Supporting Information

Mono- and Penta-addition of Enol Silyl Ethers to [60]Fullerene

Eiichi Nakamura,* Shinsuke Mouri, Yuki Nakamura, Koji Harano, and Hiroyuki Isobe*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033.

Supplemental Figure and Tables

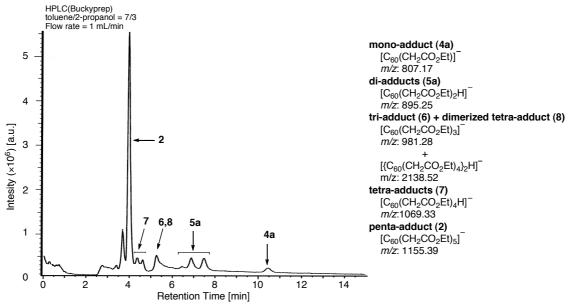


Figure S1. LC-MS Chart of Penta-addition Reaction Measured in Total Ion Current.

Table S1.	. Solvent Effect	of the Penta	-addition I	Reaction
-----------	------------------	--------------	-------------	----------

-

C ₆₀		(1 atm) 3 (10 eq) Ivent time	EtO O H EtO 2	OEt O OEt
entry	solvent	time (h)	yield ^a (%)	C ₆₀ recovery ^a (%)
1	PhCl	24	0	100
2	10% DMSO/PhCl	1.5	46	15
3	15% DMSO/PhCl	1.5	53	9
4	20% DMSO/PhCl	1.5	72	0
5	25% DMSO/PhCl	1	64	0
6	30% DMSO/PhCl	1	66	0
7	20% HMPA/PhCl	1.5	15	32
8	20% DMPU/PhCl	1.5	<5	72
9	20% DMI/PhCl	1.5	7	30

a) Determined by HPLC using pyrene as an internal standard.

Table S2. Effect of Base Adduct

C ₆₀ + 1	Gamma Silves Silves DEt 20% DMS rt, tin q)	O/PhCl	OEt OH OOEt OOEt 2
entry	base	time (h)	yield ^a (%)
1	-	3	64
2	pyridine	2.5	41
3	K ₂ CO ₃	1.5	72
4	K ₂ CO ₃ ^b	1.5	15
5	Li ₂ CO ₃	2	65
6	Na ₂ CO ₃ ^b	2	13
7	Cs ₂ CO ₃ ^b	1.5	23
8	Et ₃ N	2	46
9	ⁱ Pr ₂ EtN	2	56
10	DBU	2	0
11	K ₃ PO ₄	1.5	0
12	KOH	1.5	7
13	NaOH	1.5	39
14	NaO ^t Bu	1.5	0

a) Determined by HPLC using pyrene as an internal standard. b) Base reagent was used from the freshly opened reagent bottle. K_2CO_3 was dried by heating the reagent at 300 °C under vacuum for 12 h.

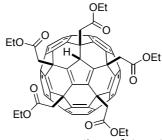
Experimental Section

General. All manipulations were carried out under nitrogen or argon atmosphere with standard Schlenk techniques unless otherwise noted. All reactions were monitored by HPLC (column, Cosmosil-Buckyprep, 4.6×250 mm, Nacalai Tesque; flow rate, 2.0 mL/min; eluent, toluene/2-propanol (7/3) or flow rate, 1.0 mL/min; eluent, toluene/2-propanol (4/6); detector at 290 nm, Jasco MD-2015PLUS; column temperature at 40 °C). Flush silica-gel column chromatography was performed on silica gel 60N (Kanto, spherical and neutral, 140–325 mesh) as described by Still.¹ Gel permeation column chromatography was performed on a Japan Analytical Industry LC-9201 (eluent: toluene, flow: 3.5 mL/min) with JAIGEL 2H and 3H polystylene columns. NMR spectra were measured with JEOL ECA-500 (¹H: 500 MHz; ¹³C: 125 MHz), JEOL ECX-400 (¹H: 400 MHz; ¹³C: 100 MHz) or Bruker DRX-500 (¹H: 500 MHz; ¹³C: 125 MHz). NMR spectra are reported in parts per million from internal tetramethylsilane (δ 0.00 ppm) for ¹H NMR, from solvent carbon (δ 77.00 ppm for chloroform) for ¹³C NMR. IR spectra were recorded on Applied Systems React-IR 1000 equipped with an attenuated total reflection (ATR; neat), and are reported as wavenumbers (v) in cm⁻¹. Mass spectra were obtained on a JEOL JMS-T100LC instrument (APCI-TOF MS).

Materials. Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and used after appropriate purification before use. Anhydrous ethereal solvents (stabilizer-free) were purchased from WAKO Pure Chemical and purified by a solvent purification system (GlassContour)² equipped with columns of activated alumina and supported copper catalyst (Z-5) prior to use. All other solvents were purified by distillation and stored over molecular sieves 4Å. The water content of solvents was determined with a Karl-Fisher Moisture Titrator (MK-210, Kyoto Electronics Co.) to be less than 40 ppm except for DMSO (88 ppm).

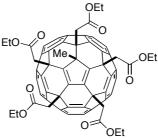
Synthesis of Ketene Silyl Acetals (1a-d) and Enol Silyl Ethers (1e-g)

Ketene silyl acetals and enol silyl ethers were prepared by following the reported experimental procedures.^{3,4}

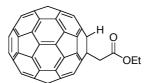

^{1.} Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.

^{2.} Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen R. K.; Timmers F. J. *Organometallics* **1996**, *15*, 1518–1520.

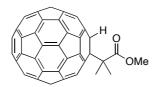
^{3.} Oisaki, K.; Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 5644–5645.


^{4.} Bloomfield, J. J.; Nelke, J. M. Org. Synth. 1977, 57, 1–6.

Synthesis of $C_{60}(CH_2CO_2Et)_5H$ (2)

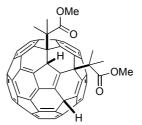

To a solution of C_{60} (101 mg, 0.140 mmol) in chlorobenzene (112 mL) was added DMSO (28 mL) under argon at room temperature. The O_2 gas was bubbled through the resulting purple solution for 5 min. Then, potassium bicarbonate (194 mg, 1.40 mmol) and 1-ethoxy-1-[(trimethylsilyl)oxy]ethene 1a (445 mg, 2.78 mmol) was added, and the solution was stirred under O_2 , where the color change from purple to red solution was immediately observed. The reaction was monitored via HPLC, and quenched with aqueous NH₄Cl (20 mL) after 1.5 h with 72% HPLC yield using pyrene as an internal standard. The mixture was washed with saturated aqueous NH_4Cl (3 × 50 mL). Combined organic layer was dried over Na₂SO₄ and concentrated to give a red solid (243 mg). The crude (237 mg) was purified by toluene GPC to obtain penta-adduct 2 in 21% yield as an analytically pure red solid (34.2 mg). IR (powder) 3232, 1721, 1461, 1372, 1345, 1302, 1250, 1227, 1192, 1185, 1113, 1096, 1065, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.24 (t, J = 7.2 Hz, 6H), 1.28 (t, J = 7.2 Hz, 6H), 1.29 (t, J = 7.2 Hz, 3H), 3.50 (d, J = 14.9 Hz, 2H), 3.54 (d, J = 14.3 Hz, 2H), 3.61 (d, J = 14.3 Hz, 2H), 3.69 (d, J = 14.9 Hz, 2H), 3.71 (s, 2H), 4.22 (q, J = 7.2 Hz, 4H), 4.25 (q, J = 7.2 Hz, 4H), 4.28 (q, J = 7.2 Hz, 2H), 5.16 (s, 1H); ¹³C NMR (125 MHz, $CDCl_3$) δ 14.22, 14.26, 44.10, 44.59, 47.43, 51.56, 52.40, 53.80, 57.59, 61.12, 61.16, 61.20, 142.77, 143.58, 143.69, 143.79, 143.85, 143.87, 144.02, 144.13, 144.59, 145.05, 145.14, 145.49, 146.54, 146.86, 146.94, 147.05, 147.64, 147.88, 148.00, 148.05, 148.25, 148.57, 148.59, 148.66, 150.60, 152.17, 153.35, 155.19, 169.88, 170.47, 171.30; HRMS (APCI-) m/z calcd for $C_{80}H_{35}O_{10}$ [M-H]⁻ 1155.2230, found 1155.2264. The ¹H and ¹³C NMR spectra of **2** are shown in Figures S2 and S3.

$C_{60}(CH_2CO_2Et)_5Me$ (3)

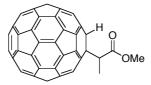


To a solution of C_{60} (14.5 mg, 0.0201 mmol) in chlorobenzene (16 mL) was added DMSO (4 mL) under argon at room temperature. The O_2 gas was bubbled through the resulting purple solution for 5 min. Then, potassium bicarbonate (27.8 mg, 0.201 mmol) and 1-ethoxy-1-[(trimethylsilyl)oxy]ethene **1a** (66.1 mg, 0.412 mmol) were added, and the solution was stirred under O_2 for 1.5 h. The reaction atmosphere was substituted with argon by bubbling for 5 min. Then potassium tert-butoxide (1.0 M solution in THF, 40.0 µL, 0.0400 mmol) was added to the solution and the mixture was stirred for 1 h, followed by the addition of iodomethane (2.85 g, 20.1 mmol). The reaction was quenched with aqueous NH₄Cl (5 mL) after 7 days, and washed with saturated aqueous NH_4Cl (3 × 5 mL). Combined organic layer was dried over Na_2SO_4 and concentrated to give a red solid (72.5 mg). The crude was purified by silica gel column chromatography (17 g, eluent: toluene/ethyl acetate/triethylamine = 90/10/0.5) to obtain product 3 in 51% yield as an analytically pure red solid (12.0 mg). IR (powder) 3245, 2979, 1721, 1461, 1412, 1390, 1372, 1345, 1302, 1248, 1227, 1192, 1185, 1113, 1096, 1028 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.24 (t, J = 7.2 Hz, 6H), 1.27 (t, J = 7.2 Hz, 6H), 1.30 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.49 (d, J = 14.6 Hz, 2H), 3.55 (d, J = 14.6 Hz, 2H), 3.62 (d, J = 14.1 Hz, 2H), 3.72 (d, J = 14.1 Hz, 2H), 3.73 (s, 2H), 4.21 (q, J = 7.2 Hz, 4H), 4.25 (q, J = 7.2 Hz, 4H), 4.26 (q, J = 7.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 14.16, 14.22, 14.24, 42.21, 44.64, 45.68, 51.08, 53.78, 54.67, 60.69, 61.12, 61.22, 141.81, 142.52, 143.55, 143.70, 143.73, 143.94, 144.00, 144.05, 144.42, 144.80, 145.51, 146.17, 147.03, 147.09, 147.18, 147.75, 147.99, 148.15, 148.31, 148.50, 148.62, 151.39, 152.98, 154.75, 160.94, 170.42, 171.37; HRMS (APCI-) m/z calcd for $C_{81}H_{38}O_{10}$ [M]⁻ 1170.2465, found 1170.2471. The ¹H and ¹³C NMR spectra of **3** are shown in Figures S4 and S5.

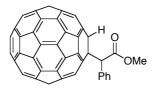
$C_{60}(CH_2CO_2Et)H(4a)$



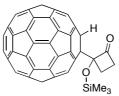
To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO mL). То the solution was then added (10 1-ethoxy-1-[(trimethylsilyl)oxy]ethene 1a (544 µL, 2.78 mmol), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 1 h. The mixture was washed with saturated aqueous NH₄Cl. The organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude material (132 mg) was purified by a silica gel column chromatography (20 g, eluent: hexane and 50% toluene/hexane) to give C_{60} (15.3 mg, 15% recovery) and mono-adduct 4a (66.5 mg, 62%) as an analytically pure brown powder. IR (powder) 2960, 2929, 2360, 2345, 1735, 1588, 1430, 1345, 1258, 1140, 735 cm⁻¹; ¹H NMR (400 MHz, $CS_2/CDCl_3$; v/v = 1/1) δ 1.53 (t, J = 7.2 Hz, 3H), 4.44 (s, 2H), 4.55 (q, I = 7.2 Hz, 2H), 6.78 (s, 1H); ¹³C NMR (100 MHz, CS₂/CDCl₃; v/v = 1/1) δ 14.51, 49.48, 59.18, 61.07, 61.59, 136.31, 136.62, 140.07, 140.16, 141.53, 141.57, 141.85, 141.99, 142.11, 142.45, 142.49, 143.14, 144.42, 144.70, 145.26, 145.31, 145.33, 145.52, 145.57, 145.74, 146.08, 146.11, 146.27, 146.32, 146.86, 147.18, 147.45, 153.33, 153.95, 170.18; HRMS (APCI-) m/z calcd for $C_{64}H_7O_2$ [M-H]⁻ 807.0524, found 807.0469. The ¹H and ¹³C NMR spectra of **4a** are shown in Figures S6 and S7.


To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO mL). То the solution was then added (10) 1-methoxy-2-methyl-1-[(trimethylsilyl)oxy]propene **1b** (116 μL, 0.695 mmol), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 30 min. The mixture was washed with brine, and the organic layer was dried over anhydrous Na_2SO_4 . The crude material (152 mg) was purified by a silica gel column chromatography (20 g, eluent: hexane and 50%) toluene/hexane, toluene) to give C_{60} (10.6 mg, 11% recovery), mono-adduct 4b (77.4 mg, 68%) and di-adduct **5b** (12.1 mg, 10%) as an analytically pure brown powder. IR (powder) 2970, 2921, 2846, 2327, 1731, 1560, 1542, 1511, 1460, 1428, 1386, 1366, 1262, 1215, 1183, 1143, 1131, 1060, 983, 896, 844, 799, 768 cm⁻¹; ¹H NMR (500 MHz, $CS_2/CDCl_3$; v/v = 1/1) δ 2.30 (s, 6H), 4.08 (s, 3H), 6.67 (s, 1H); ¹³C NMR (125 MHz. $CS_2/CDCl_3$; v/v = 1/1) δ 24.03, 52.60, 53.13, 58.10, 70.70, 136.37, 137.05, 138.91, 140.28, 141.36, 141.56, 142.03, 142.08, 142.10, 142.55, 142.58, 143.17, 144.38, 144.69, 145.20, 145.28, 145.38, 145.72, 146.05, 146.11, 146.30, 146.32, 146.82, 147.13, 147.44, 153.93, 176.10; HRMS (APCI-) *m*/*z* calcd for C₆₅H₁₀O₂ [M]⁻ 822.0881, found 822.0896. The ¹H and ¹³C NMR spectra of 4b are shown in Figures S8 and S9.

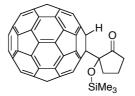
C₆₀(CH₃CH₃CCO₂Me)₂H₂ (5b)


IR (powder) 3434, 2970, 2941, 2353, 1730, 1599, 1514, 1457, 1429, 1387, 1365, 1267, 1184, 1145, 1116, 985, 893, 849, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.89 (s, 3H), 1.91 (s, 3H), 1.92 (s, 3H), 1.95 (s, 3H), 3.82 (s, 3H), 3.96 (s, 3H), 5.51 (d, *J* = 2.1 Hz, 1H), 5.97 (d, *J* = 2.1 Hz, 1H) ; ¹³C NMR (100 MHz, CDCl₃) δ 22.46, 22.62, 48.42, 48.79, 50.91, 51.86, 52.41, 52,42, 52.65, 52.67, 58.72, 58.73, 61.57, 64.62, 131.75, 133.56, 136.12, 136.73, 137.17, 139.57, 139.87, 141.05, 141.39, 141.71, 141.72, 141.96, 142.77, 143.66, 143.67, 143.71, 144.40, 144,51, 144.59, 144.74, 144.75, 144.88, 145.06, 145.25, 145.27, 145.33, 145.39, 145.58, 145.60, 145.73, 145.84, 146.32, 146.69, 146.75, 146.80, 146.85, 146.87, 147.00, 147.35, 147.69, 147.74, 147.79, 148.72, 149.05, 149.31, 149.65, 149.76, 150.24, 151.24, 153.35, 154.44, 156.57, 157.21, 175.42, 176.51; HRMS (APCI-) *m*/*z* calcd for C₇₀H₂₀O₄ [M]⁻ 924.1362, found 924.1363. The ¹H and ¹³C NMR spectra of **5b** are shown in Figures S10 and S11.

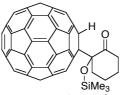
$C_{60}(CH_3CHCO_2Me)H$ (4c)


To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO (10 mL). То the solution was then added 1-methoxy-1-[(trimethylsilyl)oxy]propene 1c (94.3 μ L, 0.69 mmol; E/Z = 34/66), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 1 h. The mixture was washed with saturated aqueous NH₄Cl. The organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude material (141 mg) was purified by a silica gel column chromatography (20 g, eluent: hexane, 50% toluene/hexane and toluene) to give C_{60} (13.5 mg, 14% recovery), and mono-adduct 4c (69.6 mg, 62%) as an analytically pure brown powder. IR (powder) 2921, 2360, 2328, 1734, 1716, 1699, 1684, 1653, 1558, 1541, 1508, 1489, 1473, 1457, 1428, 1396, 1375, 1339, 1195, 1137, 1114, 768 cm⁻¹; ¹H NMR (500 MHz, CS₂/CDCl₃; v/v = 1/1) δ 2.39 (d, J = 7.2 Hz, 3H), 4.06 (s, 3H), 4.42 (q, J = 7.2 Hz, 1H), 6.94 (s, 1H); ¹³C NMR (100 MHz. $CS_2/CDCl_3$; v/v = 1/1) δ 14.95, 51.95, 52.16, 55.98, 66.14, 135.97, 136.16, 136.60, 136.67, 139.88, 140.18, 141.26, 141,38, 141.43, 141.49, 141.57, 141.83, 141.85, 141.92, 141.93, 142.09, 142.17, 142.41, 142.43, 142.45, 143.09, 144.32, 144.58, 144.68, 145.15, 145.18, 145.23, 145.26, 145.27, 145.42, 145.60, 145.63, 145.65, 145.91, 146.01, 146.05, 146.07, 146.20, 146.21, 146.26, 146.82, 146.89, 147.10, 147.40, 153.02, 153.50, 153.73, 153.77, 173.91; HRMS (APCI-) m/z calcd for $C_{69}H_{11}O_2$ [M-H]⁻ 807.0446, found 870.0501. The ¹H and ¹³C NMR spectra of **4c** are shown in Figures S12 and S13.

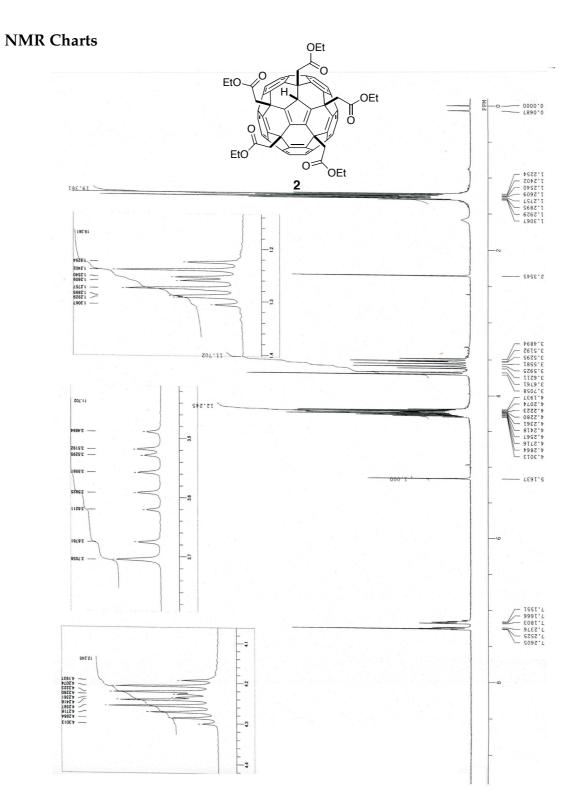
$C_{60}(C_6H_5CHCO_2Me)H$ (4d)


To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO mL). То the solution was then added (10 1-methoxy-1-[(trimethylsilyl)oxy]-2-phenylethene 1d (144 μ L, 0.69 mmol; E/Z =56/44), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 3 h. The mixture was washed with saturated aqueous NH₄Cl. The organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude material (152 mg) was purified by a silica gel column chromatography (20 g, eluent: hexane, 50% toluene/hexane) to give C_{60} (23.3 mg, 23% recovery), and mono-adduct 4d (66.5 mg, 55%) as an analytically pure brown powder. IR (powder) 2360, 2342, 1736, 1509, 1452, 1429, 1314, 1201, 1165, 698 cm⁻¹; ¹H NMR (400 MHz, CS₂/CDCl₃; v/v = 1/1) δ 4.04 (s, 3H), 5.61 (s, 1H), 6.95 (s, 1H), 7.47-7.55 (m, 3H), 7.84-7.86 (m, 2H); ¹³C NMR (100 MHz, CS₂/CDCl₃; v/v = 1/1) δ 52.71, 57.61, 63.90, 67.16, 130.49, 133.81, 136.24, 136.42, 136.91, 137.69, 139.47, 139.56, 140.19, 140.26, 141.47, 141.50, 141.52, 141.59, 141.61, 141.96, 141.99, 142.08, 142.19, 142.32, 142.49, 142.56, 142.58, 142.59, 143.17, 143.18, 144.42, 144.46, 144.80, 144.83, 145.26, 145.33, 145.36, 145.42, 145.51, 145.66, 145.77, 146.11, 146.14, 146.16, 146.20, 146.22, 146.31, 146.37, 146.42, 146.44, 146.90, 146.91, 147.25, 147.55, 152.53, 153.31, 153.52, 154.11, 172.27; HRMS (APCI-) *m/z* calcd for C₆₉H₁₀O₂ [M-H]⁻ 870.0681, found 870.0705. The ¹H and ¹³C NMR spectra of **4d** are shown in Figures S14 and S15.

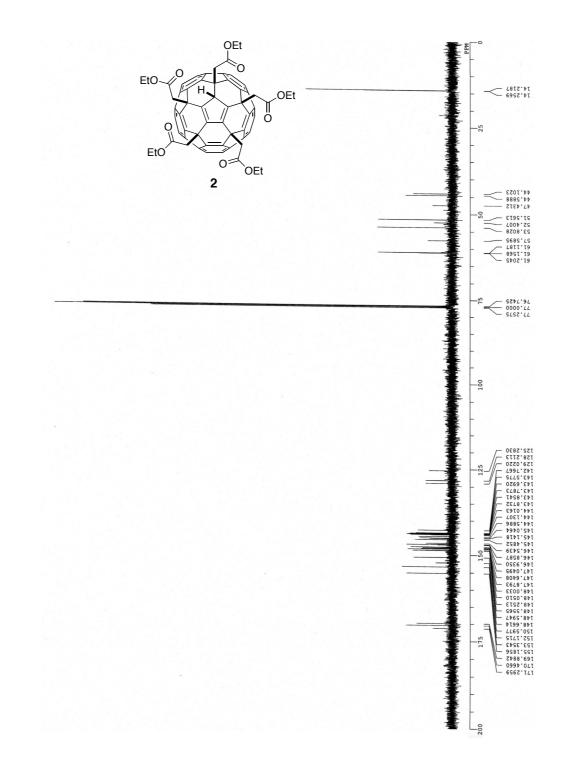
C₆₀(Me₃SiOCCOCH₂CH₂)H (4e)

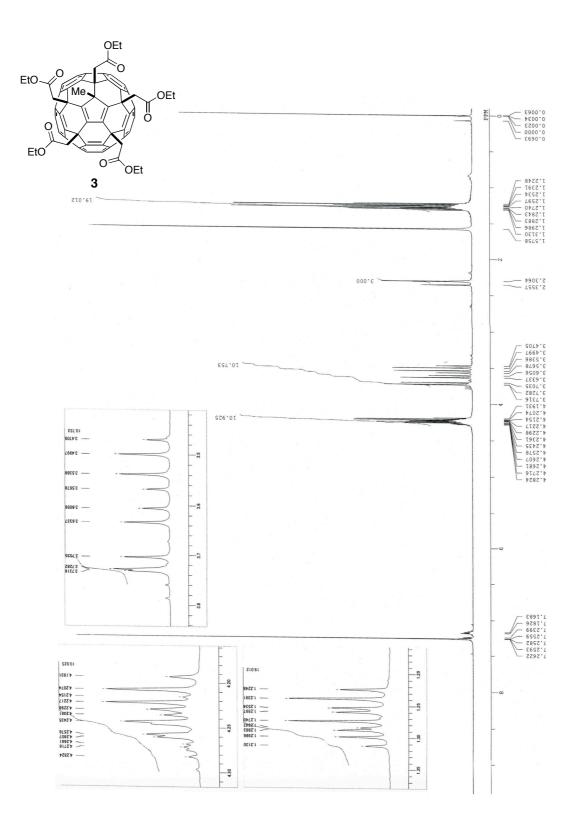

To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO mL). То the solution then added (10)was 1,2-bis-[(trimethylsilyl)oxy]cyclobutene 1e (350 µL, 1.39 mmol), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 3 h. The mixture was washed with brine, the organic layer was dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude material (146 mg) was purified with HPLC (Nacalai Tesque, Buckyprep, eluent: toluene/2-propanol = 7/3) to obtain C_{60} (15.8 mg, 16% recovery), and mono-adduct 4e (67.1 mg, 55%) as an analytically pure brown powder. IR (powder) 2919, 2849, 1785, 1459, 1426, 1386, 1250, 1202, 1178, 1058, 998, 974, 930, 892, 842 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.52 (s, 9H), 2.86-2.94 (m, 1H), 3.17-3.35 (m, 2H), 3.69-3.77 (m, 1H), 6.99 (s, 1H); ¹³C NMR (100 MHz, $CS_2/CDCl_3$; v/v = 1/1) δ 1.77, 26.68, 41.36, 57.24, 70.34, 99.11, 136.14, 137.58, 137.78, 139.62, 139.78, 140.37, 140.41, 141.48, 141.52, 141.57, 141.62, 141.65, 141.72, 142.02, 142.07, 142.11, 142.15, 142.49, 142.54, 142.58, 142.60, 142.66, 142.68, 143.20, 143.24, 144.43, 144.76, 144.86, 145.29, 145.34, 145.53, 145.62, 145.72, 145.83, 146.18, 146.24, 146.25, 146.31, 146.35, 146.41, 146.49, 146.51, 146.82, 146.90, 147.12, 147.21, 147.24, 147.48, 150.78, 150.82, 154.03, 154.20, 209.96; HRMS (APCI-) m/z calcd for C₆₇H₁₄O₂Si [M]⁻ 878.0763, found 878.0795. The ¹H and ¹³C NMR spectra of **4e** are shown in Figures S16 and S17.

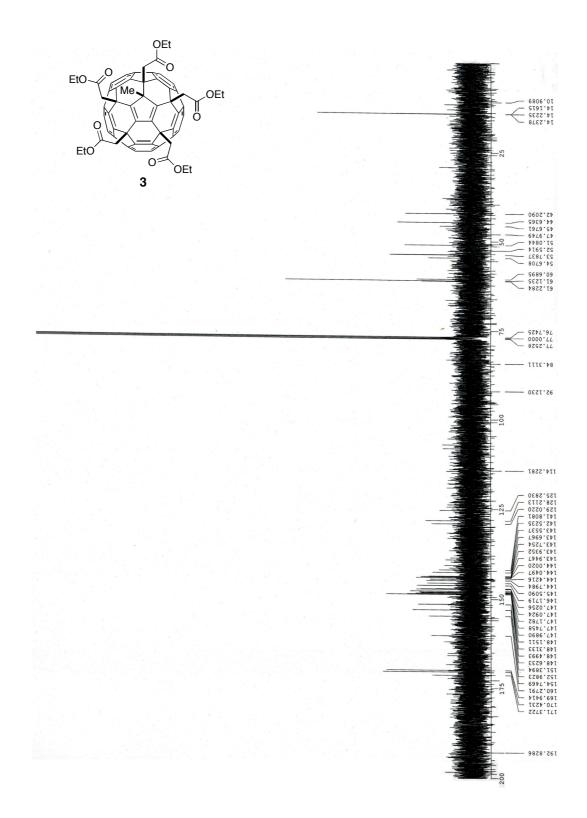
C₆₀(Me₃SiOCCOCH₂CH₂CH₂)H (4f)

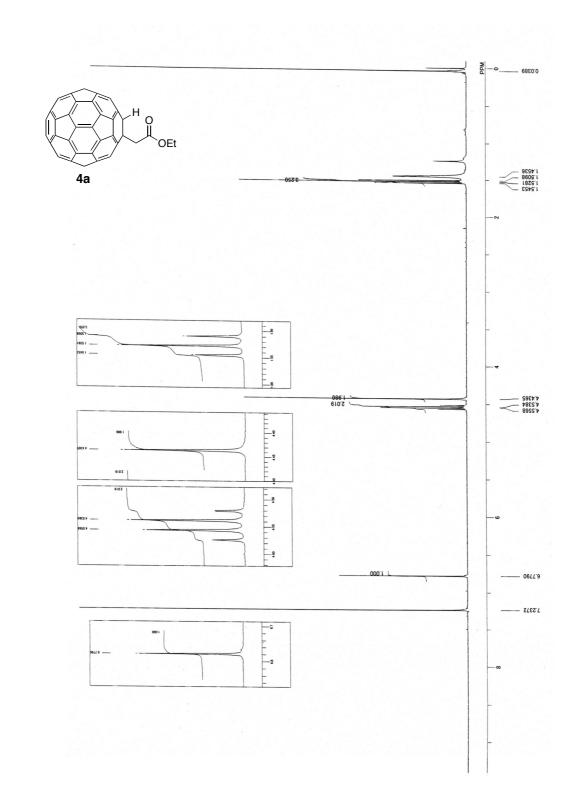


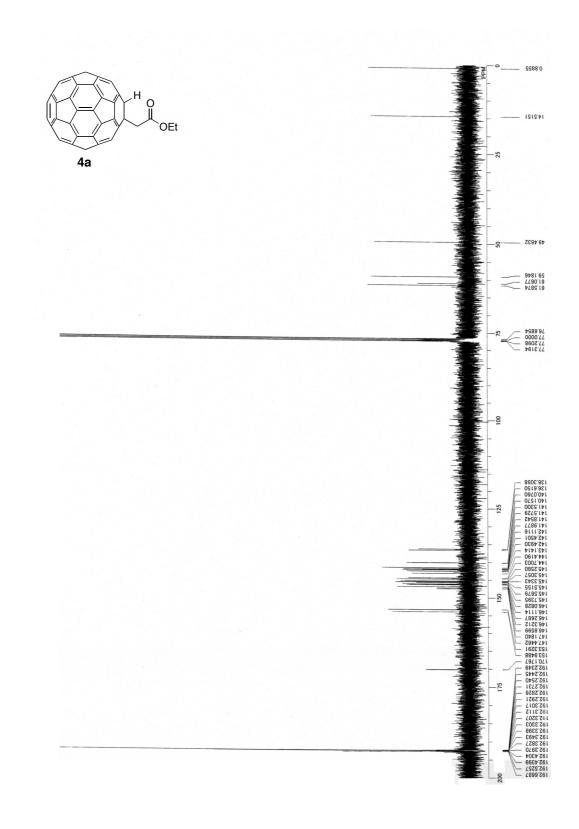
To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added the DMSO (10 mL). То solution was then added 1,2-bis-[(trimethylsilyl)oxy]cyclopentene 1f (340 µL, 1.39 mmol), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 4 h. The mixture was washed with brine, the organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude material (152 mg) purified HPLC (Nacalai was with Tesque, Buckyprep, eluent: toluene/2-propanol = 7/3) to obtain C_{60} (20.3 mg, 20% recovery), and mono-adduct 4f (52.6 mg, 42%) as an analytically pure brown powder. IR (powder) 2954, 2890, 1740, 1511, 1461, 1426, 1397, 1358, 1318, 1304, 1248, 1206, 1173, 1138, 1125, 1073, 1040, 1009, 961, 928, 880, 837, 762, 700, 689, 688, 668, 658 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.40 (s, 9H), 2.17-2.34 (m, 2H), 2.66-2.79 (m, 3H), 3.59-3.65 (m, 1H), 7.31 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 2.23, 18.34, 36.22, 37.41, 56.67, 72.13, 86.37, 136.02, 137.20, 137.72, 139.10, 139.26, 140.38, 140.46, 141.36, 141.43, 141.50, 141.61, 141.65, 141.72, 142.07, 142.11, 142.48, 142.51, 142.56, 142.62, 142.65, 143.18, 144.31, 144.39, 144.80, 144.86, 145.16, 145.20, 145.30, 145.35, 145.42, 145.48, 145.50, 145.56, 145.82, 145.92, 146.12, 146.20, 146.20, 146.26, 146.30, 146.48, 146.49, 147.13, 147.16, 147.34, 147.46, 147.49, 151.17, 151.66, 154.75, 155.23, 192.53, 217.65; HRMS (APCI-) *m*/*z* calcd for C₆₈H₁₆O₂Si [M]⁻ 892.0920 found 892.0901. The ¹H and ¹³C NMR spectra of 4f are shown in Figures S18 and S19.


C₆₀(Me₃SiOCCOCH₂CH₂CH₂CH₂)H (4g)


To a solution of C_{60} (100 mg, 0.139 mmol) in chlorobenzene (40 mL) was added DMSO mL). То the solution was then added (10)1,2-bis-[(trimethylsilyl)oxy]cyclohexene 1g (345 µL, 1.39 mmol), and the mixture was stirred under argon at ambient temperature. HPLC analysis of the mixture showed that yield of mono-adduct reached its maximum within 6 hours. The mixture was washed with brine, the organic layer was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude material (161 mg) was purified with HPLC (Nacalai Tesque, Buckyprep, eluent: toluene/2-propanol = 7/3) to obtain C₆₀ (18.1 mg, 18% recovery), and mono-adduct 4g (52.0 mg, 42%) as an analytically pure brown powder. IR (powder) 2939, 1715, 1683, 1540, 1507, 1457, 1428, 1250, 1164, 1142, 1129, 1108, 1090, 1071, 1061, 1048, 1028, 978, 965, 949, 936, 920, 903, 864, 834, 809, 761, 726, 712, 700, 689, 673, 654 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.47 (s, 9H), 2.16-2.28 (m, 4H), 2.85-2.90 (m, 1H), 3.08-3.13 (m, 1H), 3.19-3.26 (m, 1H), 3.34-3.39 (m, 1H), 6.82(s, 1H); ¹³C NMR (100 MHz, CDCl₃) § 3.03, 3.04, 22.77, 37.42, 39.28, 41.43, 57.95, 73.17, 88.64, 136.53, 137.85, 140.33, 140.49, 141.45, 141.50, 141.52, 141.62, 141.76, 142.14, 142.16, 142,34, 142.60, 142.65, 142.67, 142.70, 143.21, 143.22, 144.33, 144.44, 144.85, 144.89, 145.16, 145.30, 145.33, 145.39, 145.42, 145.46, 145.47, 145.81, 145.95, 146.10, 146.15, 146.19, 146.28, 146.44, 147.11, 147.12, 147.42, 147.50, 147.63, 152.27, 152.96, 210.23; HRMS (APCI-) m/z calcd for C₆₉H₁₈O₂Si [M]⁻ 906.1076, found 906.1098. The ¹H and ¹³C NMR spectra of **4g** are shown in Figures S20 and S21.


Figure S2. A ¹H NMR spectrum of $C_{60}(CH_2CO_2Et)_5H$ (2) in CDCl₃


Figure S3. A 13 C NMR spectrum of C₆₀(CH₂CO₂Et)₅H (2) in CDCl₃


Figure S4. A ¹H NMR spectrum of C_{60} (CH₂CO₂Et)₅Me (3) in CDCl₃

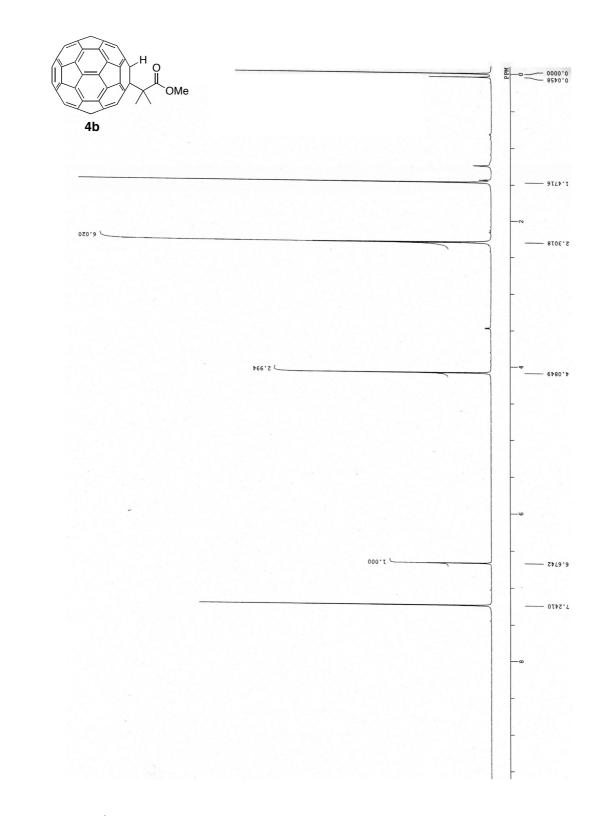

Figure S5. A ¹³C NMR spectrum of C_{60} (CH₂CO₂Et)₅Me (3) in CDCl₃

Figure S6. A ¹H NMR spectrum of $C_{60}(CH_2CO_2Et)H$ (4a) in CS_2 -CDCl₃

Figure S7. A ¹³C NMR spectrum of C_{60} (CH₂CO₂Et)H (4a) in CS₂-CDCl₃

Figure S8. A ¹H NMR spectrum of C_{60} (CH₃CH₃CCO₂Me)H (4b) in CS₂-CDCl₃

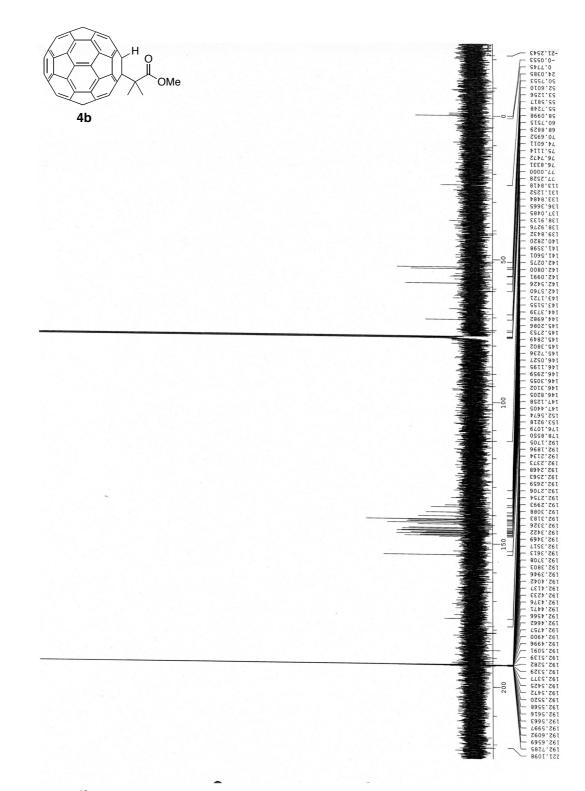


Figure S9. A ¹³C NMR spectrum of C_{60} (CH₃CH₃CCO₂Me)H (4b) in CS₂-CDCl₃

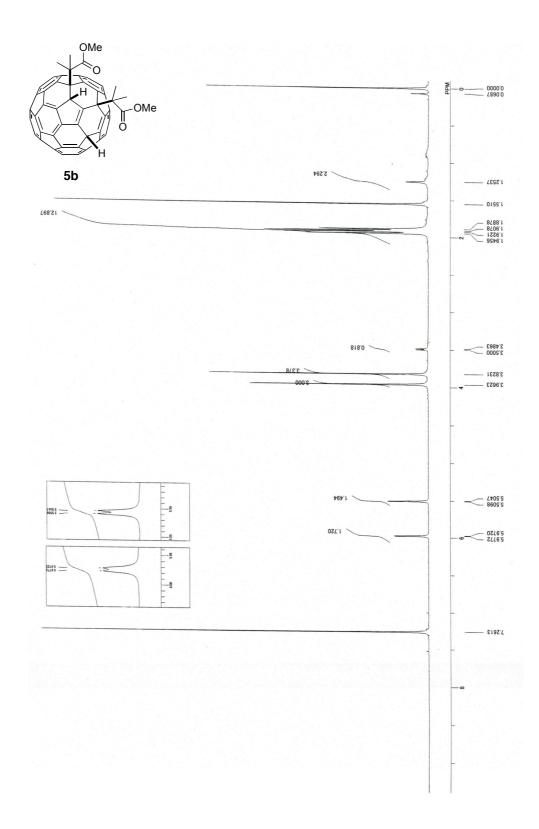


Figure S10. A ¹H NMR spectrum of $C_{60}(CH_3CH_3CCO_2Me)_2H_2$ (5b) in $CDCl_3$

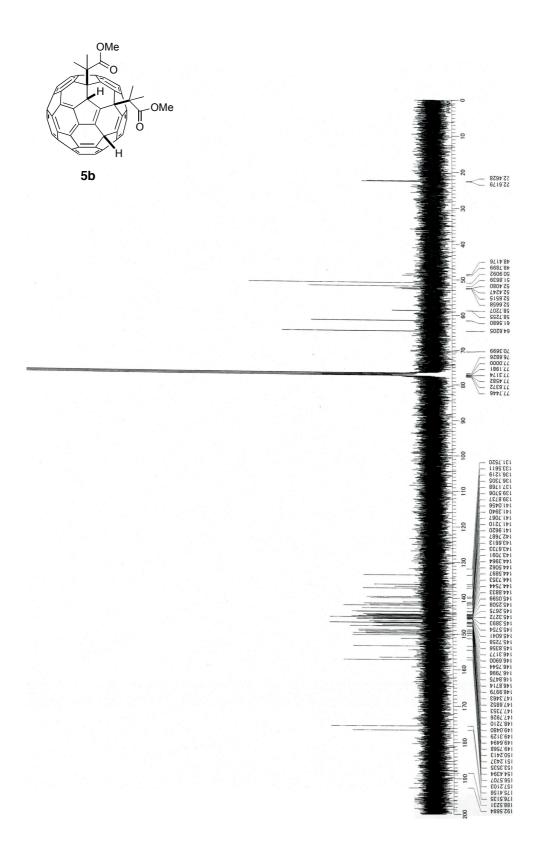
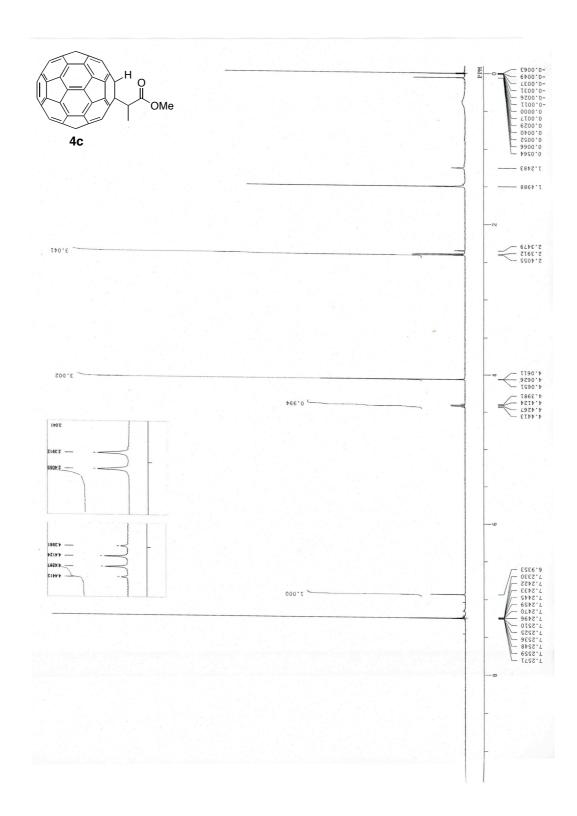
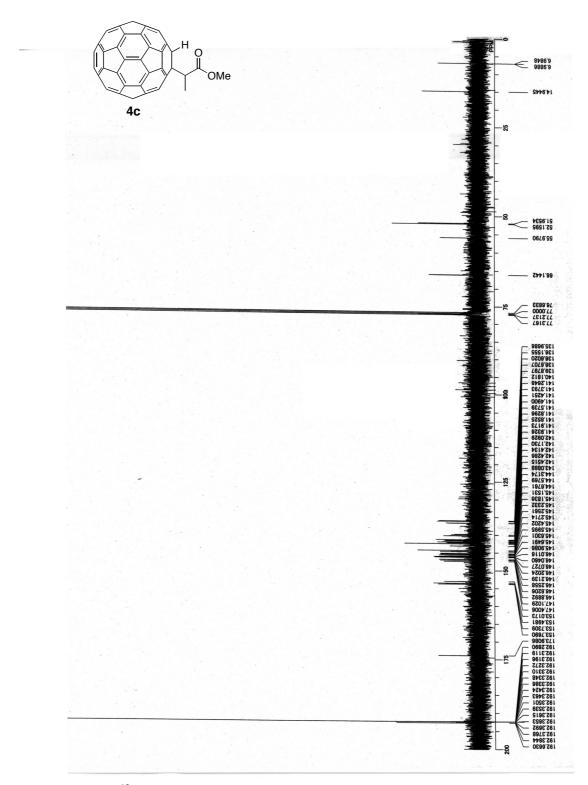
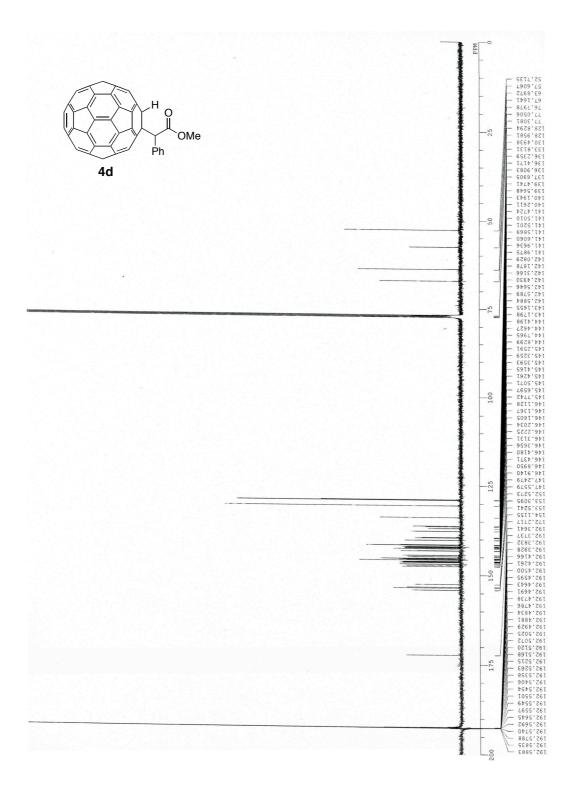
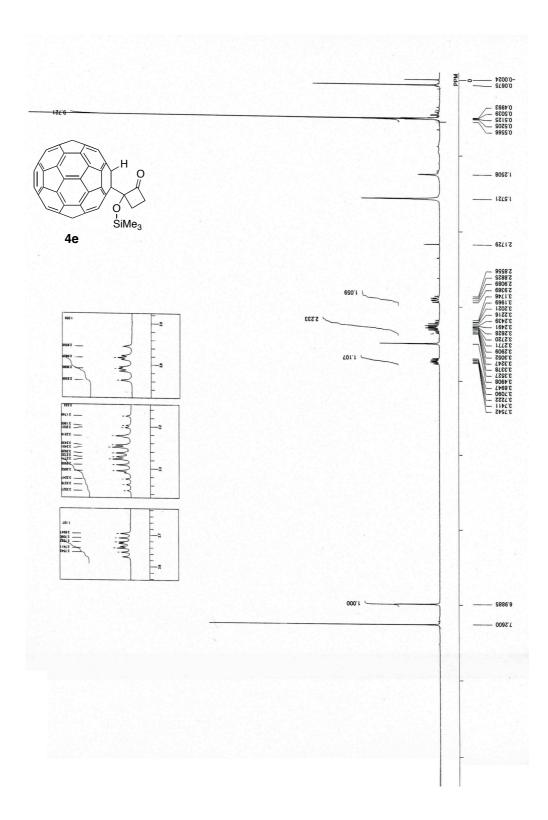
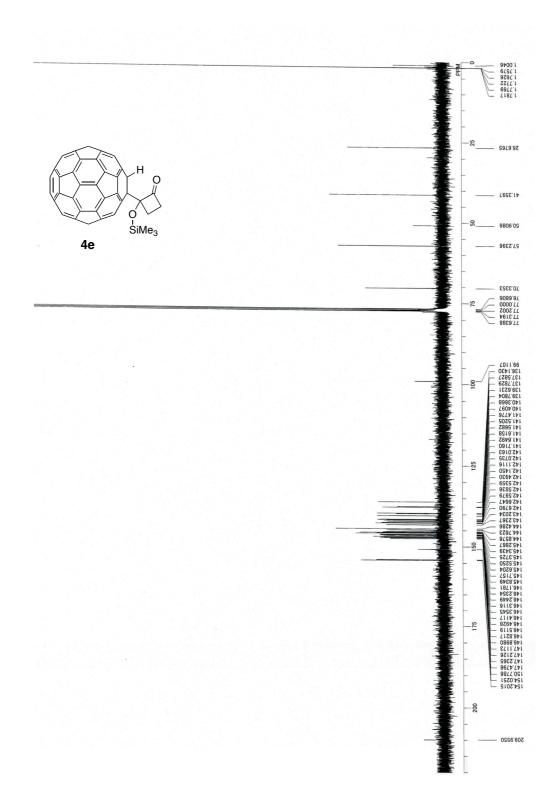
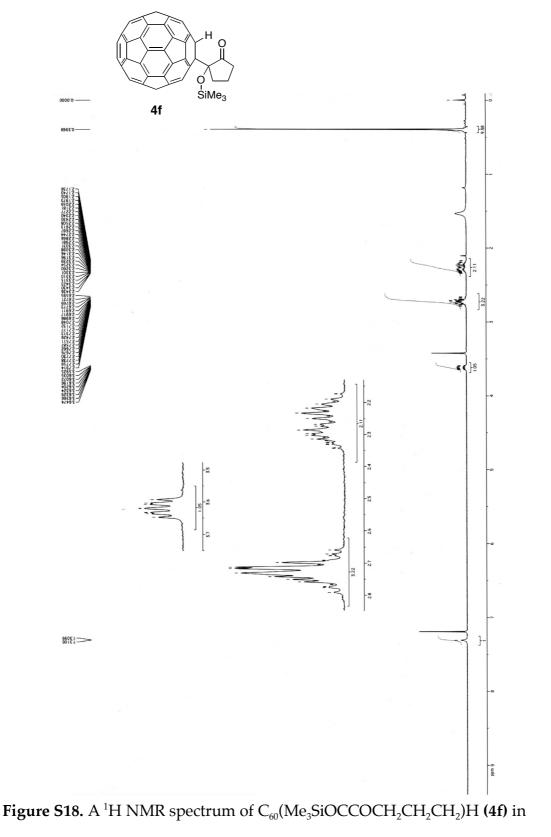




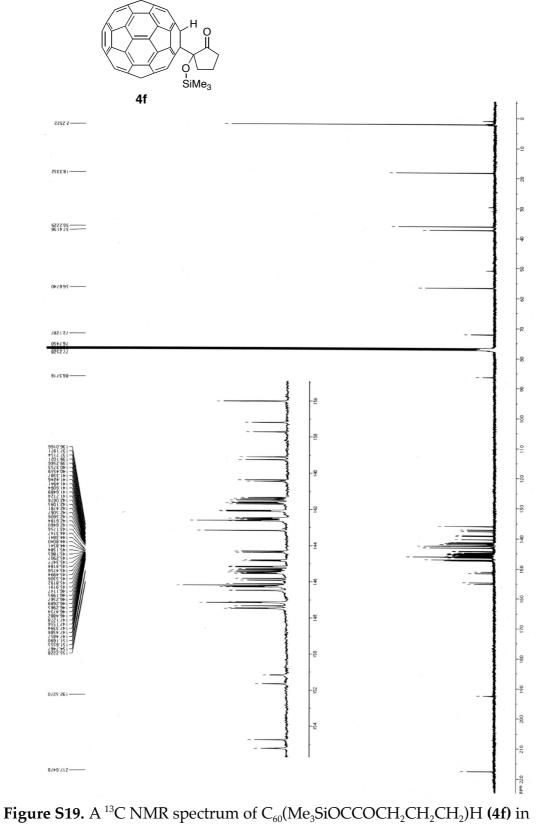
Figure S11. A 13 C NMR spectrum of C₆₀(CH₃CH₃CCO₂Me)₂H₂ (5b) in CDCl₃

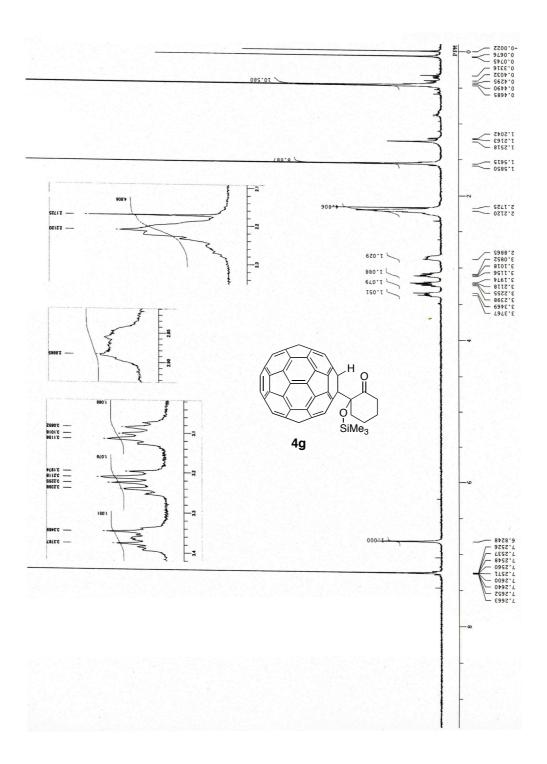

Figure S12. A ¹H NMR spectrum of C_{60} (CH₃CHCO₂Me)H (4c) in CS₂-CDCl₃


Figure S13. A ¹³C NMR spectrum of C_{60} (CH₃CHCO₂Me)H (4c) in CS₂-CDCl₃


Figure S14. A ¹H NMR spectrum of $C_{60}(C_6H_5CHCO_2Me)H$ (4d) in CS_2 -CDCl₃


Figure S15. A ¹³C NMR spectrum of $C_{60}(C_6H_5CHCO_2Me)H$ (4d) in CS_2 -CDCl₃


Figure S16. A ¹H NMR spectrum of C₆₀(Me₃SiOCCOCH₂CH₂)H **(4e)** in CDCl₃


Figure S17. A ¹³C NMR spectrum of C₆₀(Me₃SiOCCOCH₂CH₂)H (4e) in CDCl₃

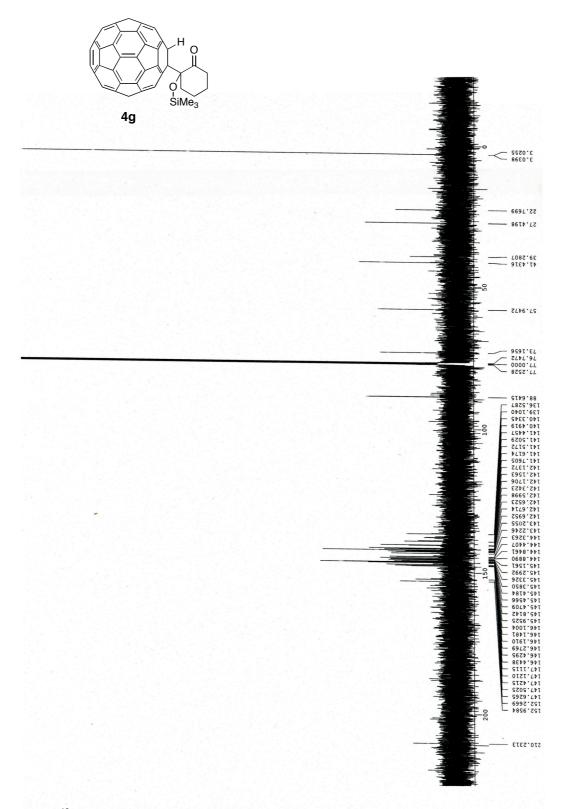

CDCl₃

Figure S19. A ¹³C NMR spectrum of C₆₀(Me₃SiOCCOCH₂CH₂CH₂)H (**4f**) i CDCl₃

Figure S20. A ¹H NMR spectrum of C_{60} (Me₃SiOCCOCH₂CH₂CH₂CH₂CH₂)H (4g) in CDCl₃

Figure S21. ¹³C NMR spectrum of C_{60} (Me₃SiOCCOCH₂CH₂CH₂CH₂CH₂)H **(4g)** in CDCl₃