 125.7, 125.5, 125.0, 120.7, 120.6, 120.5, 120.4, 119.9, 119.8, 96.5, 83.9, 82.3, 75.9, 75.5, 73.0, 72.5, 71.9, 68.4, 67.9, 55.5, 50.7, 50.3, 27.3, 27.2; [HR-FAB(+)]: m/z calcd for $C_{39}H_{41}N_3O_{11}P[M+H]^+$ 758.2479 : found 758.2446.


References


- S1) Ho, W. M.; Wong, H. N. C.; *Tetrahedron* **1995**, *51*, 7373–7388.
- S2) Tsuda, Y.; Haque, Md. E.; Yoshimoto, K. Chem. Pharm. Bull. 1983, 31, 1612-1624.


- S3) Peri, F.; Cipolla, L.; Nicotra, F. *Tetrahedron Lett.* **2000**, *41*, 8587–8590.
- S4) Tsuda, Y.; Nishimura, M.; Kobayashi, T.; Sato, Y.; Kanemitsu, K. Chem. Pharm. Bull. 1991, 39, 2883—2887.

