A Concise and Modular Synthesis of Pyranicin

Nolan D. Griggs and Andrew J. Phillips*
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215

SUPPORTING INFORMATION

General Experimental Procedures.

Unless otherwise noted, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on Varian Inova spectrometers operating at 500 or 400 , and 125 or 100 MHz , respectively, using CDCl_{3} as the solvent and internal reference. Coupling constants are reported in Hertz, Hz. All non-aqueous reactions were run in flame-dried glassware under a dry N_{2} atmosphere. Toluene, THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Et}_{2} \mathrm{O}$ were obtained from Aldrich (Pure-Pac) and further dried by passage though activated alumina as described by Bergman and Grubbs. ${ }^{1}$ All flash chomatography was performed with normal phase silica gel (Sorbent Technologies, $32-63 \mu \mathrm{~m}$ particle size, $60 \AA$ pore size), following the general protocol of Still. ${ }^{2}$

1-(5-(Benzyloxymethyl)furan-2-yl)tridecan-1-ol, 6.

To a solution of aldehyde $5(11.0 \mathrm{~g}, 50.9 \mathrm{mmol})$ in THF (203 mL) in a 500 mL round-bottomed flask, was added a freshly prepared solution of dodecylmagnesium bromide (56.0 mL of a 1 M solution in ether, 56.0 mmol) dropwise at $-20^{\circ} \mathrm{C}$. The reaction was stirred for 1 h at $-20^{\circ} \mathrm{C}$ and was then allowed to warm to rt. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with water, and extracted 3 x with ether. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($8 \% \mathrm{EtOAc} / \mathrm{Hex}$.) to yield pure alcohol $6(19.6 \mathrm{~g}, 99 \%)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{~d}, J=3.2,1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2,1 \mathrm{H}), 4.65(\mathrm{t}$, $J=6.8,1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.53(\mathrm{~m}, 20 \mathrm{H}), 0.196$ $(\mathrm{t}, J=7.0,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.9,151.0,138.1,128.7,128.2,127.9,110.4,106.5,72.0$, $67.9,64.1,35.8,32.2,30.0,29.97,29.93,29.8,29.7,29.6,25.8,23.0,14.4$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 3410$ (OH). HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Na}^{+} 409.2713$, found 409.2707.

(2R,6R)-6-(Benzyloxymethyl)-2-dodecyl-2H-pyran-3(6H)-one, 8.

[^0]

To a mixture of $\mathrm{Ti}\left(\mathrm{OPr}_{i}\right)_{4}(0.76 \mathrm{~mL}, 2.59 \mathrm{mmol}), \mathrm{CaH}_{2}(10.9 \mathrm{mg}, 0.26 \mathrm{mmol})$, and silica gel (32 $\mathrm{mg}, 0.512 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added (-)-DIPT ($0.660 \mathrm{~mL}, 3.10 \mathrm{mmol}$). The mixture was stirred for 10 min , then furyl alcohol $6(1.00 \mathrm{~g}, 2.59 \mathrm{mmol})$ was added, and the reaction was stirred an additional 10 min . The solution was cooled to $-40^{\circ} \mathrm{C}$, and TBHP (1.29 mL of a 5 M solution in decane, 6.47 mmol) was added slowly. The reaction was sealed under $\operatorname{Ar}(\mathrm{g})$ and allowed to stir at $-20^{\circ} \mathrm{C}$ for 8 h . The reaction was quenched with 10% aqueous tartaric acid and stirred until the solution was clear. The organic layer was separated, and the aqueous layer was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were then washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude mixture was partially purified using flash column chromatography ($15 \% \mathrm{EtOAc} / \mathrm{Hex}$) to yield an inseparable mixture of the desired, unstable, hemiketal 7 (6:1 dr) and (-)-DIPT. This mixture was immediately dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL})$ and triisopropylsilane ($2.65 \mathrm{~mL}, 12.94 \mathrm{mmol}$) was added. The solution was then cooled to $-40^{\circ} \mathrm{C}$, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(175 \mu \mathrm{~L}, 1.42 \mathrm{mmol})$ was added dropwise. The solution was stirred at $-40{ }^{\circ} \mathrm{C}$ for 5 h , then warmed to $-20{ }^{\circ} \mathrm{C}$ for an additional hour. The reaction was quenched with sat. NaHCO_{3}, diluted with water, and extracted 3 x with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($8 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product 8 ($325 \mathrm{mg}, 33 \%$ over 2 steps) as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{dd}, J=1.5,10.3,1 \mathrm{H}), 6.18(\mathrm{dd}, J=2.5$, $10.3,1 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 3.99$ (ddd, $J=2.0,3.7,7.8,1 \mathrm{H}), 3.75$ (dd, $J=5.8,10.0$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=5.9,10.0,1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.54(\mathrm{~m}, 20 \mathrm{H}), 0.91(\mathrm{t}, J=7.0$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 196.9,148.9,137.9,128.7,128.1,128.0,127.9,80.9,73.8,71.4,32.1$, 29.98, 29.91, 29.8, 29.7, 29.6, 25.4, 22.9, 14.4. $[\alpha]_{\mathrm{D}}+18.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 1693$ (CO). HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Na}^{+} 409.2713$, found 409.2705 .

(2R,3R,6R)-6-(Benzyloxymethyl)-2-dodecyltetrahydro-2H-pyran-3-ol, 9.

Enone 8 ($550 \mathrm{mg}, 1.43 \mathrm{mmol}$) was dissolved in dry EtOH (14 mL) in a 50 mL 2-neck flask. $\mathrm{Na}_{2} \mathrm{CO}_{3}(151 \mathrm{mg}, 1.43 \mathrm{mmol})$ was added followed by $5 \% \mathrm{Pd} / \mathrm{C}(303 \mathrm{mg})$. The reaction was then evaluated, equipped with a hydrogen balloon, and was allowed to react for 1 h . The solution was then diluted with ether, filtered through a plug of Celite ${ }^{\circledR}$, and the solvent was removed in vacuo to yield the desired pure ketone which was used without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 7.29-7.42 (m, 5H), $4.66(\mathrm{~d}, J=11.6,1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.6,1 \mathrm{H}), 3.96(\mathrm{dt}, J=4.6,10.1,1 \mathrm{H}), 3.85$ (dd, $J=4.3,7.8,1 \mathrm{H}), 3.64$ (dd, $J=5.9,10.2,1 \mathrm{H}), 3.55$ (dd, $J=4.7,10.2,1 \mathrm{H}), 2.62$ (ddd, $J=4.6$, $6.6,16.0,1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.49$ $(\mathrm{m}, 20 \mathrm{H}), 0.91(\mathrm{t}, J=7.0,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 209.9,138.4,128.6,127.9,127.8,83.2,75.3$,
73.7, $72.7,37.1,32.1,30.2,29.9,29.8,29.7,29.6,28.1,25.5,22.9,14.4$. IR (neat, cm^{-1}) 1725 (CO). HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Na}^{+}$411.2869, found 411.2867. [$\left.\alpha\right]_{\mathrm{D}}+35.2$ (c 1.00, CHCl_{3}).

To a solution of the crude ketone ($551 \mathrm{mg}, 1.42 \mathrm{mmol}$) in THF (14 mL) was added a 1 M solution of L-Selectride ($4.25 \mathrm{~mL}, 4.25 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred for 3 h , and was then allowed to warm to $0^{\circ} \mathrm{C}$. The reaction was quenched with hydrogen peroxide ($30 \%(\mathrm{aq}$), 11 mL) followed by $\mathrm{NaOH}(2 N, 55 \mathrm{~mL})$ and the biphasic mixture was stirred vigorously for 1 h at rt . The layers were then separated, and the aqueous layer was extracted $3 x$ with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($12 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product $9(475 \mathrm{mg}, 86 \%$ over 2 steps $)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~d}, J=12.1,1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.1,1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dd}$, $J=6.1,10.2,1 \mathrm{H}), 3.47(\mathrm{dd}, J=4.4,10.2,1 \mathrm{H}), 3.38(\mathrm{t}, J=6.9,1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.76(\mathrm{~m}$, $25 \mathrm{H}), 0.91(\mathrm{t}, J=7.0,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.6,128.6,127.9,127.8,80.3,77.6,73.6$, $66.2,32.2,31.9,30.8,29.92,29.90,29.86,29.84,29.6,25.8,22.9,22.6,14.4$. IR (neat, cm^{-1}) $3443(\mathrm{OH})$. HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Na}^{+} 413.3026$, found 413.3019. [$\left.\alpha\right]_{\mathrm{D}}+6.7$ (c 1.00, CHCl_{3}).

(2R,5R,6R)-5-(tert-Butyldimethylsilyloxy)-6-dodecyltetrahydro-2H-pyran-2-carbaldehyde, 2.

To a solution of alcohol $9(475 \mathrm{mg}, 1.22 \mathrm{mmol})$ and imidazole ($248 \mathrm{mg}, 3.65 \mathrm{mmol}$) in DMF (6 mL) was added TBSCl ($202 \mathrm{mg}, 1.4 \mathrm{mmol}$) slowly at rt . The reaction was stirred overnight, and was then diluted with water and extracted 3 x with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo yielding pure silylated product which could be used without purification. An analytically pure sample could be obtained by flash column chromatography ($2 \% \mathrm{EtOAc} / \mathrm{Hex}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36$ $(\mathrm{m}, 5 \mathrm{H}), 4.65(\mathrm{~d}, J=12.1,1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.1,1 \mathrm{H}), 3.62(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=6.6$, $1 \mathrm{H}), 1.90(\mathrm{dd}, J=3.0,12.9,1 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 22 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.0,3 \mathrm{H})$, $0.09(5,3 H) 0.08(5,3 H) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 138.8,128.5,127.9,127.6,80.3,74.0,73.5,66.8$, $32.4,32.1,31.7,30.0,29.9,29.8,29.6,26.1,25.9,23.0,22.9,18.4,14.4,-4.25,-4.49$. IR (neat, cm^{-1}) 2924, 2853, 1462, 1251. HRMS (ESI) calc for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{SiNa}^{+} 527.3890$, found 527.3873. $[\alpha]_{\mathrm{D}}+6.02\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

The resulting silyl ether was immediately dissolved in ethanol (10 mL) and $5 \% \mathrm{Pd} / \mathrm{C}(450 \mathrm{mg})$ was added. The flask was then equipped with a hydrogen balloon and the reaction was stirred overnight. The solution was then filtered through a plug of Celite ${ }^{\circledR}$, the solvent was removed in vacuo, and the crude product was purified using flash column chromatography (12% $\mathrm{EtOAc} / \mathrm{Hex}$) yielding pure alcohol ($445 \mathrm{mg}, 88 \%$ over 2 steps). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{~s}$, $1 \mathrm{H}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{dtd}, J=1.8,5.3 .7 .3,1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{brs}, 1 \mathrm{H}), 1.87(\mathrm{td}, J=3.2$,
$12.9,1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.49(\mathrm{~m}, 22 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.0,3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 80.2,78.2,66.9,66.3,32.4,32.1,31.5,29.97,29.90,29.6,26.1$, $22.9,21.8,18.4,14.3,-4.31,-4.55$. IR (neat, cm^{-1}) $3453(\mathrm{OH})$. HRMS (ESI) calc for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{SiNa}^{+} 437.3421$, found 437.3413. $[\alpha]_{\mathrm{D}}-3.63$ (c 1.00, CHCl_{3}).

To a suspension of the alcohol obtained above ($411 \mathrm{mg}, 0.99 \mathrm{mmol}$) and activated $4 \AA$ molecular sives (100 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{~mL})$ was added Dess-Martin periodinane ($462 \mathrm{mg}, 1.09 \mathrm{mmol}$) at rt . The reaction was stirred 3 h at rt . The reaction was quenched with $1: 1$ sat. NaHCO_{3} : sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, diluted with water, and extracted 3 x with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The resulting residue was taken up in ether and flushed through a plug of silica. Evaporation of the solvent gave pure product $2(409 \mathrm{mg}, 99 \%)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 3.81$ (dd, $J=2.5,11.8,1 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{qd}, J=3.1,13.1,1 \mathrm{H}), 1.82(\mathrm{dd}, J=3.5$, $12.4,1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.54(\mathrm{~m}, 21 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.0,3 \mathrm{H})$, $0.084(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 203.1,81.9,80.5,66.5,32.3,32.1,31.3,29.93,29.90,29.88$, $29.85,29.6,26.1,25.8,22.9,20.8,18.4,14.4,-4.28,-4.56$. IR (neat, cm^{-1}) 1740 (CO). HRMS (ESI) calc for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}^{+} 435.3264$, found 435.3261. $[\alpha]_{\mathrm{D}}+31.4$ (c 1.00, CHCl_{3}).
(5R,10S)-10-Allyl-5-((2R,5R,6R)-5-(tert-Butyldimethylsilyloxy)-6-dodecyltetrahydro-2H-pyran-2-yl)-2,2,3,3,12,12,13,13-octamethyl-4,11-dioxa-3,12-disilatetradec-6-yne, 10.

To a suspension of zinc (II) triflate ($397 \mathrm{mg}, 1.09 \mathrm{mmol}$) and (-)- N-methylephedrine (214 mg , 1.19 mmol) in toluene (2 mL) was added triethylamine ($168 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) at rt . The resulting mixture was stirred at rt for 2 h . The alkyne $3(237 \mathrm{mg}, 0.99 \mathrm{mmol})$ was then added in one portion as a solution in toluene $(500 \mu \mathrm{~L})$. The reaction was stirred for 15 min . The aldehyde 2 $(410 \mathrm{mg}, 0.99 \mathrm{mmol})$ was then added in one portion as a solution in toluene $(500 \mu \mathrm{~L})$, and the reaction was heated to $60^{\circ} \mathrm{C}$ for 2 h . The reaction was then cooled to rt and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with water, and extracted 3 x with ether. The organic layers were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was then purified using flash column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{Hex}$.) to yield pure alcohol (536 $\mathrm{mg}, 83 \%)$ as a single diastereomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{qd}$, $J=2.0,8.0,1 \mathrm{H}), 3.82(\mathrm{td}, J=5.6,11.5,1 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{dt}, J=3.0,8.1,1 \mathrm{H}), 3.29$ (dd, $J=4.6,7.6,1 \mathrm{H}), 2.89(\mathrm{~d}, J=2.3,1 \mathrm{H}), 2.29(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{dd}, J=3.0,6.5,1 \mathrm{H}), 1.65(\mathrm{~m}, 6 \mathrm{H}), 1.21-$ $1.47(\mathrm{~m}, 21 \mathrm{H}), 0.91(\mathrm{~m}, 21 \mathrm{H}), 0.08(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 134.9,117.3,86.7,80.9$,
$80.4,77.8,70.7,66.7,66.3,42.0,35.5,32.3,32.1,31.4,29.9,29.88,29.86,29.6,26.1,25.9,22.9$, $21.9,18.4,18.3,15.2,14.3,-4.13,-4.28,-4.41,-4.51$. IR (neat, cm^{-1}) 3448 (OH). HRMS (ESI) calc for $\mathrm{C}_{38} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}^{+} 673.5017$, found 673.5018. $[\alpha]_{\mathrm{D}}-8.78$ (c 1.00, CHCl_{3}).

To a solution of the alcohol obtained above ($100 \mathrm{mg}, 0.15 \mathrm{mmol}$) and imidazole ($31.4 \mathrm{mg}, 0.46$ $\mathrm{mmol})$ in DMF (1 mL) was added $\mathrm{TBSCl}(26 \mathrm{mg}, 0.16 \mathrm{mmol})$ slowly at rt . The reaction was stirred overnight. The solution was then diluted with water and extracted $3 x$ with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography (1% $\mathrm{EtOAc} / \mathrm{Hex})$ yielding pure product $10(115 \mathrm{mg}, 99 \%)$ as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.81(\mathrm{~m}$, $1 \mathrm{H}), 5.06(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{td}, J=2.0,6.6,1 \mathrm{H}), 3.82(\mathrm{td}, J=5.7,11.6,1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.31$ (ddd, $J=1.9,6.7,11.0,1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 6 \mathrm{H}), 1.23-1.46(\mathrm{~m}$, $21 \mathrm{H}), 0.84-1.01(\mathrm{~m}, 30 \mathrm{H}), 0.04-0.16(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 135.0,117.2,85.8,80.8$, 80.1, 79.6, 70.8, 67.3, 66.6, 42.0, 35.7, 32.4, 32.1, 31.6, 30.0, 29.9, 29.8, 29.6, 26.1, 26.0, 25.8, $22.9,21.4,18.6,18.38,18.30,15.2,14.4,-4.14,-4.36,-4.46,-4.53,-4.65$. IR (neat, cm^{-1}) 2925, 2854, 1470, 1361. HRMS (ESI) calc for $\mathrm{C}_{44} \mathrm{H}_{88} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{Na}^{+} 787.5882$, found 787.5874. [$\left.\alpha\right]_{D}-$ 16.38 (c 1.00, CHCl_{3}).
(5R,9S)-9-(2-(4-Methoxybenzyloxy)ethyl)-2,2,3,3,5,12,12-heptamethyl-11,11-diphenyl-4,10-dioxa-3,11-disilatridec-6-yne, 13.

To a solution of alkyne $\mathbf{1 1}(920 \mathrm{mg}, 4.99 \mathrm{mmol})$ in freshly distilled THF (20 mL) was added n butyllithium (3.66 mL of a 1.6 M solution in hexanes, 5.49 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for 45 min and then allowed to warm to $-10^{\circ} \mathrm{C}$ for 30 min , and was then cooled down to $-78^{\circ} \mathrm{C}$. This solution was then transferred via cannula into a solution of epoxide $12(1.35 \mathrm{~g}, 6.49 \mathrm{mmol})$ in THF (15 mL) at $-78^{\circ} \mathrm{C}$ while adding $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(6.75 \mathrm{~mL}, 5.49 \mathrm{mmol})$ simultaneously. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and was then warmed to $-20^{\circ} \mathrm{C}$ for 1 h. The reaction was quenched with sat. NaHCO_{3}, diluted with water, and extracted 3 x with ether. The organic layers were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. NMR of the crude product showed product along with unreacted epoxide, which were inseparable by practical means. Thus, the crude reaction mixture was taken on to the next step in the sequence. An analytically pure sample was obtained through flash column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.53$ (tq, $J=1.8,6.3,1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{ddd}, J=4.6,6.0,10.5,1 \mathrm{H}), 3.64$ (ddd, $J=4.3,8.1,10.5,1 \mathrm{H}), 3.09(\mathrm{t}, J=3.8,1 \mathrm{H}), 2.42(\mathrm{ddq}, J=1.9,6.3,16.6,2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.5,130.2$,
$129.5,114.0,85.3,80.0,73.1,70.0,68.6,59.3,55.5,35.5,27.6,26.0,25.9,18.5,-4.38,-4.67$. IR (neat, cm^{-1}) $3449(\mathrm{OH}), 1612,1513$. HRMS (ESI) calc for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{SiNa}^{+} 415.2275$, found 415.2272. $[\alpha]_{\mathrm{D}}-15.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a solution of the crude alcohol ($2.00 \mathrm{~g}, 5.09 \mathrm{mmol}$), imidazole ($1.04 \mathrm{~g}, 15.28 \mathrm{mmol}$), and DMAP ($62 \mathrm{mg}, \quad 0.509 \mathrm{mmol}$) in dry DMF (12 mL) was added dropwise tertbutyldiphenylchlorosilane $(1.44 \mathrm{~mL}, 5.60 \mathrm{mmol})$ at rt . The reaction was stirred overnight. The solution was then diluted with water and extracted 3 x with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($4 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product $13(2.85 \mathrm{~g}, 89 \%$ over 2 steps $) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~m}, 4 \mathrm{H}), 7.48(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.7,2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7,2 \mathrm{H}), 4.57(\mathrm{dq}, J=4.3,5.7,1 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.61(\mathrm{td}, J=1.9,6.6,2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{dq}, J=1.9,6.6,2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.16$ (s, 9H), $0.99(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) 0.17$, ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.3,136.19,136.17$, 134.4, 134.1, 130.9, 129.95, 129.91, 129.5, 127.89, 127.82, 127.75, 127.71, 113.9, 85.1, 80.4, $72.7,69.4,66.8,59.5,55.5,36.4,27.6,27.4,27.3,26.2,25.9,19.7,18.6,-4.22,-4.60$. IR (neat, cm^{-1}) 2929, 2856, 1612, 1513, 1470. HRMS (ESI) calc for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}^{+} 653.3452$, found $653.3452 .[\alpha]_{\mathrm{D}}-16.24\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
(2R,6R,Z)-6-(tert-Butyldiphenylsilyloxy)-4-iodo-8-(4-methoxybenzyloxy)oct-3-en-2-ol, 14.

To a solution of bis-silylether $13(2.31 \mathrm{~g}, 3.66 \mathrm{mmol})$ in ethanol $(18 \mathrm{~mL})$ was added pyridinium p-toluenesulfonate ($276 \mathrm{mg}, 1.09 \mathrm{mmol}$). The reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction mixture was then concentrated in vacuo, diluted with ether, and this suspension was diluted with water, and extracted $3 x$ with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($15 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product ($1.80 \mathrm{~g}, 95 \%$) as a clear oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.7,2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7,2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}) 4.40(\mathrm{~d}, J=11.4,1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.4,1 \mathrm{H}), 4.11$ $(\mathrm{p}, J=5.8,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{q}, J=6.4,2 \mathrm{H}), 1.40$ $(\mathrm{d}, J=6.6,3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.3,136.19,136.18,134.5,133.9,130.7$, $130.0,129.9,129.5,127.9,127.8,113.9,84.6,81.4,72.7,69.5,66.6,58.6,55.5,36.6,27.6,27.2$, 24.7, 19.7. IR (neat, cm^{-1}) $3430(\mathrm{OH}), 2246,1612,1586,1512$. HRMS (ESI) calc for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SiNa}^{+} 539.2588$, found 539.2570. $[\alpha]_{\mathrm{D}}+9.56\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

To a solution of the alcohol obtained above ($300 \mathrm{mg}, 0.58 \mathrm{mmol}$) in THF (6.0 mL) was added dropwise Red-Al ($283 \mu \mathrm{~L}$ of a 65% solution in hexanes, 0.92 mmol) at $-10^{\circ} \mathrm{C}$. The reaction was
stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched with freshly distilled ethyl acetate $(91 \mu \mathrm{~L}$, 0.92 mmol), cooled to $-78{ }^{\circ} \mathrm{C}$, and treated with a solution of iodine ($221 \mathrm{mg}, 0.871 \mathrm{mmol}$) in THF (1 mL). The reaction was allowed to warm to rt and stirred for 1 h . The reaction was quenched with $1: 1$ sat. NaHCO_{3} : sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, treated with sat. Rochelle's salt for 10 min , diluted with water, and extracted $3 x$ with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($12 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product $14(337 \mathrm{mg}, 90 \%)$ as a clear oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=1.4,8.0,4 \mathrm{H}), 7.44(\mathrm{~m}$, 6 H), 7.24 (d, $J=8.7,2 \mathrm{H}$), 6.90 (d, $J=8.7,2 \mathrm{H}$), $5.60(\mathrm{~d}, J=7.3,1 \mathrm{H}), 4.34(\mathrm{~m}, 3 \mathrm{H}), 4.24$ (m, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{td}, J=6.6,9.2,1 \mathrm{H}), 3.49(\mathrm{td}, J=6.8,9.3,1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.67$ $(\mathrm{s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4,3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.3,141.1,136.3,136.2$, $134.3,133.9,130.7,130.0,129.9,129.5,127.9,127.8,113.9,103.8,72.8,72.7,70.3,66.6,55.5$, 52.5, 35.8, 27.3, 21.9, 19.7. IR (neat, cm^{-1}) $3413(\mathrm{OH}), 3068,2929,2855,1612,1586,1512$. HRMS (ESI) calc for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{IO}_{4} \mathrm{SiNa}^{+} 667.1711$, found 667.1684. [$\left.\alpha\right]_{\mathrm{D}}-32.2\left(c \quad 1.00, \mathrm{CHCl}_{3}\right)$.
(5R)-3-((S)-2-(tert-Butyldiphenylsilyloxy)-4-(4-methoxybenzyloxy)butyl)-5-methylfuran-2(5H)-one, 15.

To a solution of vinyl iodide $14(350 \mathrm{mg}, 0.54 \mathrm{mmol})$, potassium carbonate ($150 \mathrm{mg}, 1.08$ mmol), hydrazine (2 drops), and triethylamine ($84 \mu \mathrm{~L}, 0.59 \mathrm{mmol}$) in THF (5.5 mL) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(38.1 \mathrm{mg}, 0.054 \mathrm{mmol})$ at rt under $\mathrm{Ar}(\mathrm{g})$. The reaction was purged with $\mathrm{CO}(\mathrm{g})$ and was placed in a bomb. The pressure was adjusted to 55 psi , and the reaction was heated to an internal temperature of $45{ }^{\circ} \mathrm{C}$. The reaction was stirred 2 days. The bomb was then slowly vented, and the solution was passed through a plug of Celite ${ }^{\circledR}$. The solvent was removed in vacuo, and the crude product was purified using flash column chromatography ($8 \% \mathrm{EtOAc} / \mathrm{Hex}$) to give pure product $15(265 \mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}$, $J=8.6,2 \mathrm{H}), 6.89(\mathrm{~m}, 3 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, J=4.9$, $2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9,3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.2,159.3,151.7$, $136.16,136.12,134.15,134.10,132.4,132.3,130.7,130.5,130.04,130.02,129.4,128.7,127.9$, $113.9,77.7,72.7,69.7,66.6,55.5,36.6,32.6,27.3,19.6,19.2$. IR (neat, $\left.\mathrm{cm}^{-1}\right) 1754$ (CO). HRMS (ESI) calc for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiNa}^{+} 567.2537$, found 567.2527. [$\left.\alpha\right]_{\mathrm{D}}-75.44$ (c 1.00, CHCl_{3}).

(5R)-3-((S)-2-(tert-Butyldiphenylsilyloxy)-4-hydroxybutyl)-5-methylfuran-2(5H)-one, 16.

15

16

To a solution of PMB ether $15(350 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.1 \mathrm{~mL})$ and water $(306 \mu \mathrm{~L})$ in a 25 mL round-bottomed flask was added DDQ ($219 \mathrm{mg}, 0.96 \mathrm{mmol}$) portionwise at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to rt and stirred for 1 h . The reaction was quenched with sat.
NaHCO_{3}, diluted with water, and extracted 3 x with ether. The organic layers were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product 16 (234 $\mathrm{mg}, 86 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=1.0,1 \mathrm{H})$, $4.91(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{dq}, J=5.9,14.9,2 \mathrm{H}), 2.00(\mathrm{brs}, 1 \mathrm{H}), 1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.3,152.1,136.1,133.9,133.7$, $130.4,130.1,128.0,127.9,77.8,70.4,59.5,38.5,32.4,27.2,19.5,19.1$. IR (neat, cm^{-1}) 1752 (CO). HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}^{+} 447.1962$, found 447.1955. [$\left.\alpha\right]_{\mathrm{D}}+10.42$ (c 1.00, CHCl_{3}).

(5R)-3-((S)-4-Bromo-2-(tert-Butyldiphenylsilyloxy)butyl)-5-methylfuran-2(5H)-one, 4.

To a solution of alcohol $16(165 \mathrm{mg}, 0.38 \mathrm{mmol})$ and triphenylphosphine ($112 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ was added N-bromosuccinimide ($76 \mathrm{mg}, 0.42 \mathrm{mmol}$) slowly at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $1: 1$ sat. NaHCO_{3} : sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, diluted with water, and extracted 3 x with ether. The combined organic extracts were washed with brine, dried with MgSO_{4}, filtered, and the solvent was removed in vacuo. The crude product was purified using flash column chromatography ($12 \% \mathrm{EtOAc} / \mathrm{Hex}$) yielding pure product $4(164 \mathrm{mg}, 87 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~m}, 6 \mathrm{H}), 6.83$ (d, $J=1.2,1 \mathrm{H}), 4.91(\mathrm{dq}, J=1.3,6.7,1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dt}, J=1.9,7.1,2 \mathrm{H}), 2.47$ (d, $J=5.9$, $2 \mathrm{H}), 2.08$ (qd, $J=6.6,13.2,1 \mathrm{H}), 1.96$ (dtd, $J=4.9,7.2,12.0,1 \mathrm{H}), 1.34$ (d, $J=6.8,3 \mathrm{H}), 1.09$ (s, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.9,152.0,136.1,136.0,133.8,133.5,130.2,130.1,130.0,128.0$, $127.9,77.8,70.7,39.5,32.0,29.9,27.2,19.6,19.2$. IR (neat, cm^{-1}) 1754 (CO). HRMS (ESI) calc for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BrO}_{3} \mathrm{SiNa}^{+} 509.1118$, found 509.1105. $[\alpha]_{\mathrm{D}}+32.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
(S)-3-((2R,8R,13R)-8,13-bis(tert-Butyldimethylsilyloxy)-13-((2R,5R,6R)-5-(tert-butyldimethylsilyloxy)-6-dodecyltetrahydro-2H-pyran-2-yl)-2-(tert-butyldiphenylsilyloxy)tridec-11-ynyl)-5-methylfuran-2(5H)-one, 18.

In a glove-box, to neat alkene $10(50 \mathrm{mg}, 0.065 \mathrm{mmol})$ in a small scintillation vial was added freshly prepared $9-\mathrm{BBN}$ solution $(0.5 \mathrm{M}, 144 \mu \mathrm{~L}, 0.072 \mathrm{mmol}$ made from 9-BBN dimer and degassed THF). The solution was stirred overnight. The resulting trialkylborane solution was then transferred to a vial containing $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(8.7 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(20 \mathrm{mg}$, $0.085 \mathrm{mmol})$. A solution of bromide $4(38.2 \mathrm{mg}, 0.078 \mathrm{mmol})$ in THF $(100 \mu \mathrm{~L})$ was then added. The reaction was stirred at rt for 24 h . The vial was then removed from the glove-box, and the solution was then diluted with hexanes, filtered through a plug of Celite(R), and the solvent was removed in vacuo. The crude product was purified using flash column chromatography (3%
$\mathrm{EtOAc} / \mathrm{Hex})$ yielding pure product $18(46 \mathrm{mg}, 60 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.68$ $(\mathrm{m}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=0.7,1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=6.7,1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.31$ (ddd, $J=1.5,6.7,10.7,1 \mathrm{H}), 3.21(\mathrm{dd}, J=3.5,8.4,1 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.23(\mathrm{dd}, J=7.2,13.0,2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 7 \mathrm{H}), 1.29-1.41(\mathrm{~m}, 36 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.92$ $(\mathrm{m}, 27 \mathrm{H}), 0.09(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.2,151.4,136.1,136.0,134.3,130.9,129.93$, $129.90,127.8,86.0,80.8,80.1,79.4,71.9,71.7,71.2,67.3,66.7,37.1,36.6,36.0,32.4,32.1$, $32.0,31.6,30.0,29.9,29.6,27.2,26.1,26.0,25.9,25.2,22.9,21.4,19.5,19.1,18.6,18.39,18.31$, 15.1, 14.4, -4.1, -4.2, -4.4, -4.5, -4.6. IR (neat, cm^{-1}) 2926, 1855, 1761 (CO). HRMS (ESI) calc for $\mathrm{C}_{69} \mathrm{H}_{120} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+} 1195.8003$, found 1195.7992. $[\alpha]_{\mathrm{D}}-5.82\left(c \quad 1.00, \mathrm{CHCl}_{3}\right)$.

Pyranicin, 1.

To a solution of silyl ether $\mathbf{1 8}(28 \mathrm{mg}, 0.024 \mathrm{mmol})$ in acetonitrile $(2.5 \mathrm{~mL})$ in a teflon vial was added HF ($100 \mu \mathrm{~L}, 48 \%$ aq. sol.). The reaction was stirred at rt overnight. The reaction was quenched with sat. NaHCO_{3}, diluted with water, and extracted 3 x with EtOAc. The combined organic layers were then washed with brine, dried with MgSO_{4}, filtered, and concentrated to give the crude tetraol. Purification using flash column chromatography ($90 \% \mathrm{EtOAc} / \mathrm{Hex}$) gave the desired tetraol product ($13 \mathrm{mg}, 92 \%$) as a clear oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=1.3,1 \mathrm{H}), 5.09$ $(\mathrm{m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=7.1,1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{brs}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 3 \mathrm{H}), 1.64$ $(\mathrm{m}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~d}, J=6.8,3 \mathrm{H}), 1.38(\mathrm{~m}, 27 \mathrm{H}), 0.90(\mathrm{t}, J=6.8,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.9,152.1,131.3,86.8,80.9,80.5,78.2,71.2,70.0,69.9,66.1,66.0,37.4,37.3$, $35.8,33.6,32.1,31.7,30.6,29.9,29.88$, 29.86, 29.80, 29.5, 25.7, 25.69, 25.65, 22.9, 21.4, 19.3, 15.6, 14.3. IR (neat, cm^{-1}) $3399(\mathrm{OH}), 2923,2852,1739,1456$. HRMS (ESI) calc for $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{O}_{7} \mathrm{Li}^{+} 599.4494$, found 599.4520. $[\alpha]_{\mathrm{D}}+2.24$ (c 1.00, CHCl_{3}).

To a degassed solution of the tetraol alkyne obtained above ($5.0 \mathrm{mg}, 0.0084 \mathrm{mmol}$) in benzene $(1.2 \mathrm{~mL})$ and $\mathrm{EtOH}(1.2 \mathrm{~mL})$ was added Wilkinson's catalyst $(7.8 \mathrm{mg}, 0.0084 \mathrm{mmol})$. The solution was frozen $\left(\mathrm{N}_{2}\right)$, evacuated, and then purged with hydrogen. The reaction was stirred under a balloon of hydrogen for 14 h . The reaction was then purged with argon, the solvent was removed in vacuo, and the crude product was purified using flash column chromatography (EtOAc) to yield pure pyranicin $1(4.5 \mathrm{mg}, 89 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, \mathrm{~J}=1.0,1 \mathrm{H}), 5.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=5.7,7.6,1 \mathrm{H}), 3.22(\mathrm{ddd}, J=2.0$, $6.9,9.6,1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.24(\mathrm{~m}, 47 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H})$, $0.91(\mathrm{t}, \mathrm{J}=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.9,152.1,131.4,81.4,80.2,78.2,74.2,72.0,70.1$, $66.3,37.49,37.57,37.52,33.6,32.4,32.1,31.8,30.7,29.90,29.89,29.87,29.85,29.83,29.80$, 29.7, 29.5, 25.85, 25.81, 25.74, 25.5, 22.9, 21.8, 19.3, 14.3. IR (neat, cm^{-1}) $3390(\mathrm{OH}), 2924$,

2853, 1740, 1516, 1463, 1260. HRMS (ESI) calc for $\mathrm{C}_{35} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{Na}^{+} 619.4544$, found 619.4551 . $[\alpha]_{\mathrm{D}}+24.8\left(c 0.20, \mathrm{CHCl}_{3}\right),+8.8(c 0.20, \mathrm{MeOH})$.

S15

S8C8,

1

[^0]: ${ }^{1}$ a) Alaimo, P. J.; Peters, D.W.; Arnold, J.; Bergman, R.G. J. Chem. Educ. 200178 64. b) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R.K.; Timmers, F. J. Organometallics 1996, 15, 151.
 ${ }^{2}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

