Asymmetric Mukaiyama Aldol Reaction of Nonactivated Ketones Catalyzed by allo-ThreonineDerived Oxazaborolidinone

Shinya Adachi and Toshiro Harada*

Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606-8585, Japan

Table of Contents:
General S-2
S-tert-Butyl (R)-3-(4-Bromophenyl)-3-hydroxybutanethioate (4a) S-2
(Typical Procedure for Asymmetric Aldol Reaction; Table 1, entry 9).
Spectral Data of Products 5-7 and 4b-q S-3
Absolute Structure Determination of $\mathbf{4 b}$ and $\mathbf{4 q}$ S-9
${ }^{1} \mathrm{H}$ and/or ${ }^{13} \mathrm{C}$ NMR Spectra of Products 5-7, 4b-q, and 11a,b S-11

General. Dichloromethane was dried and distilled over $\mathrm{CaH}_{2} . \mathrm{Et}_{2} \mathrm{O}$ and toluene was distilled from sodium benzophenone ketyl. The following compounds were prepared according to a literature procedure; ketone 2d, ${ }^{1} O$-benzoyl- N-tosyl-(L)-allo-threonine, ${ }^{2}$ and silyl ketene acetals $\mathbf{3 a}{ }^{3}$, $\mathbf{3}{ }^{4}$.

4a

S-tert-Butyl (R)-3-(4-Bromophenyl)-3-hydroxybutanethioate (4a) (Typical Procedure for Asymmetric Aldol Reaction; Table 1, entry 9). To a solution of O-benzoyl- N-tosyl-(L)-allo-threonine ($75.5 \mathrm{mg}, 0.200 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under argon atmosphere at room temperature was added dichlorophenylborane ($28.5 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$). After being stirred for 30 min , the mixture was concentrated in vacuo. To a solution of the resulting OXB 1 in dry toluene $(0.5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ were added p-bromoacetophenone (2a) ($199 \mathrm{mg}, 1.00 \mathrm{mmol}$) and silyl ketene acetal 3b ($306 \mathrm{mg}, 1.50 \mathrm{mmol}$). After being stirred at $-10^{\circ} \mathrm{C}$ for 48 h , the reaction mixture was quenched by the addition of saturated aqueous NaHCO_{3} and filtered. The filtrate was extracted three times with ethyl acetate, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was dissolved in aqueous $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and THF (10 mL) at room temperature. After being for 3 h , the mixture was poured into aqueous NaHCO_{3} and extracted three times with ethyl acetate. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by flash chromatography ($\mathrm{SiO}_{2}, 2 \%$ ethyl acetate in hexane) gave, in the order of elution, 225 mg (68%) of (R) $\mathbf{- 4 a}\left(94 \%\right.$ ee) and $26.1 \mathrm{mg}(13 \%)$ of $7(44 \% \mathrm{ee}) .4 \mathrm{a}:[\alpha]^{18}{ }_{\mathrm{D}} 28.1\left(c 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(9 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{d}, J=15.5), 3.02(1 \mathrm{H}, \mathrm{d}, J=15.4), 4.35(1 \mathrm{H}, \mathrm{s})$, 7.29-7.32 (2H, m), 7.43-7.46 (2H, m); ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.5,30.1,49.0,54.9,73.9$, $120.8,126.6,131.2,145.6,201.3$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S} 330.0289$, found 330.0267 . The ee value of $\mathbf{4 a}$ was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.1 \% i$-PrOH in hexane); retention times: 34.6 min (major R-enantiomer) and 42.6 min (minor S-enantiomer).

[^0]
\boldsymbol{S}-tert-Butyl (R)-3-(4-Bromophenyl)-3-dimethylsilyloxybutanethioate (5): ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.15(3 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 0.23(3 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 1.36(9 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}, \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{d}, J=$ $13.6 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}), 4.71(1 \mathrm{H}$, sept, $J=2.8 \mathrm{~Hz}), 7.25-7.29(2 \mathrm{H}, \mathrm{m}), 7.42-7.46(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 0.2,0.4,27.7,29.5,48.0,58.7,76.1,120.9,127.1,131.0,145.8,196.7$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrO}_{2} \mathrm{SSi} 388.0528$, found 388.0528. The ee value (91%; Table 1, entry 2) was determined after transforming (aqueous $1 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}$, room temperature) to $\mathbf{4 a}$ by HPLC analysis using a Chiralcel OD column.

S-tert-Butyl (R)-3-(4-Bromophenyl)-3-(hydroxydimethylsilyloxy)butanethioate (6): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18(3 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s}), 2.91(1 \mathrm{H}, \mathrm{d}, J=13.6 \mathrm{~Hz}), 2.93(1 \mathrm{H}$, d, $J=13.6 \mathrm{~Hz}), 3.15(1 \mathrm{H}, \mathrm{s}), 7.26-7.29(2 \mathrm{H}, \mathrm{m}), 7.43-7.46(2 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.7$, $0.9,29.5,29.7,48.4,58.4,76.5,120.8,127.0,131.0,146.2,198.4$; FT-IR (liquid film) 3409 (br), 1668 cm^{-1}; HRMS ($\mathrm{FAB} / m-\mathrm{MBA}+\mathrm{NaI}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BrNaO}_{3} \mathrm{SSi}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 427.0375$, found 427.0388. The ee value (90%; Table 1 , entry 2) was determined after transforming (aqueous 1 N HCl , THF, room temperature) to $\mathbf{4 a}$ by HPLC analysis using a Chiralcel OD column.

7
(S)-1-(4-Bromophenyl)methanol (7): ${ }^{5}[\alpha]^{21}{ }_{\mathrm{D}}-20.6$ (c 1.07, MeOH) (44\% ee), lit. ${ }^{5}[\alpha]^{21}{ }_{\mathrm{D}} 32.9$ (c 1.39, MeOH) for $>99 \%$ ee, R enantiomer; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.46(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 2.01(1 \mathrm{H}, \mathrm{br}$ s), $4.85(1 \mathrm{H}, \mathrm{q}, ~ J=6.5 \mathrm{~Hz}), 7.22-7.25(2 \mathrm{H}, \mathrm{m}), 7.45-7.47(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.2$, $69.7,121.1,127.1,131.5,144.7$. The ee value was determined by GC analysis using a BETA DEX ${ }^{\text {TM }}$

[^1]$225(\mathrm{~m})$ column ($30 \mathrm{~m}, 1.8 \mathrm{~kg} / \mathrm{cm}^{2}$, initial temperature $80^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $200^{\circ} \mathrm{C}$); retention times: 39.0 min (minor R-enantiomer) and 39.4 min (major S-enantiomer).

4b
\boldsymbol{S}-tert-Butyl (R)-3-Hydroxy-3-phenylbutanethioate (4b): $[\alpha]^{18}{ }_{\mathrm{D}} 31.3$ (c 1.31, CHCl_{3}) (91\% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(9 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 3.06(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz})$, $4.30(1 \mathrm{H}, \mathrm{s}), 7.22(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.31-7.34(2 \mathrm{H}, \mathrm{m}), 7.43-7.45(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) $\delta 29.5,30.1,48.7,55.3,74.0,124.6,126.7,128.1,146.4,201.3$. HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ 252.1184, found 252.1187. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.63 ; \mathrm{H}, 7.99$. Found: C, 66.24; $\mathrm{H}, 8.32$. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.1 \%, i-\mathrm{PrOH}$ in hexane); retention times: 17.6 min (major R-enantiomer) and 21.6 min (minor S-enantiomer). The absolute stereochemistry was determined by correlation (vide infra).

$4 c$
\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-(3-Bromophenyl)-3-hydroxybutanethioate (4c): $[\alpha]^{18}{ }_{\mathrm{D}} 34.8\left(c 1.72, \mathrm{CHCl}_{3}\right)(91 \%$ ee); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(9 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{d}, J=$ $15.4 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{s}), 7.19(1 \mathrm{H}, \mathrm{t}, J=4.1 \mathrm{~Hz}), 7.33-7.37(2 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{t}, J=1.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.5,30.0,49.0,54.9,73.8,122.5,123.3,128.1,129.7,129.9,148.9,201.2$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{~S} 330.0289$, found 330.0286 . The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%, i-\mathrm{PrOH}$ in hexane); retention times: 21.9 min (minor S-enantiomer) and 23.0 min (major R-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (R)-3-(3,5-Dibromophenyl)-3-hydroxybutanethioate (4d): $[\alpha]^{16}{ }_{\mathrm{D}} 39.8\left(c 1.02, \mathrm{CHCl}_{3}\right)$ (94% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(9 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.84(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}$, $J=15.4 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{s}), 7.52(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) $\delta 29.5,29.9,49.3,54.6,73.6,122.9,127.0,132.5,150.6,201.1 ;$ HRMS (EI) calcd for
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{~S} 409.9374$, found 409.9374 . The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 11.7 min (major $R-$ enantiomer) and 16.6 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

4e
\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-(2-Bromophenyl)-3-hydroxybutanethioate (4e): $\quad[\alpha]^{16}{ }_{\mathrm{D}} 100.7$ (c 1.06, CHCl_{3}) (92% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(9 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{d}, J=15.1 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{d}$, $J=15.1 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{s}), 7.08(1 \mathrm{H}, \mathrm{dt}, J=1.6$ and 7.6 Hz$), 7.29(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and 8.3 Hz$), 7.56(1 \mathrm{H}$, dd, $J=1.2$ and 7.9 Hz), $7.83(1 \mathrm{H}$, dd, $J=1.7$ and 8.0 Hz$) ;{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.9,29.4$, 48.6, 52.0, 74.8, 119.9, 127.4, 128.4, 128.7, 134.8, 144.0, 201.8; HRMS (FAB/m-NBA) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 331.0367$, found 331.0372. The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, i - PrOH in hexane); retention times: 17.2 min (major R enantiomer) and 20.8 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

4f
\boldsymbol{S}-tert-Butyl (R)-3-(4-Chlorophenyl)-3-hydroxybutanethioate (4f): $[\alpha]^{18}{ }_{\mathrm{D}} 23.5\left(c 1.09, \mathrm{CHCl}_{3}\right)(93 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(9 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{d}, J=$ $15.4 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{s}), 7.27-7.30(2 \mathrm{H}, \mathrm{m}), 7.35-7.38(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.5$, 30.1, 48.9, 55.0, 73.8, 126.2, 128.2, 132.6, 145.1, 201.2; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{~S} 286.0794$, found 286.0781. The ee value was determined by HPLC analysis using a Chiralpak AD-H column (1 $\mathrm{mL} / \mathrm{min}, 0.5 \%, i-\mathrm{PrOH}$ in hexane); retention times: 23.1 min (minor S-enantiomer) and 30.8 min (major R-enantiomer). The absolute stereochemistry was assumed by analogy.

4g
\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-(3-Chlorophenyl)-3-hydroxybutanethioate (4g): $\quad[\alpha]^{18} \mathrm{D} 26.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$ (95% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(9 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{d}$, $J=15.4 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{s}), 7.18-7.30(3 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{t}, J=1.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $29.4,30.0,49.0,54.9,73.8,122.9,125.2,127.0,129.4,134.1,148.6,201.2$; HRMS (EI) calcd for
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClO}_{2} \mathrm{~S} 286.0794$, found 286.0801 . The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, i - PrOH in hexane); retention times: 17.7 min (minor S enantiomer) and 22.6 min (major R-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-(4-Trifluoromethylphenyl)-3-hydroxybutanethioate (4h): [$\alpha]^{18}{ }_{\mathrm{D}} 28.7$ (c 1.15, CHCl_{3}) (92% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(9 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz})$, $3.06(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{s}), 7.55-7.60(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.4,30.1$, $49.0,54.8,74.0,124.2(\mathrm{q}, J=272 \mathrm{~Hz}), 125.1(\mathrm{q}, J=4 \mathrm{~Hz}), 125.2,129.1(\mathrm{q}, J=32 \mathrm{~Hz}), 150.5,201.2$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S} 320.1058$, found 320.1051. The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 20.4 min (minor S-enantiomer) and 23.0 min (major R-enantiomer). The absolute stereochemistry was assumed by analogy.

$4 i$
\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-(3-Trifluoromethylphenyl)-3-hydroxybutanethioate (4i): $\quad[\alpha]^{13}{ }_{\mathrm{D}} 20.4$ (c 1.01, CHCl_{3}) (94% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.32(9 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz})$, $3.05(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{s}), 7.44(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.49(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}$, br d, $J=7.7 \mathrm{~Hz}$), $7.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.3,30.0,48.9,54.9,73.9,121.7(\mathrm{q}, J$ $=4 \mathrm{~Hz}), 123.7(\mathrm{q}, J=4 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272 \mathrm{~Hz}), 128.2,128.6,130.4(\mathrm{q}, J=32 \mathrm{~Hz}), 147.6,201.2$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S} 320.1058$, found 320.1054 . The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 11.4 min (major R-enantiomer) and 14.6 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (R)-3-(4-Ethoxycarbonylphenyl)-3-hydroxybutanethioate (4j): $\quad[\alpha]^{21}{ }_{\mathrm{D}} 17.0$ (c 1.05, $\left.\mathrm{CHCl}_{3}\right)(94 \%$ ee $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(9 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.52(3 \mathrm{H}, \mathrm{s}), 2.90$
$(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 4.37(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{s}), 7.49-7.51(2 \mathrm{H}, \mathrm{m})$, $7.99-8.01(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,29.5,30.1,49.0,54.8,60.8,74.1,124.7,129.0$, 129.5, 151.5, 166.5, 201.2; HRMS (FAB/m-NBA) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right) 325.1474$, found 325.1466. The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}$, $4 \%, i-\mathrm{PrOH}$ in hexane); retention times: 17.0 min (minor S-enantiomer) and 18.6 min (major R enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (R)-3-Hydroxy-3-(4-nitrophenyl)butanethioate (4k): $[\alpha]^{18}{ }_{\mathrm{D}} 31.0\left(c 1.89, \mathrm{CHCl}_{3}\right)(98 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(9 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 2.92(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=$ $15.6 \mathrm{~Hz}), 4.52(1 \mathrm{H}, \mathrm{s}), 7.59-7.63(2 \mathrm{H}, \mathrm{m}), 8.17-8.20(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.4$, 30.1, 49.3, 54.5, 74.1, 123.4, 125.8, 146.9, 153.9, 201.1; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ 297.1035, found 297.1030. The ee value was determined by HPLC analysis using a Chiralcel OD column (1 $\mathrm{mL} / \mathrm{min}, 1 \%$, i-PrOH in hexane); retention times: 18.6 min (major R-enantiomer) and 29.9 min (minor S enantiomer). The absolute stereochemistry was assumed by analogy.

41
\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-Hydroxy-3-(4-methylphenyl)butanethioate (4l): [$\alpha]^{21}{ }_{\mathrm{D}} 17.4$ (c 1.00, CHCl_{3})(92\% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(9 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.88(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.04$ $(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 4.25(1 \mathrm{H}, \mathrm{s}), 7.13-7.15(2 \mathrm{H}, \mathrm{m}), 7.32-7.34(2 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,29.5,30.1,48.7,55.3,73.9,124.5,128.8,136.2,143.6,201.3$. HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ 266.1341, found 266.1340. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.1 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 17.2 min (major R-enantiomer) and 20.6 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (R)-3-Hydroxy-3-(4-methoxyphenyl)butanethioate (4m): $[\alpha]^{18}{ }_{\mathrm{D}} 20.2\left(c \quad 1.62, \mathrm{CHCl}_{3}\right)$ ($81 \% \mathrm{ee}$); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(9 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{d}$,
$J=15.3 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.25(1 \mathrm{H}, \mathrm{s}), 6.85-6.88(2 \mathrm{H}, \mathrm{m}), 7.34-7.37(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 29.5,30.2,48.7,55.2,55.4,73.8,113.4,125.8,138.8,158.3,201.4$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S} 282.1290$, found 282.1286. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 15.6 min (major R-enantiomer) and 19.1 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

4n
\boldsymbol{S}-tert-Butyl (R)-3-Hydroxy-3-(2-naphthyl)butanethioate (4n): $[\alpha]^{19}$ D $23.0\left(c 1.00, \mathrm{CHCl}_{3}\right)(97 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.32(9 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 2.98(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{d}, J=15.5$ $\mathrm{Hz}), 4.45(1 \mathrm{H}, \mathrm{s}), 7.44-7.49(2 \mathrm{H}, \mathrm{m}), 7.54(1 \mathrm{H}, \mathrm{dd}, J=1.8$ and 8.6 Hz$), 7.80-7.86(3 \mathrm{H}, \mathrm{m}), 7.94(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.5,30.1,48.9,55.1,74.3,123.2,123.3,125.7,126.0,127.4,127.9$, 128.2, 132.3, 133.1, 143.9, 201.4; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S} 302.1340$, found 302.1349. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.1 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 7.2 min (major R-enantiomer) and 13.9 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

40
\boldsymbol{S}-tert-Butyl (R)-3-Hydroxy-(2-thienyl)butanethioate (40): $[\alpha]^{18}{ }_{\mathrm{D}} 11.7$ (c 1.32, CHCl_{3}) (55\% ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40(9 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s}), 2.91(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz})$, $4.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and 3.6 Hz$), 6.92(1 \mathrm{H}, \mathrm{dd}, J=3.6$ and 5.0 Hz$), 7.17(1 \mathrm{H}, \mathrm{dd}, J=1.2$ and 5.0 Hz) ${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.5,30.8,48.9,55.7,73.2,122.2,123.9,126.6,151.8$, 201.0; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2} 258.0748$, found 258.0754. The ee value was determined by HPLC analysis using a Chiralpak AD-H column ($1 \mathrm{~mL} / \mathrm{min}, 0.5 \%, i$-PrOH in hexane); retention times: 11.6 min (major R-enantiomer) and 13.1 min (minor S-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (S)-3-Hydroxy-3-methyl-5-phenylpentanethioate (4p) $[\alpha]^{18}{ }_{\mathrm{D}}-2.6\left(c 1.48, \mathrm{CHCl}_{3}\right)(52 \%$ ee); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.80-1.86(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{d}, J=15.1$ $\mathrm{Hz}), 2.70-2.74(3 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{s}), 7.18-7.22(3 \mathrm{H}, \mathrm{m}), 7.27-7.30(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz , CDCl_{3}) $\delta 26.7,29.6,30.3,43.9,48.7,53.7,72.2,125.7,128.26,128.33,142.2,201.4$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ 280.1497, found 280.1490. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 1 \%$, $i-\mathrm{PrOH}$ in hexane); retention times: 14.2 min (major S-enantiomer) and 16.8 min (minor R-enantiomer). The absolute stereochemistry was assumed by analogy.

\boldsymbol{S}-tert-Butyl (\boldsymbol{R})-3-Hydroxy-3-phenylpentanethioate (4q): $[\alpha]^{18}{ }_{\mathrm{D}} 16.3$ (c 1.61, CHCl_{3}) (for $66 \% \mathrm{ee}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.76(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.32(9 \mathrm{H}, \mathrm{s}), 1.81(2 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{d}, J=15.3$ $\mathrm{Hz}), 3.06(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{s}), 7.22(1 \mathrm{H}, \mathrm{m}), 7.30-7.33(2 \mathrm{H}, \mathrm{m}), 7.37-7.39(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) $\delta 7.7,29.5,35.5,48.7,53.9,76.7,125.3,126.6,127.9,144.7,201.7$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ 266.1341, found 266.1347. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 0.1 \%, i-\mathrm{PrOH}$ in hexane); retention times: 12.6 min (major R enantiomer) and 14.2 min (minor S-enantiomer). The absolute stereochemistry was determined by correlation (vide infra).

Absolute Structure Determination of $\mathbf{4 b}$ and $\mathbf{4 q}$. Treatment of $\mathbf{4 b}$ (91% ee) with NBS in methanol and dichloromethane ${ }^{6}$ gave 11a (90% ee) in 80% yield. The absolute configuration of $\mathbf{4 b}$ was determined to be R based on the specific rotation of methyl ester 11a. The R stereochemistry of $\mathbf{4 q}$ was established also by transforming it to methyl ester 11b.

O-Methyl (R)-3-Hydroxy-3-phenylbutanoate (11a): To a solution of $\mathbf{4 b}$ ($108 \mathrm{mg}, 0.428 \mathrm{mmol}, 91 \%$ ee) and methanol ($0.47 \mathrm{~mL}, 12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ at room temperature was added N bromosuccinimide ($91.3 \mathrm{mg}, 0.513 \mathrm{mmol}$). After being stirred for 1 h at room temperature, the mixture

[^2]was extracted twice with ethyl acetate. The mixture was poured into aqueous NaHCO_{3} and extracted three times with ethyl acetate. The organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification of the residue by flash chromatography ($20-50 \%$ ethyl acetate in hexane) gave $66.3 \mathrm{mg}(80 \%$ yield) of $(R)-8 \mathbf{8}: \quad[\alpha]^{21}{ }_{\mathrm{D}} 6.5(c 1.49, \mathrm{EtOH})(90 \% \mathrm{ee}), \mathrm{lit}^{7}{ }^{7}[\alpha]^{24}{ }_{\mathrm{D}}-5.6$ (c 1.09, EtOH) for $83 \% \mathrm{ee}, S$ enantiomer, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55(3 \mathrm{H}, \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{d}, J=16.0$ $\mathrm{Hz}), 3.60(3 \mathrm{H}, \mathrm{s}), 4.33\left(1 \mathrm{H}, \mathrm{br}\right.$ s), $7.24(1 \mathrm{H}, \mathrm{m}), 7.32-7.35(2 \mathrm{H}, \mathrm{m}), 7.44-7.46(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $(125.8$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.5,46.1,51.6,72.6,124.3,126.8,128.2,146.8,173.0$. The ee value was determined by HPLC analysis using a Chiralcel OD column ($1 \mathrm{~mL} / \mathrm{min}, 1 \%, i-\mathrm{PrOH}$ in hexane); retention times: 13.5 \min (major R-enantiomer) and 15.6 min (minor S-enantiomer).
O-Methyl (R)-3-Hydroxy-3-phenylpentanoate (11b): The compound was prepared in 52% yield from $\mathbf{4 q}(66 \%$ ee $)$ according to a procedure similar to that described above. $(R)-\mathbf{8 b}:[\alpha]^{21}{ }_{\mathrm{D}}-0.97(c 1.03$, $\mathrm{EtOH})(65 \% \mathrm{ee})$, lit. ${ }^{8}[\alpha]^{14} \mathrm{D} 1.64(c 0.85, \mathrm{EtOH})$ for 77% ee, S enantiomer; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.76(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.77-1.85(2 \mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 3.57$ $(3 \mathrm{H}, \mathrm{s}), 4.28(3 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{m}), 7.31-7.34(2 \mathrm{H}, \mathrm{m}), 7.38-7.40(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.8,35.8,44.7,51.7,75.1,125.1,126.7,128.1,145.1,173.4$. The ee value was determined by HPLC analysis using a Chiralcel OJ column ($1 \mathrm{~mL} / \mathrm{min}, 0.7 \% i$ - PrOH in hexane); retention times: 13.8 \min (major R-enantiomer) and 16.5 min (minor S-enantiomer).

[^3]

2
E690E $\triangleright-\cdots$

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 4 a

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 5

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 5

udd

$100^{\circ} 8 \square$
GIV 85
$\left.\begin{array}{l}23592 \\ 10192 \\ 100 \angle 1 \\ 992[1\end{array}\right]$

ごロ8•02た
595 9己に
SDO IEr ———

O5190．

L9E 86L

$\stackrel{?}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4b

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4c

w3／zH 9	9blos logr	WJZH
wว／wdd ε	£9666＇ı	WJWdd
2 H 8	$88 \cdot \mathrm{sbre}$－	2f
wdd	8bか＇61－	d2 \ddagger
	52． $885 / 2$	「
wod	ロロE＇612	dit
แว 0	O9＇21	${ }^{1}$
－${ }_{\text {SJazzmened }}$		
${ }^{-1}$		Jd
	0	я9
	$00 \cdot 1$	87
	0	855
	w	MOM
2 HW	ı56＜lsc ¢ ¢	${ }^{15}$
	99LてE	Is
s．ałzwe jed butssajoud－ z」 $^{\text {d }}$		
2 HW 5	g0002er 005	20ıs
	059	Ex7d
9 P 0	05＇9	टाาd
9 p	00＇9－	27d
Jasn 0	$00 \cdot 005$	20d？
	H5	2Jn
		टэษddว
2 HN	Ev980＜L＇¢	20．1s
	OE＇ 2	17d
jasn	$00 \cdot 0$	5d
	Ј¢	โJn
jas 0	00000s 10.0	химЈ\％
jas 0	$00000000 \cdot 0$	153\％JW
	000000e0 0	${ }^{\text {Lip }}$
Jas 0	$00000000^{\circ} 0$	！
	0.862	31
Jasn ${ }_{\text {Jasm }}$	$00 \cdot 9$	30
	Og9 91	${ }_{40}$
	「6p98	9\％
Jas		Or
z z	2ze8s•0	smaid
2 H 6	620． 0800 E	HMS
	己	50^{\prime}
	8 ¢！	SN
${ }_{\text {E1J0］}}^{\text {gecse }}$		Ingatos
		01
0ع606z 		90bdind
		ОН80¢d
00gxjo		wnulsni
	90.61	әш！ 1
\ddagger		OnJobd
J8d－0pi		Ondx ${ }^{\text {a }}$
		IWVN
sjazawe jed exec		7บa．anj

\square

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4d

\because

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 f

${ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of 4 f

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 4 g

$E D D 62$
$G \angle 662$

\checkmark

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 4 h

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 k

G8 9t
ELE EG!
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 I

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 4I

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 n

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 40

${ }^{13} \mathrm{C}$ NMR (125.8 MHz, CDCl_{3}) Spectrum of 40

gatyl-…
1
हto In? - -
1

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 p

4p

옹․․․

 $\underset{\substack{297.5 \mathrm{~K} \\ \text { 1.0000000 } \\ \text { sec } \\ \text { sec } \\ \text {.090000 } \\ \text { sec }}}{ }$
 =x $=\mathrm{ze}=$

KCHKK

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 4 q

\because

V


```
OL82E \triangleright-\cdots.....
```


${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Specturm of 11b

[^0]: ${ }^{1}$ Percec, V.; Bera, T. K.; De, B. B.; Sanai, Y.; Smith, J.; Holerca, M. N.; Barboiu, B. J. Org. Chem. 2001, 66, 2104-2117.
 ${ }^{2}$ Wang, X.; Adachi, S.; Iwai, H.; Takatsuki, H.; Fujita, K.; Kubo, M.; Oku, A.; Harada, T. J. Org. Chem. 2003, 68, 1004610057.
 ${ }^{3}$ Kita, Y.; Segawa, J.; Haruta, J.; Yasuda, H.; Tamura, Y. J. Chem. Soc., Perkin Trans. 1 1982, 1099-1104.
 ${ }^{4}$ Harada, T.; Adachi, S.; Wang, X. Org. Lett. 2004, 6, 4877-4879.

[^1]: ${ }^{5}$ Mathre, D. J.; Thompson, A. S.; Douglas, A. W.; Hoogsteen, K.; Carroll, J. D.; Corley, E. G.; Grabowski, E. J. J. J. Org. Chem. 1993, 58, 2880-2888.

[^2]: ${ }^{6}$ Minato, H.; Kodama, H.; Miura, T.; Kobayashi, M. Chem. Lett. 1977, 413-416.

[^3]: ${ }^{7}$ Denmark, S. E.; Fan, Y.; Eastgate, M. D. J. Org. Chem. 2005, 70, 5235-5248.
 ${ }^{8}$ Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7164-7165.

