SUPPORTING INFORMATION

for the
communication entitled

Total Synthesis of (+)-Lepadin F.

authored by

Gang Li, Richard P. Hsung*, Brian W. Slafer, and Irina K. Sagamanova

Division of Pharmaceutical Sciences and Department of Chemistry 7111 Rennebohm Hall, 777 Highland Avenue University of Wisconsin, Madison, WI 53705

EXPERIMENTAL SECTION

Reagents were used as purchased (Aldrich, Acros, Alfa Aesar, TCI), except where noted. Chromatographic separations were performed using Bodman $60 \AA \mathrm{SiO}_{2} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Varian VI-400 and VI-500 spectrometers using CDCl_{3} (except where noted) with TMS or residual solvent as standard. Melting points were determined using a Laboratory Devices MEL-TEMP and are uncorrected/calibrated. Infrared spectra were obtained using a Bruker Equinox 55 FTIR Spectrometer. TLC analysis was performed using 254 nm polyester-backed plates ($60 \AA, 250 \mu \mathrm{~m}$) and visualized using UV, KMnO 4 stains. Low-resolution mass spectra were obtained using an Agilent 1100 series LS/MSD and are APCI. High-resolution mass spectral analyses performed at University of Wisconsin School of Pharmacy Mass Spectrometry Laboratory. X-Ray analysis performed at University of Minnesota Department of Chemistry X-Ray facility. All spectral data obtained for new compounds are reported here.

Synthesis of the Alcohol 6.

6
To a flame dried flask under N_{2} was added $\mathbf{5}(0.30 \mathrm{~g}, 0.59 \mathrm{mmol})$ and anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solution was cooled to $-15^{\circ} \mathrm{C}$, then triethylsilane ($3.00 \mathrm{~mL}, 18.6 \mathrm{mmol}$) and trifluoroacetic acid $(0.55 \mathrm{~mL}$, 7.11 mmol) were added dropwise. The resulting solution was sealed and kept in the freezer for 48 h at -20 to $-10{ }^{\circ} \mathrm{C}$, and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and worked-up with sat aq NaHCO_{3} until basic. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: EtOAc) gave $6(0.23 \mathrm{~g}, 80 \%)$ as a white solid.

6: $R_{f}=0.29[100 \% \mathrm{EtOAc}] ; \mathrm{mp} 206-208{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=+406.0\left(c 0.29, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR (500 MHz , Toluene- d_{8}) $\delta-0.38(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 9 \mathrm{H})$, 1.20 (dtd, $1 \mathrm{H}, J=4.5,9.0,18.0 \mathrm{~Hz}$), 1.46 (ddd, $1 \mathrm{H}, \mathrm{J}=6.5,11.5,18.0 \mathrm{~Hz}$), 1.79 (dt, $1 \mathrm{H}, J=5.5,15.5 \mathrm{~Hz}$), $1.87-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dd}, 1 \mathrm{H}, J=4.5,17.5 \mathrm{~Hz}), 2.80(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 3.70(\mathrm{brd}$, $1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.75(\mathrm{brq}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.07-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.14(\mathrm{q}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.71(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , Toluene- d_{8},) $\delta-4.7,-3.5,17.8,18.5,22.3,26.3,26.6,27.7,36.7,54.6,66.9,67.8,74.6,104.5,128.6,129.4$, $131.5,139.1,143.8,156.9,194.4$; IR (thin film) $\mathrm{cm}^{-1} 3353 \mathrm{brs}, 3063 \mathrm{w}, 2930 \mathrm{~s}, 2889 \mathrm{~m}, 2857 \mathrm{~s}, 1591 \mathrm{~m}$,
$1538 \mathrm{~m}, 1436 \mathrm{~s}, 857 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) 514.3 (19) ($\mathrm{M}+\mathrm{Na})^{+}, 492.3$ (100) $(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}^{+} 492.2928$, found 492.2932.

Synthesis of Vinylogous Amide 7.

To a solution of $\mathbf{6}(1.08 \mathrm{~g}, 2.20 \mathrm{mmol})$ in $\mathrm{MeO}(15 \mathrm{~mL})$, was added TFA $(0.19 \mathrm{~mL}, 2.42 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.31 \mathrm{~g}, 20 \% \mathrm{Pd}, 50 \%$ wet $)$. The mixture was placed in a Lab-Crest ${ }^{\circledR}$ pressure reaction vessel at 15 psi for 2 d . When the reaction was completed (TLC with $9: 1 \mathrm{MeOH} / \mathrm{EtOAc}$ as eluent), the reaction was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue using silica gel flash column chromatography (isocratic eluent: 5:1 EtOAc/i-PrOH) provided $7(0.39 \mathrm{~g}, 98 \%)$ as a \tan solid.

7: $R_{f}=0.17[10 \% \mathrm{MeOH} / \mathrm{EtOAc}] ;$ mp 156-157 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 1.19(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.82-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.0,16.0 \mathrm{~Hz}), 2.28(\mathrm{dd}, 2 \mathrm{H}, J=5.5,7.0 \mathrm{~Hz}), 2.34-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=5.0,16.0 \mathrm{~Hz}), 3.18(\mathrm{tt}, 1 \mathrm{H}$, $J=6.5,6.5 \mathrm{~Hz}$), $3.54(\mathrm{dq}, 1 \mathrm{H}, J=5.0,6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , Methanol $-d_{4}$) $\delta 19.2,22.9,27.7,29.5$, $36.8,54.0,69.3,102.1,163.9,196.4$; IR (thin film) $\mathrm{cm}^{-1} 3256 \mathrm{brs}, 3119 \mathrm{brs}, 2925 \mathrm{~s}, 2854 \mathrm{~m}, 1505 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $204.1(100)(\mathrm{M}+\mathrm{Na})^{+}$, $197.0(26), 182.1(10)(\mathrm{M}+\mathrm{H})^{+} ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}^{+}$204.1000, found 204.0991.

Synthesis of Diol 8.

8

To a solution of $\mathbf{6}(1.72 \mathrm{~g}, 3.51 \mathrm{mmol})$ in anhyd THF $(50 \mathrm{~mL})$ was added TBAF (1.0 M in THF, 3.51 $\mathrm{mL}, 3.51 \mathrm{mmol}$). The solution was stirred for 10 min at rt , and concentrated reduced under pressure. Purification of the crude residue using silica gel flash column chromatography (isocratic eluent: EtOAc) gave $8(1.22 \mathrm{~g}, 92 \%)$ as a white solid.

8: $R_{f}=0.45\left[10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ; \mathrm{mp} 113-115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=+456.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR (500 MHz , Toluene- d_{8}) $\delta 0.17(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.64-1.76(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 3 \mathrm{H})$, $2.46(\mathrm{dt}, 1 \mathrm{H}, J=4.5,15.5 \mathrm{~Hz}), 2.60(\mathrm{dt}, 1 \mathrm{H}, J=6.5,16.5 \mathrm{~Hz}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=17.5 \mathrm{~Hz}), 3.94(\mathrm{brs}, 1 \mathrm{H}), 4.20$ (dt, 1H, $J=3.0,7.0) 5.28(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}) ; 6.90-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=$
$7.5 \mathrm{~Hz}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 7.57(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , Toluene- d_{8}) $\delta 17.6,22.6,25.7,28.0,36.2,54.0,65.9,66.6,77.3,106.0,126.6,127.2$, $128.5,128.6,132.6,136.3,142.2,157.6,195.5$.

Synthesis of Amide 9.

To a solution of $\mathbf{7}(393.0 \mathrm{mg}, 2.17 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{3} \mathrm{CN}(60 \mathrm{~mL})$ was added 2,6-lutidine (0.76 $\mathrm{mL}, 6.50 \mathrm{mmol})$. The resulting solution was then cooled to $0^{\circ} \mathrm{C}$ and $\operatorname{TBSOTf}(1.5 \mathrm{~mL}, 6.50 \mathrm{mmol})$ was added dropwise via syringe. The solution was stirred for 12 h at rt , and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with water. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with $\mathrm{HCl} 1.5 \%, \mathrm{H}_{2} \mathrm{O}$, sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 50-100\% EtOAc/Hexanes) afforded the pure silyl ether amide (640.0 mg , 100%), which was used for the following step.

To a solution of the above silyl ether amide ($29.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ were added pyridine ($0.024 \mathrm{~mL}, 0.30 \mathrm{mmol}$), and DMAP $(2.00 \mathrm{mg}, 0.016 \mathrm{mmol})$. The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and trifluoroacetic anhydride ($31.5 \mathrm{mg}, 0.021 \mathrm{~mL}, 0.15 \mathrm{mmol}$) were added dropwise via syringe. The solution was stirred for 12 h at rt , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with sat. NaHCO_{3}. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: $10-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afforded 9 ($39.0 \mathrm{mg}, 100 \%$).

$$
\text { 9: } R_{f}=0.45[50 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.77
$$ $(\mathrm{s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.82-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, 1 \mathrm{H}, J=4.8,9.2,13.2 \mathrm{~Hz}), 2.13-2.21(\mathrm{~m}, 1 \mathrm{H})$, 2.25 (ddt, $1 \mathrm{H}, J=2.4,4.0,18.8 \mathrm{~Hz}$), $2.38(\mathrm{~d}, 1 \mathrm{H}, J=18.8 \mathrm{~Hz}$), $2.46(\mathrm{dd}, 2 \mathrm{H}, J=4.8,8.4 \mathrm{~Hz}$), 3.26 (dddt, $1 \mathrm{H}, J=2.8,4.4,11.2,17.2 \mathrm{~Hz}), 3.94-3.99(\mathrm{~m}, 2 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-4.8,-4.7,15.2,18.0$, 23.1, 25.7, 25.9, 29.4, 37.7, $55.6(\mathrm{q}, J=2.3 \mathrm{~Hz}), 66.7,116.4(\mathrm{q}, J=287.2 \mathrm{~Hz}), 121.8,151.4,157.6(\mathrm{q}, J=$ 36.3 Hz), 198.6; IR (neat) $\mathrm{cm}^{-1} 2952 \mathrm{~m}, 1709 \mathrm{~s}, 1665 \mathrm{~s}, 1419 \mathrm{~m}, 1173 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $392.1(100)(\mathrm{M}+\mathrm{H})^{+}, 296.2(35)$.

Synthesis of Alcohol 10.

To a solution of $9(11.0 \mathrm{mg}, 0.028 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{PtO}_{2}(6.00 \mathrm{mg})$. The mixture was placed in a high-pressure bomb at 200 psi for 4 h at rt . When the reaction was completed (TLC), the reaction solution was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue using silica gel flash column chromatography (gradient eluent: $10-50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) provided 10 ($10.0 \mathrm{mg}, \mathbf{9 0 \%}$).

10: $R_{f}=0.52\left[50 \%\right.$ EtOAc/Hexanes]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.84$ $(\mathrm{s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.8), 1.27(\mathrm{~d}, 1 \mathrm{H}, J=9.2), 1.49-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.85$ (dddd, 1 H , $J=2.4,5.2,10.8,16.0$), 1.98-2.05 (m, 1H), 2.10 (brd, 1H, $J=18.0$), 2.48 (d, 1H, $J=18.8$), 3.06 (brs, 1 H), 3.84-3.98 (m, 2H), $4.03(\mathrm{dd}, 1 \mathrm{H}, J=6.4,14.8) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-4.7,15.0,18.2,20.3,25.8$, $25.9,27.8,30.2,32.9,55.1,68.4,69.7,116.9\left(\mathrm{q}, J=288.9 \mathrm{~Hz}\right.$), 124.5, 131.8; IR (neat) $\mathrm{cm}^{-1} 3300 \mathrm{brw}$, 2915s, 2830m, 1750m; mass spectrum (APCI): m/e (\% relative intensity) $376.2(100)\left(\mathrm{M}+\mathrm{H}_{-} \mathrm{H}_{2} \mathrm{O}\right)^{+}$.

Synthesis of Amide 11.

11
To a vial containing $9(48.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{PtO}_{2}(56.0 \mathrm{mg})$. The mixture was placed in a high-pressure bomb at 200 psi at rt . When the reaction was completed (TLC), the reaction solution was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated reduced pressure. Purification of the crude residue using silica gel flash column chromatography provided $\mathbf{1 1}$ as an over hydrogenated product.

11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.8)$, $1.40-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, 1 \mathrm{H}, J=18.8), 1.97-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~d}$, $1 \mathrm{H}, J=18.0$), $2.99(\mathrm{brm}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.7,15.1,18.2,22.4,23.4$, $25.9,27.7,29.9,33.8,55.3,68.5,117.0\left(\mathrm{q}, J=287.1 \mathrm{~Hz}\right.$), 121.8, 128.2, 153.8; IR (neat) $\mathrm{cm}^{-1} 2935 \mathrm{~m}$, $2861 \mathrm{~m}, 1740 \mathrm{~m}, 1703 \mathrm{~s}, 1366 \mathrm{~m}, 834 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) 378.2 (70) $(\mathrm{M}+\mathrm{H})^{+}, 246.1$ (100).

Synthesis of Acetate 15.

15

To a solution of $6(401.0 \mathrm{mg}, 0.813 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under N_{2} was added $\mathrm{Et}_{3} \mathrm{~N}$ $(0.34 \mathrm{~mL}, 2.44 \mathrm{mmol})$ and DMAP $(10.0 \mathrm{mg}, 0.080 \mathrm{mmol})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and acetic anhydride ($0.16 \mathrm{~mL}, 1.22 \mathrm{mmol}$) was added dropwise via syringe. The solution was stirred for 12 h at rt , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with sat aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 50-100\% EtOAc/Hexanes) gave 15 ($412.0 \mathrm{mg}, \mathbf{9 5 \%}$) as a white foam.

15: $R_{f}=0.50[100 \% \mathrm{EtOAc}] ;[\alpha]_{\mathrm{D}}{ }^{23}=+302.4\left(c 0.19, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.41(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.65(\mathrm{~s}, 9 \mathrm{H})$, $1.25(\mathrm{dtd}, 1 \mathrm{H}, J=4.5,9.0,18.0 \mathrm{~Hz}), 1.36-1.48(\mathrm{brm}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=6.5,11.5,18.0 \mathrm{~Hz}), 2.03-2.14$ $(\mathrm{m}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dd}, 1 \mathrm{H}, J=5.5,18.5 \mathrm{~Hz}), 2.59(\mathrm{~d}, 1 \mathrm{H}, J=18.5 \mathrm{~Hz}), 3.88(\mathrm{q}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $4.98(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.01(\mathrm{dd}, 1 \mathrm{H}, J=2.5,5.0 \mathrm{~Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 7.28-7.38(\mathrm{~m}, 8 \mathrm{H}), 7.54$ (dd, 2H, $J=1.5,7.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1,-3.7,17.4,17.9,21.4,21.9,22.8,25.7,27.1$, $35.8,52.0,68.7,69.9,73.6,103.9,127,7,128.0,128.2,128.3,128.4,131.0,137.0,143.6,158.3,170.4$, 195.5; IR (neat) $\mathrm{cm}^{-1} 3035 \mathrm{w}, 2932 \mathrm{~m}, 2859 \mathrm{~m}, 1738 \mathrm{~s}, 1618 \mathrm{~m}, 1558 \mathrm{~s}, 857 \mathrm{~m}$; mass spectrum (APCI): m/e ($\%$ relative intensity) 534.3 (100) $(\mathrm{M}+\mathrm{H})^{+}$, 492.3(20), 474.3 (20); HRMS (MALDI): m/e calcd for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}^{+} 534.3034$, found 534.3043.

Synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Ester 16.

To a solution of $15(762.5 \mathrm{mg}, 1.43 \mathrm{mmol})$ in anhyd benzene (15 mL) was added Lawesson's reagent ($289.0 \mathrm{mg}, 0.715 \mathrm{mmol}$) at rt . When the reaction was completed as indicated by TLC analysis, the solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{C1}_{2}(20 \mathrm{~mL})$, which was then treated with 1% aq $\mathrm{NaOH}(8 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$,
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via $\mathrm{Al}_{2} \mathrm{O}_{3}$ gel flash column chromatography (gradient eluent: 10-50\% EtOAc/Hexanes) gave $\mathbf{S 1}(713.0 \mathrm{mg}, 91 \%$) as yellow solid.

S1: $R_{f}=0.40[20 \% \mathrm{EtOAc} / \mathrm{Hexanes}], 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-0.41(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, $0.25(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.66(\mathrm{~s}, 9 \mathrm{H}), 1.12-1.24(\mathrm{~m} 1 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, $2.57-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, 1 \mathrm{H}, J=6.0,18.8 \mathrm{~Hz}), 2.83(\mathrm{dt}, 1 \mathrm{H}, J=4.8,16.8 \mathrm{~Hz}), 3.08(\mathrm{~d}, 1 \mathrm{H}, J=18.4 \mathrm{~Hz})$, 3.99 (brq, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}$), $5.00(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.07-5.13(\mathrm{brm}, 1 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.28-7.42$ $(\mathrm{m}, 8 \mathrm{H}), 7.58-7.63(\mathrm{dd}, 2 \mathrm{H}, J=1.5,7.0 \mathrm{~Hz})$.

To a solution of $\mathbf{S 1}(713.0 \mathrm{mg}, 1.30 \mathrm{mmol})$ in anhyd THF (10 mL) was added methyl bromoacetate $(269.0 \mathrm{mg}, 0.16 \mathrm{~mL}, 1.78 \mathrm{mmol}$) and the solution was stirred at rt for 11 h . Then the volatiles were removed under reduced pressure. The residue was then dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$, and triphenylphosphine (689.0 $\mathrm{mg}, 2.63 \mathrm{mmol})$ and triethylamine $(0.27 \mathrm{~mL}, 1.95 \mathrm{mmol})$ were added at rt . The solution was refluxed for 3 h under N_{2}, and then the volatiles were removed under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-20\% EtOAc/Hexanes) gave 16 (538.0 mg , 70%) as a yellow foam.

16: $R_{f}=0.30[20 \% \mathrm{EtOAc} /$ Hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+499.4\left(c 0.16, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-0.42(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.65(\mathrm{~s}, 9 \mathrm{H})$, $1.00-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{dd}, 1 \mathrm{H}, J=6.0,18.0 \mathrm{~Hz})$, 2.47-2.58 (m, 1H), $3.02(\mathrm{dt}, 1 \mathrm{H}, J=4.8,15.6 \mathrm{~Hz}$), $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{brq}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4,96-5.00(\mathrm{~m}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.56-7.60(\mathrm{dd}, 2 \mathrm{H}$, $J=2.0,9.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta-4.9,-3.6,16.9,18.0,21.8,21.9,25.7,25.8,26.4,27.7$, $50.4,51.4,68.2,70.7,74.0,99.7,100.0,127.6,127.7,128.0,128.1,128.2,131.0,137.8,143.9,148.9$, $158.7,168.8,170.5$; IR (neat) $\mathrm{cm}^{-1} 2933 \mathrm{~m}, 2887 \mathrm{~m}, 2859 \mathrm{~m}, 1739 \mathrm{~m}, 1699 \mathrm{~m}, 1544 \mathrm{~s}, 1433 \mathrm{~m}, 839 \mathrm{~m}$; mass spectrum (APCI): m/e (\% relative intensity) 590.4 (100) (M+H)+, 558.3 (10); HRMS (MALDI): m/e calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}^{+} 590.3296$, found 590.3305 .

Synthesis of Ester 17.

To a solution of $16(29.4 \mathrm{mg}, 0.050 \mathrm{mmol})$ in anhyd $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added $\mathrm{PtO}_{2}(14.0 \mathrm{mg}$, $80 \% \mathrm{Pt})$. The mixture was placed in a Lab-Crest ${ }^{\circledR}$ pressure reaction vessel at 15 psi for 30 min . When the reaction was completed as indicated by TLC ($20 \% \mathrm{EtOAc} /$ Hexanes) or use LCMS, the reaction was filtered
through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: $20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afforded $\mathbf{1 7}$ and its diastereomer at C5 ($26.9 \mathrm{mg}, 91 \%$) as colorless oil, which were further separated by MPLC (median pressure liquid chromatography).

17: $R_{f}=0.35[20 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;[\alpha]_{\mathrm{D}}{ }^{23}=+27.5\left(c 0.16, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.42(\mathrm{~s}, 3 \mathrm{H}),-0.12-0.00(\mathrm{~m}, 1 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H}), 0.56(\mathrm{~s}, 9 \mathrm{H})$, $0.82-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.00(\mathrm{qt}, 1 \mathrm{H}, J=3.5,12.5 \mathrm{~Hz}), 1.18-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{dtt}, 1 \mathrm{H}$, $J=2.5,12.5 \mathrm{~Hz}), 1.53(\mathrm{dtt}, 1 \mathrm{H}, J=5.0,12.0 \mathrm{~Hz}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{dd}$, $1 \mathrm{H}, J=5.0,12.5 \mathrm{~Hz}), 2.87(\mathrm{dq}, 1 \mathrm{H}, J=6.5,9.5 \mathrm{~Hz}), 2.94(\mathrm{dt}, 1 \mathrm{H}, J=3.5,12.0 \mathrm{~Hz}), 3.51(\mathrm{ddd}, 1 \mathrm{H}, J=5.5$, $10.0,10.5 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 5.11\left((\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.18-7.32(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{1} \mathrm{H}\right.$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-0.25(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}), 0.08-0.14(\mathrm{~m}, 1 \mathrm{H}), 0.67(\mathrm{qd}, 1 \mathrm{H}, J=4.0,13.0 \mathrm{~Hz})$, $0.76(\mathrm{~s}, 9 \mathrm{H}), 0.89-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.16-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{dq}, 1 \mathrm{H}, J=3.0,13.0 \mathrm{~Hz})$, $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{dt}, 1 \mathrm{H}, J=5.0,12.5 \mathrm{~Hz}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, 1 \mathrm{H}, J=8.0,15.0 \mathrm{~Hz}), 1.98(\mathrm{dd}, 1 \mathrm{H}$, $J=7.0,15.0 \mathrm{~Hz}), 2.14-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{ddd}, 1 \mathrm{H}, J=5.5,9.0,10.5 \mathrm{~Hz})$, $4.43(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 5.25((\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.10-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.30(\mathrm{t}, 2 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.45(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.0,-4.0$, $16.4,17.9,19.7,21.4,24.9,25.1,25.7,26.5,37.8,38.4,38.5,51.1,51.6,56.1,65.8,75.1,76.8,126.6,127.6$, $127.7,128.0,128.1,128.9,141.8,144.6,170.3,173.7$; IR (neat) $\mathrm{cm}^{-1} 3063 \mathrm{w}, 3028 \mathrm{~m}, 2855 \mathrm{~m}, 1732 \mathrm{~s}, 834 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 594.4 (95) (M+H) ${ }^{+}$, 534.3 (100); HRMS (MALDI): m/e calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{5} \mathrm{Si}^{+} 594.3609$, found 594.3586.

Synthesis of Alcohol 18.

To a solution of $\mathbf{1 7}(40.5 \mathrm{mg}, 0.068 \mathrm{mmol})$ and di-tert-butyl dicarbonate $(60.0 \mathrm{mg}, 0.275 \mathrm{mmol})$ in anhyd methanol (2 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(38.4 \mathrm{mg}, 20 \% \mathrm{Pd}, 50 \%$ wet $)$. The mixture was placed in a Lab-Crest ${ }^{\circledR}$ pressure reaction vessel at 60 psi for 24 h . When the reaction was completed as indicated by TLC ($20 \% \mathrm{EtOAc} /$ Hexanes) , the reaction was filtered through Celite ${ }^{\mathrm{TM}}$ after a few drops of NEt_{3} were added and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 10-30\% EtOAc/Hexanes)) afforded $\mathbf{S 2}$ ($21.4 \mathrm{mg}, 82 \%$) as a colorless oil. S2: $R_{f}=0.15[20 \% \mathrm{EtOAc} / \mathrm{Hexanes}],{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.15(\mathrm{qd}, 1 \mathrm{H}, J=3.5,13.0 \mathrm{~Hz}$), 1.23 $(\mathrm{d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.29-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.54(\mathrm{~m}, 11 \mathrm{H}), 1.54-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{dt}, 1 \mathrm{H}, J=3.0,13.5$
$\mathrm{Hz}), 1.84$ (brdd, $1 \mathrm{H}, J=2.5,13.0 \mathrm{~Hz}), 2.02-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{brd}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 2.26-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dq}, 1 \mathrm{H}, J=4.5,12.0 \mathrm{~Hz}), 3.96(\mathrm{qd}, 1 \mathrm{H}, J=2.5,7.0 \mathrm{~Hz}), 4.98(\mathrm{dt}, 1 \mathrm{H}, J=2.5$, 8.5 Hz); m/e (\% relative intensity) 284.2 (100) (M+H-Boc) ${ }^{+}$, 224.1 (15).

To a solution of $\mathbf{S 2}(9.10 \mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.60 \mathrm{mg}, 0.018$ $\mathrm{mmol})$. The reaction solution was then sealed and heated at $50^{\circ} \mathrm{C}$ for overnight. After which, the reaction was quenched with sat aq $\mathrm{NaCl}(0.5 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the mixture and the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: 50\% EtOAc/Hexanes)gave $\mathbf{1 8}$ ($8.20 \mathrm{mg}, 97 \%$) as colorless oil.

18: $R_{f}=0.26[50 \% \mathrm{EtOAc} /$ Hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+16.7\left(c 0.12, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{qd}, 1 \mathrm{H}, J=3.5,13.0 \mathrm{~Hz}), 1.26(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.33(\mathrm{qt}, 1 \mathrm{H}$, $J=3.5,13.0 \mathrm{~Hz}), 1.40-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{qd}, 1 \mathrm{H}, J=$ $4.0,12.5 \mathrm{~Hz}), 1.91(\mathrm{dt}, 1 \mathrm{H}, J=7.0,14.5 \mathrm{~Hz}), 2.08(\mathrm{ttd}, 1 \mathrm{H}, J=4.0,7.5,7.5 \mathrm{~Hz}), 2.18-2.25(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{qd}, 1 \mathrm{H}, J=4.0,6.5 \mathrm{~Hz}), 3.85(\mathrm{dt}, 1 \mathrm{H}, J=4.5,12.0 \mathrm{~Hz}), 3.90(\mathrm{dt}, 1 \mathrm{H}, J=4.0,7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7,24.7,25.1,25.9,26.3,28.7,34.1,37.4,38.4,51.8,53.8,55.4,70.2,79.6,155.9$, 173.3; IR (neat) $\mathrm{cm}^{-1} 3450 \mathrm{brs}, 2972 \mathrm{~m}, 2927 \mathrm{~s}, 1736 \mathrm{~s}, 1682 \mathrm{~s}, 1660 \mathrm{~s}, 1365 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) 242.1 (100) (M-Boc+H) ${ }^{+}$, 224.2 (10); HRMS (MALDI): m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}^{+}$ 364.2094, found 364.2097 .

Synthesis of Alcohol 19.

To a solution of $\mathbf{1 8}(23.3 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(40.0 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added self-made Dess-Martin periodinane ($43.0 \mathrm{mg}, 0.10 \mathrm{mmol}$). The reaction solution was stirred at rt . When the reaction was completed (TLC analysis), the reaction was quenched with a few drops of isopropyl alcohol. The reaction was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: 30\% EtOAc/Hexanes) afforded S3 (21.9 mg, 95\%) as colorless oil. S3: $R_{f}=0.65[50 \% \mathrm{EtOAc} / \mathrm{Hexanes}],{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.97-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.42-1.53(\mathrm{~m}, 11 \mathrm{H}), 1.73(\mathrm{dt}, 1 \mathrm{H}, J=2.8,13.6 \mathrm{~Hz})$, 1.78-1.95 (brm, 1H), 2.17-2.27 (m, 3H), 2.35 (dd, 1H, $J=12.0,19.2 \mathrm{~Hz}$), 2.46 (dd, 1H, $J=7.2,19.2 \mathrm{~Hz}$), 2.60-2.68 (m, 1H), 3.69 (s, 3H), 3.92-4.10 (brm, 1H), 4.22 (brs, 1H); m/e (\% relative intensity) 240.2 (100)
$(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}$.
To a solution of $\mathbf{S 3}(21.9 \mathrm{mg}, 0.065 \mathrm{mmol})$ in anhyd $\mathrm{MeOH}(2 \mathrm{~mL})$ under N_{2} at $-41^{\circ} \mathrm{C}--45^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(5.10 \mathrm{mg}, 0.129 \mathrm{mmol})$. The reaction solution was stirred at same temperature for 40 min (TLC analysis). Then the reaction was quenched with a few drops of acetone and filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: $50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) gave 19 ($21.9 \mathrm{mg}, 100 \%$) as colorless oil.

19: $R_{f}=0.31[50 \% \mathrm{EtOAc} /$ Hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+31.0\left(c 0.14, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03(\mathrm{qd}, 1 \mathrm{H}, J=3.5,12.5 \mathrm{~Hz}), 1.14-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}), 1.32(\mathrm{qt}, 1 \mathrm{H}, J=3.5,13.0 \mathrm{~Hz}), 1.39-1.55(\mathrm{~m}, 11 \mathrm{H}), 1.69(\mathrm{dtt}, 1 \mathrm{H}, J=3.5,3.5,13.5 \mathrm{~Hz}), 1.82-1.93$ (m, 2H), $2.08(\mathrm{ttd}, 1 \mathrm{H}, J=3.5,7.5,7.5 \mathrm{~Hz}), 2.20(\mathrm{dd}, 1 \mathrm{H}, J=7.0,15.0 \mathrm{~Hz}), 2.25(\mathrm{dd}, 1 \mathrm{H}, J=8.0,15.0 \mathrm{~Hz})$, $2.37(\mathrm{dq}, 1 \mathrm{H}, J=4.5,14.0 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dt}, 1 \mathrm{H}, J=4.5,12.5 \mathrm{~Hz}), 4.00(\mathrm{qd}, 1 \mathrm{H}, J=5.0,7.0 \mathrm{~Hz})$, $4.22(\mathrm{td}, 1 \mathrm{H}, J=5.0,9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.4,24.4,24.8,26.2,28.7,29.8,33.6,37.2$, $38.1,51.8,54.6,66.7966 .81,79.6,155.0,173.3$; IR (neat) $\mathrm{cm}^{-1} 3455 \mathrm{brs}, 2977 \mathrm{~m}, 2940 \mathrm{~s}, 1737 \mathrm{~s}, 1686 \mathrm{~s}$, 1664s, 1366s; mass spectrum (APCI): m/e (\% relative intensity) 242.1 (100) (M-Boc+H) ${ }^{+}, 224.1$ (10); HRMS (MALDI): m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}^{+} 364.2094$, found 364.2102.

Synthesis of Silyl Ether 20.

20
To a solution of $\mathbf{1 9}(21.1 \mathrm{mg}, 0.062 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added imidazole (42.1 mg , $0.62 \mathrm{mmol})$. Then the reaction was stirred for 2 min and $\operatorname{TBDPSCl}(174.0 \mathrm{mg}, 0.162 \mathrm{~mL}, 0.62 \mathrm{mmol})$ was added dropwise to the reaction solution. The reaction was sealed and heated to $40^{\circ} \mathrm{C}$ for 12 h . At the time when the TLC analysis showed the reaction was completed, the reaction mixture was diluted with hexanes $(15 \mathrm{~mL})$ and washed with water $(15 \mathrm{~mL})$, sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 0-10\% of EtOAc/hexanes) afforded $20(34.3 \mathrm{mg}, 96 \%)$ as colorless oil.

20: $R_{f}=0.18\left[10 \%\right.$ EtOAc/Hexanes]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.44-0.62(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.12-1.33(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.54(\mathrm{~m}, 12 \mathrm{H}), 1.61-1.80(\mathrm{brm}, 1 \mathrm{H}), 1.86-2.18$ (brm, 3H), $2.26(\mathrm{dq}, 1 \mathrm{H}, J=4.5,14.0 \mathrm{~Hz}), 3.30-3.70(\mathrm{brm}, 1 \mathrm{H}), 3.62-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.93-4.25(\mathrm{brs}, 1 \mathrm{H})$, 7.33-7.47 (m, 6H), $7.67\left(\mathrm{dd}, 4 \mathrm{H}, J=7.5,13.5 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.6,19.4,24.3,25.2$, $26.0,27.2,28.7,29.7,33.8,37.3,38.2,51.8,54.1,67.9,77.4,79.3,127.90,127.94,130.1,136.0,136.1$, 154.7, 173.4; mass spectrum (APCI): m/e (\% relative intensity) $580.3(10)(\mathrm{M}+\mathrm{H})^{+}, 480.3$ (100).

Synthesis of Sulfone 22.

For the synthesis see of 22, see the scheme below and also: For the synthesis of 22, see. (a) D'Souza, L. J.; Sinha, S. C.; Lu, S.; Keinan, E.; Sinha, S. C. Tetrahedron 2001, 57, 5255. (b) Blackemore, P. A.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26. (c) Pu, X.; Ma, D. Angew. Chem. Int. Ed. 2004, 43, 4222.

iii) TBAF, $40^{\circ} \mathrm{C}$
75% yield overall

Lit.: $[\alpha]_{D}{ }^{23}=-39.9\left[\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right]$
Our sample: $[\alpha]_{D}{ }^{23}=-32.3\left[\mathrm{c} 0.98, \mathrm{CHCl}_{3}\right]$ Lit.: Weckerle, B.; Schreier, P.; Humpf, H.-U. J. Org. Chem. 2001, 66, 8160.

Lit.: $[\alpha]_{D}{ }^{23}=+11.4[\mathrm{c} 3.20, \mathrm{EtOH}]$
Our sample: $[\alpha]_{D}{ }^{23}=+10.5[\mathrm{c} 0.44, \mathrm{EtOH}]$
Lit.: Taber, D. F.; Deker, P. B.; Silverberg, L. J.
J. Org. Chem. 1992, 57, 5990.

$R_{f}=0.25[20 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;[\alpha]_{\mathrm{D}}{ }^{23}=+8.60\left(c 0.91, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.30-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.20-2.28(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{qd}, 1 \mathrm{H}, J=4.0,6.5 \mathrm{~Hz}), 3.82(\mathrm{ddd}, 1 \mathrm{H}, J=5.0,11.0,15.0 \mathrm{~Hz})$, 3.90 (ddd, $1 \mathrm{H}, J=5.0,11.0,14.5 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 7.58-7.65(\mathrm{~m}, 3 \mathrm{H})$, 7.68-7.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,18.7,26.9,36.6,52.9,56.1,75.5,96.0,125.4$, 130.0, 131.7, 133.3, 153.8; mass spectrum (APCI): m/e (\% relative intensity) 323.1 (100) (M-OMe) ${ }^{+}, 311.1$ (20), 293.1(55).

Synthesis of Alkene 23.

To a solution of $\mathbf{2 0}(34.3 \mathrm{mg}, 0.059 \mathrm{mmol})$ in anhyd THF (1.5 mL) was added DIBAL-H (1.0 M in hexanes, $0.237 \mathrm{~mL}, 0.237 \mathrm{mmol}$) dropwise at $-40^{\circ} \mathrm{C}$. When the reaction was completed (about 2 h via TLC analysis or LCMS), methanol was added at the same temperature followed by sat aq potassium sodium tartrate solution and the reaction was stirred vigorously. When two phases of the solution were clear after a few hours, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 15$ $\mathrm{mL})$. The combined organic layers were washed with sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography afforded (gradient eluent: 20-50\% of EtOAc/hexanes) an alcohol intermediate (30.1 mg ,
$92 \%)$ as a colorless oil: $R_{f}=0.45[50 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.45-0.64$ (brm, $1 \mathrm{H}), 0.64-0.92(\mathrm{brm}, 1 \mathrm{H}), 1.04-1.15(\mathrm{~m}, 10 \mathrm{H}), 1.15-1.32(\mathrm{~m}, 7 \mathrm{H}), 1.30-1.52(\mathrm{~m}, 13 \mathrm{H}), 1.63-1.77(\mathrm{~m}, 1 \mathrm{H})$, 2.17-2.27 (m, 1H), 3.30-3.70 (brm, 3.5H), 3.70-3.85 (m, 0.5H), 4.04-4.22 (brm, 1H), 7.35-7.47 (m, 6H), $7.68\left(\mathrm{t}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}\right.$); mass spectrum (APCI): m/e (\% relative intensity) 452.3 (100) M+H-Boc) ${ }^{+}$, 418.2 (65), 374.3 (30). This alcohol was oxidized by DMP directly.

To a solution of the above alcohol ($30.1 \mathrm{mg}, 0.055 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(37.0 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added self-made Dess-Martin periodinane ($35.0 \mathrm{mg}, 0.0825 \mathrm{mmol}$). The reaction solution was then stirred at rt for about 30 min . When the reaction was completed as indicated by TLC analysis ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) or LCMS, the reaction was quenched with a few drops of isopropyl alcohol. The reaction was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue via a short silica gel column (isocratic eluent: 30\% EtOAc) afforded 21 ($28.8 \mathrm{mg}, 96 \%$) as colorless oil.

21: $R_{f}=0.65\left[30 \%\right.$ EtOAc/Hexanes] $; R_{f}=0.65[30 \% \mathrm{EtOAc} /$ Hexanes $\left.]\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 0.46-0.66(\mathrm{brm}, 1 \mathrm{H}), 0.66-1.00(\mathrm{brm}, 1 \mathrm{H}), 1.05-1.11(\mathrm{~m}, 10 \mathrm{H}), 1.17-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.45(\mathrm{~m}$, $10 \mathrm{H}), 1.49(\mathrm{dt}, 1 \mathrm{H}, J=2.8,13.2 \mathrm{~Hz}), 1.65-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=1.6,6.8 \mathrm{~Hz})$, 3.40-3.70 (brs, 1H), 3.70-3.94 (brm, 1H), 4.06-4.19 (brm, 1H), 7.36-7.48 (m, 6H), 7.64-7.71 (m, 4H), 9.70 ($\mathrm{s}, 1 \mathrm{H}$). Aldehyde 21 was immediately used for the following step.

To a solution of sulfone $22(43.4 \mathrm{mg}, 0.123 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was dropwise added NaHMDS (1.0 M in THF, $0.123 \mathrm{~mL}, 0.123 \mathrm{mmol}$). After the reaction mixture was stirred for 30 min , a solution of $21(28.8 \mathrm{mg}, 0.0525 \mathrm{mmol})$ in THF (1.5 mL) was dropwise added, and additional THF (0.5 mL) was used to rinse the vial containing 21, which was also added to the reaction solution. After the reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to rt overnight. Then sat aq NaCl was added to quench the reaction, and the solution was diluted by EtOAc (6 mL) and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 10-30\% of EtOAc/hexanes) afforded 23 ($32.0 \mathrm{mg}, 90 \%$) as a colorless oil.

23: $R_{f}=0.50[20 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;[\alpha]_{\mathrm{D}}{ }^{23}=-1.80\left(c 0.17, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.45-0.60(\mathrm{brm}, 1 \mathrm{H}), 0.60-0.80(\mathrm{brm}, 1 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $1.00-1.12(\mathrm{~m}, 10 \mathrm{H}), 1.15-1.30(\mathrm{brm}, 5 \mathrm{H}), 1.30-1.53(\mathrm{~m}, 17 \mathrm{H}), 1.60-1.930(\mathrm{brm}, 3 \mathrm{H}), 2.16-2.28$ (brm, 3 H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.62(\mathrm{~m}, 1.5 \mathrm{H}), 3.70-3.82(\mathrm{~m}, 0.5 \mathrm{H}), 4.12(\mathrm{brs}, 1 \mathrm{H}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}), 5.32-5.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.68(\mathrm{q}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.4,15.5,18.8,19.3,24.5,24.9,26.0,27.2,28.7,30.3,33.5,36.5,36.6,37.8,40.6,51.9,54.4,55.6,68.1$, $77.1,79.1,95.5,127.6,127.79,127.84,129.9,131.3,135.9,136 . .0,154.7$; IR (neat) $\mathrm{cm}^{-1} 2940 \mathrm{~s}, 2860 \mathrm{~m}$,
$1689 \mathrm{~s}, 1394 \mathrm{~m}, 1367 \mathrm{~m}, 1041 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $678.4(30)(\mathrm{M}+\mathrm{H})^{+}, 578.4$ (60) $(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}, 546.3$ (100); HRMS (MALDI): m/e calcd for $\mathrm{C}_{41} \mathrm{H}_{63} \mathrm{NO}_{5} \mathrm{SiNa}^{+} 700.4368$, found 700.4378.

Synthesis of Alcohol 24.

To a solution of $23(30.4 \mathrm{mg}, 0.045 \mathrm{mmol})$ in anhyd methanol (2 mL) was added $\mathrm{Pd} / \mathrm{C}(4.80 \mathrm{mg}$, $10 \% \mathrm{Pd} / \mathrm{C}$). The mixture was placed in a Lab-Crest ${ }^{\circledR}$ pressure reaction vessel at 20 psi for 2 h . When the reaction was completed (LCMS analysis), the reaction was filtered through Celite ${ }^{\mathrm{TM}}$ and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: $20 \% \mathrm{EtOAc}$) afforded $\mathbf{S 4}(30.1 \mathrm{mg}, 99 \%)$ as a light yellow colorless oil. S4: $R_{f}=0.4[15 \%$ EtOAc/Hexanes]; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.44-0.64(\mathrm{brm}, 1 \mathrm{H}), 0.64-0.82(\mathrm{brm}, 1 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 1.00-1.13(\mathrm{~m}, 10 \mathrm{H}), 1.16-1.29(\mathrm{brm}, 9 \mathrm{H}), 1.29-1.55(\mathrm{~m}, 21 \mathrm{H}), 1.60-1.80(\mathrm{brm}, 1 \mathrm{H}), 2.17-2.26(\mathrm{~m}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (quint, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}$), 3.62-3.92 (brm, 1 H), 4.06-4.20 (brm, 1H), 4.64 (s, 0.5 H), $4.66(\mathrm{~s}, 1.5 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.72(\mathrm{~m}, 4 \mathrm{H})$; m/e (\% relative intensity) $680.4(35)(\mathrm{M}+\mathrm{H})^{+}, 580.4$ (100) $(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}$.

To a solution of $\mathbf{S 4}(30.1 \mathrm{mg}, 0.044 \mathrm{mmol})$ in anhyd THF (2 mL) was dropwise added TBAF (1.0 M in THF, 0.22 mL). Then the vial was sealed and heated to $50^{\circ} \mathrm{C}$ overnight. Then the solution was poured into water and extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with sat aq $\mathrm{NaCl}(45 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: 10-30\% of EtOAc/hexanes) gave 24 (19.4 mg, 99\%) as a colorless oil.

24: $R_{f}=0.35[40 \% \mathrm{EtOAc} / \mathrm{Hexanes}] ;[\alpha]_{\mathrm{D}}{ }^{23}=+5.20\left(c 0.11, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.98-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$, $1.15-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.53(\mathrm{~m}, 14 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.90(\mathrm{~m}$, $2 \mathrm{H}), 2.31$ (dq, $1 \mathrm{H}, J=4.5,14.0 \mathrm{~Hz}$), 3.38 ($\mathrm{s}, 3 \mathrm{H}$), $3.53(\mathrm{tt}, 1 \mathrm{H}, J=6.0,6.5 \mathrm{~Hz}$), $3.67(\mathrm{dt}, 1 \mathrm{H}, J=4.0,12.0$ $\mathrm{Hz}), 3.99(\mathrm{qd}, 1 \mathrm{H}, J=5.0,6.5 \mathrm{~Hz}), 4.21(\mathrm{ddd}, 1 \mathrm{H}, J=4.5,9.0,13.0 \mathrm{~Hz}), 4.65(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.5,15.5,18.8,24.69,24.71,25.7,26.6,27.4,28.7,30.3,33.2,33.6,34.5,36.8,40.1,51.9,55.1$, $55.7,67.1,77.4,79.5,95.6,155.1$; IR (neat) $\mathrm{cm}^{-1} 3452 \mathrm{brm}, 2927 \mathrm{~s}, 2854 \mathrm{~m}, 1727 \mathrm{~m}, 1687 \mathrm{~s}, 1666 \mathrm{~s}, 1457 \mathrm{~s}$,
$1399 \mathrm{~s}, 1377 \mathrm{~s} 1040 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $442.3(10)(\mathrm{M}+\mathrm{H})^{+}, 342.3(100)$ $(\mathrm{M}+\mathrm{H}-\mathrm{Boc})^{+}, 324.3$ (50); HRMS (MALDI): m/e calcd for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{Na}^{+} 464.3346$, found 464.3340 .

Synthesis of (+)-Lepadin F.

24

S5

(+)-lepadin F

To a solution of (E)-Oct-2-enoic acid ($6.00 \mu \mathrm{~L}, 0.040 \mathrm{mmol}),{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.010 \mathrm{~mL}, 0.059 \mathrm{mmol})$ and trichlorobenzoylchloride ($9.00 \mu \mathrm{~L}, 0.058 \mathrm{mmol}$) in toluene (1 mL) was added a solution of $24(8.50 \mathrm{mg}$, $0.019 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$. An additional toluene $(0.5 \mathrm{~mL})$ was used to rinse the vial that contained the 24 solution, and the rinse was also added to the reaction solution. After the reaction solution was stirred for 1 h at rt , a solution of of DMAP ($5.90 \mathrm{mg}, 0.048 \mathrm{mmol}$) in toluene $(1 \mathrm{~mL})$ was added over 30 min (during the addition of DMAP solution, a white suspension was formed). The resulting solution was stirred for 18 h at rt before it was completed (TLC analysis). Then water was added to quench the reaction and the organic layer was separated. The aqueous layer was extracted with MTBE ($3 \times 8 \mathrm{~mL}$). The combined organic layers were washed with sat aq $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (gradient eluent: $0-10 \%$ of EtOAc/hexanes) gave $\mathbf{S 5}(10.4 \mathrm{mg}, 95 \%)$ as a colorless oil. S5: $R_{f}=0.7$ [20\% EtOAc/Hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.22(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.5 \mathrm{~Hz}), 1.06-1.38(\mathrm{~m}, 20 \mathrm{H}), 1.38-1.58(\mathrm{~m}, 11 \mathrm{H}), 1.68(\mathrm{dt}, 1 \mathrm{H}, J=3.0,13.0 \mathrm{~Hz}), 1.86-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.21(\mathrm{q}$, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 2.32-2.44 (m, 1H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.52$ (quint, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}$), 3.69 (brm, 1H), 4.08 (brm, $1 \mathrm{H}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 5.27(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.99(\mathrm{dt}, 1 \mathrm{H}$, $J=7.0,16 \mathrm{~Hz}$); m/e (\% relative intensity) 466.4 (100) (M+H-Boc) ${ }^{+}, 434.4$ (40), 404.4 (25).

To a solution of $\mathbf{S 5}(14.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$ was added TFA $(0.11 \mathrm{~mL})$ carefully dropwise. The resulting reaction mixture was stirred for 1 h at rt . After which 5% aq $\mathrm{NH}_{3}(0.30 \mathrm{~mL})$ was added in 5 portions to quench the reaction over 20 min . Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification of the crude residue via silica gel flash column chromatography (isocratic eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /$ conc $\mathrm{NH}_{3}: 30: 1: 0.1$) gave (+)-lepadin F ($7.80 \mathrm{mg}, 75 \%$) as a colorless oil.
(+)-Lepadin F: $R_{f}=0.23\left[10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right], R_{f}=0.16\left[\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \operatorname{con} \mathrm{NH}_{3}=15: 1: 0.1\right]$;
$[\alpha]_{\mathrm{D}}{ }^{23}=+7.04\left(c 0.27, \mathrm{CHCl}_{3}\right) ; \quad[\alpha]_{\mathrm{D}}{ }^{23}=+1.56\left(c 0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.76-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.10-1.50(\mathrm{~m}, 23 \mathrm{H}), 1.59(\mathrm{qd}$ like, $1 \mathrm{H}, J=3.5,13.0 \mathrm{~Hz}), 1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.81$ (dt, 1H, $J=3.0,14.5 \mathrm{~Hz}$), $1.88(\mathrm{brq}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{q}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz})$, 3.43 (quint, $1 \mathrm{H}, J=5.0 \mathrm{~Hz}$), 5.03 (brs, 1 H), $6.00(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz}$), 7.12-7.22 (m, 1H);
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, using $\mathrm{K}_{2} \mathrm{CO}_{3}$ pretreated $\left.\mathrm{CDCl}_{3}\right) \delta 0.87-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.11-1.51(\mathrm{~m}, 23 \mathrm{H}), 1.64(\mathrm{ABq}-\mathrm{dd}, 1 \mathrm{H}, J=14.5,14.0,2.5$ $\mathrm{Hz}), 1.71$ (ABq-brt, $1 \mathrm{H}, \mathrm{J}=14.5,3.5 \mathrm{~Hz}$), 1.75-1.89 (m, 2H), 2.05-2.11 (m, 1H), 2.18-2.24 (m, 2H), 2.87 $(\mathrm{dt}, 1 \mathrm{H}, J=4.5,12.5 \mathrm{~Hz}), 3.08(\mathrm{brq}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.52-3.62(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{brs}, 1 \mathrm{H}), 5.91(\mathrm{dt}, 1 \mathrm{H}, J=1.5$, 16.0 Hz), 7.01 (dt, $1 \mathrm{H}, J=7.0,15.5 \mathrm{~Hz}$);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.1,14.4,18.5,19.2,22.7,24.0,25.4,25.8,26.1,26.9,27.4,27.9$, $31.6,32.3,33.4,33.5,38.0,39.8,40.3,47.5,55.7,71.2,71.3,121.9,149.4,166.0$;
${ }^{13} \mathrm{C}$ NMR (100 MHz , using $\mathrm{K}_{2} \mathrm{CO}_{3}$ pretreated CDCl_{3}) $\delta 14.0,14.2,18.5,18.9,22.5,23.8,25.3,25.4$, $25.8,26.6,27.0,27.7,31.4,32.2,33.1,33.1,37.5,39.5,39.8,47.1,55.5,71.3,71.7,121.3,149.8,166.6$;

IR (neat) $\mathrm{cm}^{-1} 3314 \mathrm{brw}, 2956 \mathrm{~m}, 2929 \mathrm{~s}, 2857 \mathrm{~m}, 1718 \mathrm{~s}, 1654 \mathrm{~m}, 1463 \mathrm{~m}, 1266 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $422.3(100)(\mathrm{M}+\mathrm{H})^{+}$; HRMS (MALDI): m/e calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{NO}_{3}{ }^{+}$ 422.3629 , found 422.3635 .

Matching of Optical Rotations

OUR Synthetic (+)-Lepadin F Versus Blechert's Synthetic (+)-Lepadin F; Carroll's Isolated (+)-Lepadin F, and Wright's Isolated (-)-Lepadin F.

Blechert	Our Sample	Isolation Data
$\begin{gathered} {[\alpha]_{\mathrm{D}}{ }^{20}=+8.80^{\circ}(c 0.25,} \\ \left.\mathrm{CHCl}_{3}\right) \end{gathered}$	$\begin{gathered} {[\alpha]_{\mathrm{D}}^{23}=+7.04^{\circ}(c 0.27,} \\ \left.\mathrm{CHCl}_{3}\right) \end{gathered}$	Carroll: $[\alpha]_{\mathrm{D}}^{22}=+5.50^{\circ}\left(c 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$\begin{gathered} {[\alpha]_{\mathrm{D}}{ }^{20}=+1.50^{\circ}(c 0.27} \\ \left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{gathered}$	$\begin{gathered} {[\alpha]_{\mathrm{D}}^{23}=+1.56^{\circ}(c 0.16,} \\ \left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \end{gathered}$	Wright: $[\alpha]_{\mathrm{D}}^{22}=-1.50{ }^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right)$

Matching of Proton NMR

Our Synthetic (+)-Lepadin F Versus Carroll's Isolated (+)-Lepadin Fin C $\mathbf{C}_{6} \mathbf{D}_{6}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ The internal standard is set at $\delta=7.16 \mathbf{~ p p m} .{ }^{1}$

Carroll	Our Sample	$\Delta \delta$
0.80	$0.76-0.84$	0.00 ppm
0.81	0.81	0.00
0.90	0.91	0.01
1.08	1.08	0.00
$1.08-1.48$	$1.10-1.50$	0.02
1.58	1.59	0.01
1.65	$1.63-1.69$	0.01
1.82	1.81	-0.01
1.89	1.88	-0.01
2.17	2.16	-0.01
2.81	2.79	-0.02
2.84	2.84	0.00
3.42	3.43	0.01
5.00	5.03	0.03
6.00	6.00	0.00
7.19	$7.12-7.22$	0.02

[^0]
Matching of Carbon NMR

Our Synthetic (+)-Lepadin F Versus Carroll's Isolated (+)-Lepadin Fin C6 \mathbf{D}_{6}.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{C}_{6} \mathrm{D}_{6}$) The internal standard is set at $\delta=\mathbf{1 2 8 . 0 4} \mathbf{~ p p m} .{ }^{1}$

Carroll	Our Sample	$\Delta \delta$
14.1 ppm	14.1 ppm	0.0 ppm
14.4	14.4	0.0
18.3	18.5	0.2
19.2	19.2	0.0
22.7	22.7	0.0
23.9	24.0	0.1
25.3	25.4	0.1
25.7	25.8	0.1
26.2	26.1	-0.1
26.9	26.9	0.0
27.4	27.4	0.0
27.9	27.9	0.0
31.6	31.6	0.0
32.3	32.3	0.0
33.2 [C4a]	33.4*	0.2
33.5 [$\left.{ }^{1}{ }^{\prime}\right]$	33.5*	0.0
38.1	38.0	-0.1
39.8	39.8	0.0
40.3	40.3	0.0
47.6	47.5	-0.1
55.8	55.7	-0.1
71.2	71.2	0.0
71.2	71.3	0.1
121.9	121.9	0.0
149.5	149.4	0.1
166.0	166.0	0.0

* These two assignments were confirmed using HSQC.

Matching of Proton NMR

Our Synthetic (+)-Lepadin F Versus Wright’s Isolated (-)-Lepadin Fin CDCL3.
CDCL_{3} HAS BEEN TREATED WITH $\mathrm{K}_{2} \mathrm{CO}_{3}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) The internal standard is set at $\delta=7.26 \mathrm{ppm} .{ }^{1}$

Wright	Our Sample	$\Delta \delta$
0.90 ppm	0.90 ppm	0.00 ppm
0.90	0.92	0.02
0.93	$0.87-0.96$	$-\mathbf{0 . 0 1}$
1.01	1.00	$-\mathbf{0 . 0 1}$
$1.15-1.48$	$1.11-1.51$	$-\mathbf{0 . 0 1}$
1.62	1.64	0.02
1.72	1.71	$-\mathbf{0 . 0 1}$
1.78	$1.75-1.89$	0.04
2.05	$2.05-2.11$	0.03
2.20	$2.18-2.24$	0.01
2.89	2.87	$-\mathbf{0 . 0 2}$
3.09	3.08	$-\mathbf{0 . 0 1}$
3.54	$3.52-3.62$	0.03
4.92	4.93	0.01
5.89	5.91	0.02
7.01	7.01	0.00

Matching of Carbon NMR

Our Synthetic (+)-Lepadin F Versus Wright’s Isolated (-)-Lepadin Fin CDCL3.
CDCL_{3} HAS BEEN TREATED WITH $\mathrm{K}_{2} \mathrm{CO}_{3}$.
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) The internal standard is set at $\delta=77.10 \mathrm{ppm} .{ }^{1}$

Wright	Our Sample	$\Delta \delta$
14.0 ppm	14.0 ppm	0.0 ppm
14.2	14.2	0.0
18.4	18.5	0.1
18.9	18.9	0.0
22.5	22.5	0.0
23.7	23.8	0.1
25.2	25.3	0.1
25.4	25.4	0.0
25.8	25.8	0.0
26.6	26.6	0.0
27.0	27.0	0.0
27.7	27.7	0.0
31.4	31.4	0.0
32.2	32.2	0.0
33.0 [C4a]	33.1*	0.1
33.1 [C1']	33.1*	0.0
37.5	37.5	0.0
39.5	39.5	0.0
39.8	39.8	0.0
47.1	47.1	0.0
55.4	55.5	0.1
71.3	71.3	0.0
71.6	71.7	0.1
121.2	121.3	0.1
149.9	149.8	-0.1
166.6	166.6	0.0

[^1]
[^0]: 1. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
[^1]: * Overlapping peaks correspond to C4a and Cl', and this has been confirmed using HSQC. While unlike Wright's data, these two peaks overlapped in our ${ }^{13} C N M R$, they are resolved in $C_{6} D_{6}$.

