Supplementary Information for

Total Synthesis of (±)-Calcaridine A and (±)-epi-Calcaridine A

Panduka B. Koswatta, Rasapalli Sivappa, H.V. Rasika Dias and Carl J. Lovely*

Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington,

Texas 76019

- Experimental procedures and characterization data for 6, 7, 10-14, 16-23, *epi*-24, 24, *epi*-calcaridine (*epi*-1), calcaridine (1) S2-S14.
- 2. Figures and experimental for X-ray structure determination S15-S19
- Copies of ¹H and ¹³C NMR spectra for 6, 7, 10-14, 16-23, *epi-24*, 24, *epi-calcaridine* (*epi-1*), calcaridine (1) S20-S57.

5-(4-Benzyloxy)-phenyl-(4-iodo-1-methyl-1H-imidazol-5-yl)-methanol (10): EtMgBr (3.0 M

solution in ether, 2.31 ml, 6.93 mmol) was added to a solution of 4,5-diiodo-

1-methyl-1H-imidazole (2.20 g, 6.60 mmol) in dry CH_2Cl_2 (15 ml) at rt over ~5 min. The resulting mixture was stirred at rt for 20 min and 4benzoyloxybenzaldehyde (1.54 g, 7.25 mmol) in dry CH_2Cl_2 (25 ml) was

OBn added and stirred at rt overnight. Sat. NH₄Cl (10 ml) was added to the reaction and the resulting pale yellow solid was filtered and the filtrate was partitioned with CH₂Cl₂. The organic layer was dried (Na₂SO₄) and concentrated to give a pale yellow solid. The resulting solid was triturated with hexanes, which was decanted to give **10** (2.80 g, quant) as a white solid; m.p. 195-198 °C^{; 1}H NMR (DMSO-d₆): δ = 7.58 (s, 1H), 7.43 (d, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 2 H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.17 (d, *J* = 8.7 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.22 (d, *J* = 4.1 Hz, 1H), 5.80 (d, *J* = 4.1Hz, 1H), 5.07 (s, 2H), 3.38 (s, 3H); ¹³C NMR: δ = 157.9, 141.9, 137.6, 135.4, 134.6, 129.0, 128.4, 128.3, 127.0, 115.1, 85.7, 70.0, 66.5, 33.2; IR (KBr, cm⁻¹): 3189 (br), 3034, 2948, 2874, 1607, 1506, 1387, 1236,1166, 1006, 971, 744, 699; HR-ESIMS (*m*/*z*): Calcd. for C₁₈H₁₈IN₂O₂ [M+H]⁺ 421.0408, found 421.0392; Calcd. for C₁₈H₁₇IN₂O₂Na [M+Na]⁺ 443.0227, found 443.0194.

5-(4-Benzoyloxy)-benzyl-4-iodo-1-methyl-1H-imidazole (7): Et₃SiH (5.36 ml, 33.55 mmol)

and TFA (2.58 ml, 33.55 mmol) were added to a solution of **10** (2.82 g, 6.71 mmol) in anhydrous CHCl₃ (50 ml) at rt, then the resulting mixture was heated at 55-60 °C for 24 h under nitrogen atmosphere. After cooling to rt, the reaction was quenched by the addition of sat. aq. NaHCO₃ solution. The

resulting mixture was extracted with CHCl₃ several times and the combined

extracts were dried (Na₂SO₄) and concentrated. The residue was purified by chromatography

(hexane/EtOAc, 1:1) to give **7** as a thick colorless oil (1.61 g, 60%); ¹H NMR (CDCl₃): $\delta = 7.42$ -7.30 (m, 6H), 7.03 (d, *J*= 8.7 Hz, 2H), 6.89 (d, *J*= 8.7 Hz, 2 H), 5.02 (s, 2H), 3.91 (s, 2H), 3.41 (s, 3H); ¹³C NMR: $\delta = 157.8$, 139.4, 137.0, 133.4, 129.6, 129.1, 128.7, 128.1, 1127.5, 115.2, 84.8, 70.2, 32.6, 30.0; IR (neat, cm⁻¹): 3031, 2918, 1609, 1509, 1418, 1239, 1175, 1013, 816, 740, 697; HR-ESIMS (*m*/*z*): Calcd. for C₁₈H₁₈IN₂O [M+H]⁺ 405.0458, found 405.0470; Calcd. for C₁₈H₁₇IN₂ONa [M+Na]⁺ 427.0278, found 427.0247.

5-(4-Benzoyloxy)-benzyl-1-methyl-1H-imidazole-4-carboxaldehyde (11): EtMgBr (3.0 M in

ether, 1.90 ml, 5.69 mmol) was added into a solution of **7** (2.19 g, 5.42 mmol) in dry THF (30 ml) at rt, and the resulting mixture was stirred at rt for 20 min. *N*-Methylformanilide (0.74 ml, 5.96 mmol) was added and the resulting mixture was stirred at rt overnight. Half saturated NH₄Cl was added to quench the reaction and the organic layer was extracted with EtOAc, dried (Na₂SO₄)

and concentrated to give the crude product. This residue was purified through a short plug of silica gel (hexane/EtOAc, 3:2) to give **11** as an off-white solid (1.09 g, 66%); m.p. 148-150 °C; ¹H NMR (CDCl₃): $\delta = 10.01$ (s, 1H), 7.51 (s, 1H), 7.41-7.30 (m, 5H), 7.05 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5.02 (s, 2H), 4.34 (s, 2H), 3.47 (s, 3H); ¹³C NMR: $\delta = 187.5$, 157.9, 138.7, 138.0, 137.8, 136.9, 129.4, 128.7, 128.6, 128.1, 127.5, 115.3, 70.1, 31.7, 28.5; IR (KBr, cm⁻¹): 3107, 3032, 2859, 1674, 1510, 1244, 1175, 799, 780, 740, 698; HR-ESIMS (*m*/*z*): Calcd. for C₁₉H₁₉N₂O₂ [M+H]⁺ 307.1441, found 307.1462; Calcd. for C₁₉H₁₈N₂O₂Na [M+Na]⁺ 329.1260, found 329.1258.

{5-[4-(Benzoyloxy)-benzyl]-1-methyl-1H-imidazol-4-yl}-(4-methoxyphenyl)-methanol (12): A few drops of *p*-bromoanisole (from 2.21 ml, 17.6 mmol) was added dropwise to a two necked round-bottom flask containing freshly-crushed oven-dried, magnesium turnings (0.42 g, 17.6

mmol) and a small crystal of iodine in THF (20 ml). This mixture was then heated at 45 °C under

nitrogen until the iodine color faded. The remainder of the pbromoanisole was added dropwise over 10 min while heating at the same temperature. After the addition was complete, the mixture was heated to reflux for 1 h and then cooled to rt, then, a solution of **3** (1.08 g, 3.52 mmol) in THF (10 ml) was added and the resulting

mixture was stirred at reflux overnight. After cooling to 0 °C, sat, NH₄Cl (20 ml) was added and the organic layer was extracted with EtOAc (x3), washed once with brine, dried (Na₂SO₄), and concentrated to give a thick, brown oil. The crude product was purified through a short plug of silica gel (EtOAc) to give **12** as a pale yellow solid (1.47 g, 100%); m.p. 124-127 °C; ¹H NMR (CDCl₃): δ = 7.42-7.29 (m, 8H), 6.89-6.76 (m, 6H), 5.78 (s, 1H), 5.00 (s, 2H), 4.38 (br, 1H), 3.78 (s, 2H), 3.73 (s, 3H), 3.28 (s, 3H); ¹³C NMR δ = 158.8, 157.5, 140.9, 137.1, 137.0, 136.2, 130.2, 129.1, 128.7, 128.1, 127.6, 125.9, 115.1, 113.7, 70.1, 69.5, 55.3, 31.8, 28.2; IR (KBr, cm⁻¹): 3198 (br), 3031, 2932, 2835, 1611, 1584, 1509, 1454, 1302, 1244, 1175, 1035, 801, 752, 698; HR-ESIMS (*m*/*z*): Calcd. for C₂₆H₂₇N₂O₃ [M+H]⁺ 415.2016, found 415.2016; Calcd. for C₂₆H₂₆N₂O₃Na [M+Na]⁺ 437.1856, found 437.1817.

5-[4-(Benzoyloxy)-benzyl]-4-[methoxy-(4-methoxy-phenyl)-methyl]-1-methyl-1H-imidazole

(13): TFA (0.53 ml, 6.81 mmol) was added to a solution of 4 (1.42 g, 3.41 mmol) in anhyd MeOH (20 ml) at rt and the mixture was then heated at 55 °C for overnight. Sat. aq. NaHCO₃ (20 ml) was added to the above reaction mixture and the aqueous layer was extracted with EtOAc (x3) and the organic layer was washed with

aq. NaHCO₃ (x2), washed with water, brine and dried (Na₂SO₄), concentrated to give 13 (1.58 g,

quant) as a pale yellow oil; ¹H NMR (CDCl₃): $\delta = 7.51$ (s, 1H), 7.42-7.29 (m, 7H), 6.92-6.76 (m, 6H), 5.35 (s, 1 H), 5.02 (s, 2H), 3.95 (s, 2H), 3.77 (s, 3H), 3.35 (s, 3H), 3.33 (s, 3H); ¹³C NMR: $\delta = 158.9$, 157.5, 139.5, 137.2, 137.1, 133.7, 130.5, 129.2, 128.7, 128.2, 128.1,1127.6, 127.1, 115.0, 113.7, 79.5, 70.1, 56.8, 55.3, 31.7, 28.3; IR (neat, cm⁻¹) = 3032, 2971, 2916, 1610, 1509, 1244, 1174, 1011, 804, 742; HR-ESIMS (*m*/*z*): Calcd. for C₂₇H₂₉N₂O₃ [M+H]⁺ 429.2117, found 429.2176; Calcd. for C₂₇H₂₈N₂O₃Na [M+Na]⁺ 451.1992, found 451.1955.

2-Azido-5-[4-(benzoyloxy)-benzyl]-4-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-

imidazole (14): n-Butyl lithium (1.6 M solution in hexanes, 0.72 ml, 1.14 mmol) was added

dropwise to a stirred solution of **5** (445 mg, 1.04 mmol) in dry THF (8 ml) at -78 °C. The reaction was stirred for 30 min at the same temperature. The cooling bath was removed for 10 min, then the reaction mixture was re-cooled to -78 °C, and then TsN₃ (246 mg, 1.25 mmol) in THF (1 ml) was added dropwise. After

stirring for an additional 10 min at -78 °C, the reaction mixture was allowed to come to rt and stirred for 40 min. The reaction was quenched by the careful addition of sat. NH₄Cl (3 ml). The aqueous layer was extracted with EtOAc (3x15 ml), and the combined organic extracts were dried (Na₂SO₄) and concentrated to give a pale brown oil. The crude product was purified through a short column of silica gel (hexane/EtOAc, 4:1) to give unreacted starting material and **6** (283 mg, 58%) as a reddish brown oil; ¹H NMR (CDCl₃): δ = 7.49-7.34 (m, 7H), 6.98-6.88 (m, 6H), 5.23 (s, 1 H), 5.02 (s, 2H), 3.85 (s, 2H), 3.78 (s, 3H), 3.35 (s, 3H), 3.04 (s, 3H); ¹³C NMR δ = 159.1, 157.6, 139.8, 137.1, 136.9, 133.4, 130.3, 129.2, 128.7, 128.5, 128.1, 127.6, 126.2, 115.1, 113.8, 79.2, 70.1, 56.9, 55.3, 29.5, 28.7; IR (neat, cm⁻¹): 3032, 2933, 2835, 2137, 1610, 1509, 1244, 1173, 1088, 1033, 832, 744, 697; HR-ESIMS (*m*/*z*): Calcd. for C₂₆H₂₄N₅O₂

 $[M+H-MeOH]^+$ 438.1925, found 438.1898 ; Calcd. for $C_{27}H_{27}N_5O_3Na [M+Na]^+$ 492.2006, found 492.1977.

2-Amino-5-[4-(hydroxy)-benzyl]-4-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1Himidazole (6): Azide **6** (258 mg, 0.55 mmol) was dissolved in EtOH (3 ml) and stirred under a

hydrogen atmosphere (55 psi) in the presence of 20% Pd(OH)₂ on charcoal (77 mg) at rt for overnight. The catalyst was filtered through a pad of celite and the filtrate was concentrated to give amine **6** (196 mg, quant) as a pale yellow solid; m.p 91-95 °C; ¹H NMR (500 MHz, CD₃OD): δ = 7.28 (d, *J* = 8.7 Hz,

2H), 6.87 (d, J = 8.2 Hz 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.67 (d, J = 8.2 Hz, 2H), 5.25 (s, 1H), 3.83 (s, 2H), 3.74 (s, 3H), 3.31 (s, 3H), 3.11 (s, 3H); ¹³C NMR $\delta = 160.0$, 156.3, 147.0, 130.8, 128.9, 127.8, 126.9, 124.3, 123.3, 115.4, 113.8, 75.1, 55.7, 54.5, 28.7, 27.0; IR (KBr, cm⁻¹) = 3548, 3475, 3417, 2996, 2934, 1614, 1512, 1247, 1174, 1114, 823, 618.; HR-ESIMS (m/z): Calcd. for C₂₀H₂₄N₃O₃ [M+H]⁺ 354.1827, found 354.1812; Calcd. for C₂₀H₂₃N₃O₃Na [M+Na]⁺ 376.1645, found 376.1632.

2-Amino-5-(4-hydroxy-benzyl)-5-[methoxy-(4-methoxy-phenyl)-methyl]-3-methyl-3,5dihydro-imidazol-4-one (Calcaridine A): Amine 6 (175 mg, 0.51 mmol) and 2-

benzenesulfonyl-3-(4-nitrophenyl)oxaziridine (311 mg, 1.02 mmol) were dissolved in methanol (5 ml) at rt. Then, the mixture was heated at 40 °C for 4 h. After checking TLC the reaction was stopped, concentrated and purified by flash column chromatography using 10% methanol in EtOAc to

give a pale yellow solid (100 mg, 54%), of a 1:2 mixture of diastereomers calcaridine A and *epi*-calcaridine A.

1-Methyl-4-iodoimidazole-5-carboxaldehyde (16): A solution of EtMgBr (3.0 M in ether, 2.62

ml, 7.86 mmol) was added into a solution of 4,5-diiodo-1-methyl-1H imidazole (8) (2.50 g, 7.50 mmol) in dry CH₂Cl₂ (20 ml) at rt over 10 min. The resulting mixture was stirred at rt under nitrogen atmosphere with monitoring

by TLC to ensure all starting material reacted with the Grignard reagent. Then, *N*-methylformanilide (1.01 ml, 8.23 mmol) was added dropwise to above mixture and stirred at rt for a further 16 h. Half saturated NH₄Cl (10 ml) was added to it and the resulting suspension was extracted with dichloromethane. The organic layer was dried (Na₂SO₄), concentrated and the resulting residue was purified by flash chromatography (EtOAc/hexanes, 1:4) to give a white solid,**1** (1.09 g, 61%); m.p. 69-72 °C; ¹H NMR (CDCl₃): $\delta = 9.62$ (d, J = 0.5 Hz, 1H), 7.55 (s, 1H), 3.91 (s, 3H); ¹³C NMR: $\delta = 181.3$, 145.0, 130.0, 100.3, 34.5; IR (KBr, cm⁻¹): = 2811, 1666, 1504, 1338, 1243, 964, 782, 707; HR-ESIMS (*m*/*z*): Calcd. for C₃H₆IN₂O [M+H]⁺ 236.9519, found 236.9527; Calcd. for C₃H₃IN₂ONa [M+Na]⁺ 258.9339, found 258.9362.

5-[1,3]Dioxolan-2-yl-4-iodo-1-methyl-1H-imidazole (17): p-Toluenesulfonic acid monohydrate

(140 mg, 0.74 mmol) and ethylene glycol (95%, 4.10 ml, 73.7 mmol) were added to a solution of **1** (3.48 g, 14.7 mmol) in toluene (75 ml). The reaction

mixture was heated to reflux for 22 h with a Dean-Stark condenser fitted. The mixture was cooled to rt, and then the reaction mixture was washed with sat. NaHCO₃ (3x25 ml) and water. The resulting toluene solution was dried (Na₂SO₄), concentrated and purified by chromatography (hexane/EtOAc, 65:35) to give **17** (4.02 g, 97%) as an off-white solid; m.p. 115 - 118 °C; ¹H NMR (CDCl₃): δ = 7.39 (s, 1H), 5.79 (s, 1H), 4.15 (m, 2H), 4.04 (m, 2H), 3.69 (s, 3H); ¹³C NMR: δ = 141.9, 127.0, 98.8, 87.8, 65.3, 33.2; IR (KBr, cm⁻¹): = 2951, 2887, 1578, 1494, 1473, 1370, 1245, 1217, 1085, 952, 815; HR-ESIMS (*m/z*): Calcd. for C₇H₁₀IN₂O₂ [M+H]⁺ 280.9782, found 280.9791; Calcd. for C₇H₉IN₂O₂Na [M+Na]⁺ 302.9610, found 302.9612.

(4-Benzyloxyphenyl)-(5-[1,3]dioxolan-2-yl-1-methyl-1H-imidazol-4-yl)-methanol (18): A

solution of EtMgBr (3.0 M in ether, 2.67 ml, 8.02 mmol) was added to a solution of **2** (2.14 g, 7.64 mmol) in dry THF (20 ml) at rt over 10 min. The resulting mixture was stirred at rt until all the starting material reacted (TLC analysis, ca. 30 min) and then 4-

benzyloxybenzaldehyde (1.78 g, 8.40 mmol) in dry THF (10 ml) was added at rt followed by stirring for 38 h. Saturated aq. NH₄Cl (10 ml) was added to quench the reaction and the organic layer was extracted with EtOAc and washed once with brine. The EtOAc solution was dried (anhyd. Na₂SO₄) and concentrated to give the crude product which was purified by column chromatography (EtOAc→EtOH/EtOAc, 1:9) to give **18** as a white solid (2.46 g, 87%); m.p. 160-162 °C; ¹H NMR (CDCl₃): δ = 7.40-7.27 (m, 8H), 6.92 (d, *J* = 8.3 Hz, 2H), 5.90 (s, 1H), 5.84 (s, 1H), 5.03 (s, 2H), 4.00 (m, 2H), 3.92 (m, 2H), 3.66 (s, 3H); ¹³C NMR: δ = 158.1, 145.0, 138.8, 137.2, 136.2, 128.6, 128.0, 127.9, 127.5, 121.8, 114.7, 97.3, 70.1, 69.5, 65.1, 33.0; IR (KBr, cm⁻¹): = 3176 (br), 3120, 2918, 1606, 1511, 1419, 1226, 1076, 1035, 951, 843, 698; HR-ESIMS (*m*/z): Calcd. forC₂₁H₂₃N₂O₄ [M+H]⁺ 367.1652, found 367.1662; Calcd. for C₂₁H₂₂N₂O₄Na [M+Na]⁺ 389.1472, found 389.1469.

4-[(4-benzyloxyphenyl)-hydroxymethyl)-1-methyl-1H-imidazole-5-carboxaldehyde: 10%

HCl (10 ml) was added to a solution of acetal **3** (2.23 g, 6.09 mmol) in THF (100 ml) and the resulting cloudy reaction was heated at 55 °C (The reaction became clear while all solid dissolving after 10

min) while the reaction progress was monitored by taking 0.5 ml

aliquots and neutralizing with sat'd NaHCO₃. The aqueous layer was extracted with EtOAc, and the organic layer was dried over anhyd. Na₂SO₄ and concentrated to give the crude product which was evaluated by H¹ NMR. After all starting material was consumed (2 h), the reaction was worked-up following the above procedure giving the pure aldehyde (1.95 g, quant), as a cream colored solid, was isolated; m.p. 135 °C; ¹H NMR (CDCl₃): δ = 9.90 (s, 1H), 7.46 (s, 1H), 7.41-7.31 (m, 7H), 6.94 (d, *J* = 8.7 Hz, 2 H), 6.01 (s, 1H), 5.03 (s, 2H), 3.87 (s, 3H); ¹³C NMR: δ = 180.4, 158.7, 156.8, 142.1, 137.0, 135.1, 128.7, 128.1, 128.0, 127.5, 126.6, 115.1, 70.9, 70.1, 34.5; IR (KBr, cm⁻¹) = 3327 (br), 3088, 3009, 2862, 1655, 1513, 1352, 1297, 1245, 1045, 1014, 807, 786, 741, 715; HR-ESIMS (*m*/*z*): Calcd. for C₁₉H₁₉N₂O₃ [M+H]⁺ 323.1390, found 323.1382; Calcd. for C₁₉H₁₈N₂O₃Na [M+Na]⁺ 345.1210, found 345.1198.

4-(4-Benzyloxy)benzyl-1-methyl-1H-imidazole-5-carbaldehyde (19): Et₃SiH (3.86 ml, 24.20

mmol) and TFA (2.80 ml, 36.29 mmol) were added to a solution of the aldehyde **4** (1.95 g, 6.05 mmol) in anhydrous CHCl₃ (100 ml) under nitrogen at r.t. Then the resulting mixture was stirred for 24

h while monitoring the reaction progress by TLC. Then, the reaction was quenched with saturated aqueous NaHCO₃ solution. The organic layer was extracted with CHCl₃ (3x50 ml). Combined organic extracts were dried over anhyd. Na₂SO₄ and concentrated to give a yellowish white solid, which was purified over silica gel with (EtOAc/hexanes, 3:1) to give **19** as a pale

yellow solid, (1.21 g, 65%); m.p. 85 - 86 °C; ¹H NMR (CDCl₃): $\delta = 9.85$ (s, 1H), 7.47 (s, 1H), 7.40-7.30 (m, 5H), 7.18 (d, J = 8.7 Hz, 2 H), 6.90 (d, J = 8.7 Hz, 2 H), 5.01 (s, 2H), 4.12 (s, 2H), 3.85 (s, 3H); ¹³C NMR: $\delta = 179.1$, 157.6, 155.8, 142.9, 137.1, 131.3, 129.7, 128.6, 128.0, 127.5, 127.0, 115.2, 70.1, 34.4, 33.2; IR (KBr, cm⁻¹) = 3121, 3058, 3028, 2915, 2826, 2746, 1763, 1665, 1520, 1332, 1247, 1171, 1009, 845, 744, 699, 633; HR-ESIMS (*m*/*z*): Calcd. for C₁₉H₁₉N₂O₂ [M+H]⁺ 307.1441, found 307.1444; Calcd. for C₁₉H₁₈N₂O₂Na [M+Na]⁺ 329.1266, found 329.1207.

4-(4-Benzyloxybenzyl)-5-[hydroxyl-(4-methoxyphenyl)-methyl]-1-methyl-1H-imidazole

(20): A few drops of p-bromoanisole (from 1.98 ml, 15.8 mmol) was added dropwise to a two

neck round-bottom flask containing freshly-crushed, oven-dried magnesium turnings (0.38 g, 15.8 mmol) and a small crystal of iodine in THF (25 ml). This mixture was then heated at 45 °C under nitrogen until the iodine color faded. The rest of the *p*-bromoanisole was added dropwise over 10 min while heating at

the same temperature. After the addition was completed, the mixture was heated at reflux for 1 h and cooled to rt. A solution of **5** (1.21 g, 3.95 mmol) in THF (10 ml) was added. The resulting mixture was stirred at reflux for overnight and cooled to 0 ° C; sat. NH₄Cl (20 ml) was added and the organic layer was extracted with EtOAc (x3), washed once with brine, and dried over anhyd. Na₂SO₄, concentrated to give thick brown oil, which was purified by a short plug of silica gel with 100% EtOAc to give a white solid, **20** (1.64 g, 84%); m.p. 148-149 °C; ¹H NMR (CDCl₃): δ = 7.41-7.25 (m, 6H), 7.16 (d, *J* = 8.5 Hz, 2 H), 7.10 (d, *J* = 8.5 Hz, 2 H), 6.85 (d, *J* = 8.5 Hz, 2 H), 6.81 (d, *J* = 8.8 Hz, 2 H), 6.05 (s, 1H), 4.99 (s, 2H), 3.88 (s, 2 H), 3.78 (s, 3H), 3.34 (s, 3H); ¹³C NMR: δ = 159.0, 157.3, 138.4, 137.2, 132.6₁, 132.5₅, 129.7, 129.0, 128.6, 128.0,

127.5, 127.0, 115.1, 113.9, 70.1, 65.5, 55.4, 33.4, 32.1; IR (KBr, cm⁻¹) = 3200 (br), 3115, 2998, 2908, 2834, 1611, 1510, 1459, 1238, 1173, 1032, 804, 697; HR-ESIMS (*m/z*): Calcd. for $C_{26}H_{27}N_2O_3$ [M+H]⁺ 415.2016, found 415.2034; Calcd. for $C_{26}H_{26}N_2O_3Na$ [M+Na]⁺ 437.1836, found 437.1819.

4-(4-Benzyloxybenzyl)-5-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-imidazole (21)

NaH (60%, 162 mg, 4.05 mmol) was added portionwise to a stirred mixture of alcohol **20** (1.12 g, 2.70 mmol) in anhydrous THF (25 ml) at 0 °C. After completion of the addition the resulting mixture was stirred for 10 min at the same temperature. The reaction was warmed to rt and stirred for 1.5 h and then re-cooled (0 °C) followed

by the dropwise addition of MeI (0.20 ml). After 10 min the reaction was allowed to come to rt and stirred for 36 h. Water (20 ml) was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3x30 ml). The organic solution was dried (Na₂SO₄), concentrated and the residue was purified through short plug of silica gel with (EtOAc/hexanes, 3:1) to give the **21** as a pale yellow oil (0.97 g, 84%); ¹H NMR (CDCl₃): $\delta = 7.41-7.25$ (m, 6H), 7.20 (d, J = 8.3 Hz, 2 H), 7.09 (d, J = 8.7 Hz, 2 H), 6.88 (d, J = 8.3 Hz, 2 H), 6.81 (d, J = 8.7 Hz, 2 H), 5.48 (s, 1H), 5.01 (s, 2H), 3.94 (s, 2 H), 3.76 (s, 3H), 3.27 (s, 3H), 3.23 (s, 3H); ¹³C NMR: $\delta = 158.9$, 157.2, 142.1, 138.4, 137.3, 133.3, 132.0, 129.7, 128.6, 127.9, 127.5, 127.3, 125.2, 114.9, 113.8, 75.0, 70.1, 56.6, 55.3, 33.0, 32.7; IR (neat, cm⁻¹): 3032, 2931 1609, 1509, 1246, 1174, 1086, 1031, 805, 741, 698; HR-ESIMS (*m*/*z*): Calcd. for C₂₇H₂₉N₂O₃ [M+H]⁺ 429.2173, found 429.2181; Calcd. for C₂₇H₂₈N₂O₃Na [M+Na]⁺ 451.1992, found 451.1951.

2-Azido-4-(4-benzyloxybenzyl)-5-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-

imidazole (22): n-Butyl lithium (1.33 M solution in hexane, 1.87 ml, 2.49 mmol) was added

dropwise to a stirred solution of **7** (888 mg, 2.07 mmol) in dry THF (10 ml) at -78 °C. The reaction mixture was stirred for 45 min at the same temperature. Then, the ice/acetone bath was removed for 5 min followed by re-cooling to -78 °C and dropwise addition of TsN₃ (491 mg, 2.49 mmol). After 1 h stirring at -78 °C, the reaction was quenched by the careful addition of sat.

NH₄Cl solution (3 ml). The aqueous layer was extracted with EtOAc (3x25 ml), and then the combined organics were dried (Na₂SO₄) and concentrated to give a pale brown oil, which was purified through a short column of silica gel (hexane/EtOAc, 4:1) to give **8** (972 mg, 76%) as a thick, pale yellow oil; ¹H NMR (CDCl₃): $\delta = 7.42$ -7.31 (m, 5H), 7.20 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2 H), 5.37 (s, 1H), 5.03 (s, 2H), 3.90 (s, 2 H), 3.78 (s, 3H), 3.21 (s, 3H), 3.02 (s, 3H); ¹³C NMR: $\delta = 158.9$, 157.3, 140.8, 139.6, 137.3, 133.0, 131.8, 129.7, 128.6, 128.0, 127.5, 127.3, 124.3, 114.9, 113.8, 75.0, 70.1, 56.5, 55.3, 32.8, 30.4; IR (neat cm⁻¹): 2932, 2835, 2136, 1610, 1509, 1248, 1172, 1085, 1033, 833, 738, 697; HR-ESIMS (m/z): Calcd. for C₂₇H₂₈N₅O₃ [M+H]⁺ 470.2187, found 470.2191; Calcd. for C₂₇H₂₇N₅O₃Na [M+Na]⁺ 492.2006, found 492.1969.

(*4R**, *8S**) and (*4R**, *8R**)-2-Azido-4-(4-benzyloxybenzyl)-4-[methoxy-(4-methoxyphenyl)methyl]-1-methyl-1,5-dihydroimidazol-5-one (24) and (*epi-24*): 3-(4-Nitrophenyl)-2-

(phenylsulfonyl)oxaziridine (254 mg, 0.83 mmol) was added to a stirred solution of azide **22** (255 mg, 0.54 mmol) in CHCl₃ (3 ml) at rt and stirred overnight. On completion of the reaction, the solvent was removed and the yellow residue was purified by gravity column chromatography

(CH₂Cl₂/toluene, 1:1) to give *epi-***24** (123 mg, 47%) as a pale yellow semi-solid; ¹H NMR

(CDCl₃) : $\delta = 7.36-7.26$ (m, 5H), 6.95 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.72 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 8.7 Hz, 2H), 4.90 (s, 2H), 4.78 (s, 1H), 3.92 (d, J = 14.2 Hz, 1 H), 3.72 (s, 3H), 3.35 (d, J = 14.2 Hz, 1 H), 3.33 (s, 3H), 2.76 (s, 3H); ¹³C NMR: $\delta = 173.7$, 160.2, 158.4, 158.3,

136.7, 130.7, 128.9, 128.6, 128.1, 127.6, 125.4, 124.5, 115.0, 114.0, 84.1, 79.0, 70.0, 57.7, 55.3, 38.3, 27.1; IR (neat, cm⁻¹) = 2931, 1764, 1599, 1512, 1455, 1250, 1177, 1098, 1029, 834, 797, 738, 698; Calcd. for $C_{27}H_{28}N_5O_4$ [M+H]⁺ 486.2136, found 486.2141.

From the above reaction **24** (121 mg, 46%) as a pale yellow solid; m.p. 54-56 °C; ¹H NMR (CDCl₃): δ = 7.35-7.26 (m, 7H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.65 (m, 4 H), 4.90 (s, 2H), 4.77 (s, 1H), 3.85 (s, 3H), 3.25 (d, *J* = 14.2 Hz, 1

H), 3.13 (s, 3H), 3.05 (s, 3H), 2.94 (d, J = 14.2 Hz, 1 H); ¹³C NMR $\delta = 175.4$, 160.7, 159.1, 158.3, 136.7, 130.5, 130.1, 128.6, 128.1, 127.6, 125.3, 123.6, 114.9, 114.3, 84.2, 79.0, 69.9, 57.1, 55.4, 38.4, 27.4 ; IR (neat, cm⁻¹) = 2931, 1764, 1599, 1512, 1455, 1250, 1177, 1098, 1029,834, 797, 738, 698; Calcd. for C₂₇H₂₈N₅O₄ [M+H]⁺ 486.2136, found 486.2138.

(4R*, 8R*)-epi-Calcaridine epi-(1): Azide epi-24 (94 mg, 0.20 mmol) was dissolved in EtOH (3

ml) and stirred under a hydrogen atmosphere (55 psi) in the presence of 20% Pd(OH)₂ on charcoal (40 mg) at rt overnight. The catalyst was filtered through a pad of Celite and the filtrate was concentrated to give *epi*-calcaridine A, *epi*-1 (73)

mg, quant) as an off-white solid; m.p. 218-220 °C ; ¹H NMR (CD₃OD): δ = 7.20 (d, J = 8.7 Hz,

2H), 6.94 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.66 (d, J = 8.7 Hz, 2H), 4.59 (s, 1 H), 3.77 (s, 3H), 3.43 (d, J = 14.2 Hz, 1 H), 3.31 (s, 3H), 3.18 (d, J = 14.2 Hz, 1 H), 2.51 (s, 3H); ¹³C NMR: $\delta = 172.2$, 160.5, 157.8, 156.8, 130.9, 129.0, 126.2, 124.40 114.9, 113.5, 84.1, 73.5, 56.3, 54.4, 38.3, 24.1; ; IR (KBr, cm⁻¹) = 3311 (br), 3001, 2830, 1770, 1693, 1613, 1560, 1513, 1440, 1309, 1256, 1089, 1032, 832, 793, 718; HR-ESIMS (*m*/*z*): Calcd. for C₂₀H₂₄N₃O₄ [M+H]⁺ 370.1761, found 370.1761; Calcd. for C₂₀H₂₃N₃O₄Na [M+Na]⁺ 392.1586, found 392.1512.

(4R*, 8S*)-Calcaridine A (1): Following the procedure above, azide 24 (102 mg, 0.21 mmol)

and 20% Pd(OH)₂ on charcoal (40 mg) in EtOH (3 ml) gave calcaridine A, (**1**) (78 mg, quant) as a pale yellow solid; m.p. 163-165 °C; ¹H NMR (CD₃OD): δ = 7.37 (d, *J* = 8.3 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 8.3 Hz, 2H), 6.64

(d, J = 8.3 Hz, 2H), 4.58 (s, 1H), 3.82 (s, 3H), 3.16 (s, 3H), 3.16 (d, J = 14.2 Hz, 1H), 2.83 (s, 3H), 2.50 (d, J = 14.2 Hz, 1H); ¹³C NMR $\delta = 173.3$, 160.7, 158.7, 156.9, 130.8, 129.4, 126.1, 123.0, 114.9, 114.1, 84.2, 73.1, 56.1, 54.6, 37.9, 24.6; IR (KBr, cm⁻¹) = 3265 (br), 2833, 1781, 1692, 1612, 1560, 1513, 1449, 1346, 1250, 1093, 1023, 836, 799; HR-ESIMS (*m*/*z*): Calcd. for $C_{20}H_{24}N_3O_4$ [M+H]⁺ 370.1761, found 370.1761.

X-ray crystallography. A suitable crystal of compound *epi-***1** covered with a layer of hydrocarbon oil was selected and mounted with paratone-N oil in a cryo-loop, and immediately placed in the low-temperature nitrogen stream. The X-ray intensity data were measured at 100(2) K on a Bruker SMART APEX CCD area detector system equipped with a Oxford Cryosystems 700 Series cooler, a graphite monochromator, and a Mo K α fine-focus sealed tube ($\lambda = 0.710$ 73 Å). The data frames were integrated with the Bruker SAINT-Plus software package. Data were corrected for absorption effects using the multi-scan technique (SADABS). Structures were solved and refined using Bruker SHELXTL (Version 6.14) software package. Further details are in the cif file (deposited at the Cambridge Crystallographic Data Centre, CCDC 696635).

Identification code	dias530s	
Empirical formula	C21 H27 N3 O5	
Formula weight	401.46	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 12.3916(6) Å	α= 90°.
	b = 8.4464(4) Å	β=101.228(1)°.
	c = 19.6714(10) Å	$\gamma = 90^{\circ}$.
Volume	2019.49(17) Å ³	
Z	4	
Density (calculated)	1.320 Mg/m ³	
Absorption coefficient	0.095 mm ⁻¹	

 Table S1. Crystal data and structure refinement for epi-1•MeOH.

F(000)	856
Crystal size	0.36 x 0.15 x 0.08 mm ³
Theta range for data collection	1.80 to 26.00°.
Index ranges	-15<=h<=15, -10<=k<=10, -24<=l<=24
Reflections collected	16278
Independent reflections	3969 [R(int) = 0.0248]
Completeness to theta = 26.00°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9929 and 0.9665
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3969 / 0 / 274
Goodness-of-fit on F ²	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0477, wR2 = 0.1291
R indices (all data)	R1 = 0.0544, wR2 = 0.1372
Largest diff. peak and hole	0.777 and -0.600 e.Å ⁻³

N(1)-C(2)	1.368(2)	C(7)-C(8)	1.387(2)
N(1)-C(1)	1.398(2)	C(7)-H(7)	0.9500
N(1)-C(4)	1.453(2)	C(8)-C(9)	1.392(2)
N(2)-C(1)	1.348(2)	C(8)-H(8)	0.9500
N(2)-C(3)	1.460(2)	C(9)-C(10)	1.390(2)
N(3)-C(1)	1.280(2)	C(10)-C(11)	1.384(2)
N(3)-H(3A)	0.8800	C(10)-H(10)	0.9500
N(3)-H(3B)	0.8800	C(11)-H(11)	0.9500
O(1)-C(2)	1.2165(19)	C(12)-C(13)	1.518(2)
O(2)-C(12)	1.4176(19)	C(12)-H(12)	1.0000
O(2)-C(19)	1.426(2)	C(13)-C(14)	1.389(2)
O(3)-C(16)	1.369(2)	C(13)-C(18)	1.401(2)
O(3)-C(20)	1.427(2)	C(14)-C(15)	1.390(2)
O(4)-C(9)	1.372(2)	C(14)-H(14)	0.9500
O(4)-H(4D)	0.76(3)	C(15)-C(16)	1.393(2)
O(5)-C(21)	1.400(2)	C(15)-H(15)	0.9500
O(5)-H(5D)	0.88(3)	C(16)-C(17)	1.396(2)
C(2)-C(3)	1.525(2)	C(17)-C(18)	1.382(2)
C(3)-C(5)	1.540(2)	C(17)-H(17)	0.9500
C(3)-C(12)	1.554(2)	C(18)-H(18)	0.9500
C(4)-H(4A)	0.9800	C(19)-H(19A)	0.9800
C(4)-H(4B)	0.9800	C(19)-H(19B)	0.9800
C(4)-H(4C)	0.9800	C(19)-H(19C)	0.9800
C(5)-C(6)	1.511(2)	C(20)-H(20A)	0.9800
C(5)-H(5A)	0.9900	C(20)-H(20B)	0.9800
C(5)-H(5B)	0.9900	С(20)-Н(20С)	0.9800
C(6)-C(7)	1.393(2)	C(21)-H(21A)	0.9800
C(6)-C(11)	1.397(2)	C(21)-H(21B)	0.9800

Table S2. Bond lengths [Å] and angles [°] for *epi-1-MeOH*.

C(21)-H	(210)	C)

0.9800

C(2)-N(1)-C(1)	111.30(13)	H(4B)-C(4)-H(4C)	109.5
C(2)-N(1)-C(4)	123.62(14)	C(6)-C(5)-C(3)	113.47(13)
C(1)-N(1)-C(4)	124.89(13)	C(6)-C(5)-H(5A)	108.9
C(1)-N(2)-C(3)	111.83(13)	C(3)-C(5)-H(5A)	108.9
C(1)-N(3)-H(3A)	120.0	C(6)-C(5)-H(5B)	108.9
C(1)-N(3)-H(3B)	120.0	C(3)-C(5)-H(5B)	108.9
H(3A)-N(3)-H(3B)	120.0	H(5A)-C(5)-H(5B)	107.7
C(12)-O(2)-C(19)	111.82(13)	C(7)-C(6)-C(11)	117.39(15)
C(16)-O(3)-C(20)	116.77(14)	C(7)-C(6)-C(5)	121.25(15)
C(9)-O(4)-H(4D)	104(2)	C(11)-C(6)-C(5)	121.35(15)
C(21)-O(5)-H(5D)	107.9(16)	C(8)-C(7)-C(6)	121.61(15)
N(3)-C(1)-N(2)	129.69(15)	C(8)-C(7)-H(7)	119.2
N(3)-C(1)-N(1)	122.20(15)	C(6)-C(7)-H(7)	119.2
N(2)-C(1)-N(1)	108.11(13)	C(7)-C(8)-C(9)	119.95(15)
O(1)-C(2)-N(1)	126.35(15)	C(7)-C(8)-H(8)	120.0
O(1)-C(2)-C(3)	126.69(14)	C(9)-C(8)-H(8)	120.0
N(1)-C(2)-C(3)	106.94(13)	O(4)-C(9)-C(10)	118.46(15)
N(2)-C(3)-C(2)	101.72(12)	O(4)-C(9)-C(8)	122.13(15)
N(2)-C(3)-C(5)	112.83(13)	C(10)-C(9)-C(8)	119.41(15)
C(2)-C(3)-C(5)	111.75(13)	C(11)-C(10)-C(9)	119.91(16)
N(2)-C(3)-C(12)	111.46(13)	С(11)-С(10)-Н(10)	120.0
C(2)-C(3)-C(12)	107.32(12)	C(9)-C(10)-H(10)	120.0
C(5)-C(3)-C(12)	111.28(13)	C(10)-C(11)-C(6)	121.73(15)
N(1)-C(4)-H(4A)	109.5	С(10)-С(11)-Н(11)	119.1
N(1)-C(4)-H(4B)	109.5	C(6)-C(11)-H(11)	119.1
H(4A)-C(4)-H(4B)	109.5	O(2)-C(12)-C(13)	112.20(13)
N(1)-C(4)-H(4C)	109.5	O(2)-C(12)-C(3)	105.87(12)
H(4A)-C(4)-H(4C)	109.5	C(13)-C(12)-C(3)	112.35(13)

O(2)-C(12)-H(12)	108.8	C(13)-C(18)-H(18)	119.4
С(13)-С(12)-Н(12)	108.8	O(2)-C(19)-H(19A)	109.5
C(3)-C(12)-H(12)	108.8	O(2)-C(19)-H(19B)	109.5
C(14)-C(13)-C(18)	118.15(15)	H(19A)-C(19)-H(19B)	109.5
C(14)-C(13)-C(12)	120.76(14)	O(2)-C(19)-H(19C)	109.5
C(18)-C(13)-C(12)	121.08(14)	H(19A)-C(19)-H(19C)	109.5
C(13)-C(14)-C(15)	121.36(15)	H(19B)-C(19)-H(19C)	109.5
C(13)-C(14)-H(14)	119.3	O(3)-C(20)-H(20A)	109.5
C(15)-C(14)-H(14)	119.3	O(3)-C(20)-H(20B)	109.5
C(14)-C(15)-C(16)	119.68(15)	H(20A)-C(20)-H(20B)	109.5
C(14)-C(15)-H(15)	120.2	O(3)-C(20)-H(20C)	109.5
C(16)-C(15)-H(15)	120.2	H(20A)-C(20)-H(20C)	109.5
O(3)-C(16)-C(15)	124.14(15)	H(20B)-C(20)-H(20C)	109.5
O(3)-C(16)-C(17)	116.17(15)	O(5)-C(21)-H(21A)	109.5
C(15)-C(16)-C(17)	119.69(15)	O(5)-C(21)-H(21B)	109.5
C(18)-C(17)-C(16)	119.87(15)	H(21A)-C(21)-H(21B)	109.5
С(18)-С(17)-Н(17)	120.1	O(5)-C(21)-H(21C)	109.5
С(16)-С(17)-Н(17)	120.1	H(21A)-C(21)-H(21C)	109.5
C(17)-C(18)-C(13)	121.23(15)	H(21B)-C(21)-H(21C)	109.5
C(17)-C(18)-H(18)	119.4		

Symmetry transformations used to generate equivalent atoms:

Calcaridine (1)

