Supplementary Information for

Total Synthesis of (\pm)-Calcaridine \mathbf{A} and (\pm)-epi-Calcaridine A

Panduka B. Koswatta, Rasapalli Sivappa, H.V. Rasika Dias and Carl J. Lovely*
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019

1. Experimental procedures and characterization data for $\mathbf{6}, \mathbf{7}, \mathbf{1 0 - 1 4}, \mathbf{1 6}-23$, epi-24, 24, epicalcaridine (epi-1), calcaridine (1) - S2-S14.
2. Figures and experimental for X-ray structure determination - S15-S19
3. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for $-6,7,10-14,16-23$, epi-24, 24, epi-calcaridine (epi-1), calcaridine (1) S20-S57.

5-(4-Benzyloxy)-phenyl-(4-iodo-1-methyl-1H-imidazol-5-yl)-methanol (10): EtMgBr (3.0 M solution in ether, $2.31 \mathrm{ml}, 6.93 \mathrm{mmol}$) was added to a solution of 4,5-diiodo-
 1-methyl-1H-imidazole $(2.20 \mathrm{~g}, 6.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ at rt over $\sim 5 \mathrm{~min}$. The resulting mixture was stirred at rt for 20 min and 4benzoyloxybenzaldehyde ($1.54 \mathrm{~g}, 7.25 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was added and stirred at rt overnight. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added to the reaction and the resulting pale yellow solid was filtered and the filtrate was partitioned with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a pale yellow solid. The resulting solid was triturated with hexanes, which was decanted to give $\mathbf{1 0}(2.80 \mathrm{~g}$, quant) as a white solid; m.p. $195-198{ }^{\circ} \mathrm{C}{ }^{;}{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right): \delta=7.58(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.22(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ $157.9,141.9,137.6,135.4,134.6,129.0,128.4,128.3,127.0,115.1,85.7,70.0,66.5,33.2$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3189$ (br), 3034, 2948, 2874, 1607, 1506, 1387, 1236,1166, 1006, 971, 744, 699; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{IN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$421.0408, found 421.0392; Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 443.0227$, found 443.0194.

5-(4-Benzoyloxy)-benzyl-4-iodo-1-methyl-1H-imidazole (7): $\mathrm{Et}_{3} \mathrm{SiH}$ ($5.36 \mathrm{ml}, 33.55 \mathrm{mmol}$)

and TFA ($2.58 \mathrm{ml}, 33.55 \mathrm{mmol}$) were added to a solution of $10(2.82 \mathrm{~g}, 6.71$ mmol) in anhydrous $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ at rt , then the resulting mixture was heated at $55-60{ }^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere. After cooling to rt , the reaction was quenched by the addition of sat. aq. NaHCO_{3} solution. The resulting mixture was extracted with CHCl_{3} several times and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by chromatography
(hexane/EtOAc, 1:1) to give 7 as a thick colorless oil $(1.61 \mathrm{~g}, 60 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.42-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.41$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR: $\delta=157.8,139.4,137.0,133.4,129.6,129.1,128.7,128.1,1127.5,115.2$, 84.8, 70.2, 32.6, 30.0; IR (neat, cm^{-1}): 3031, 2918, 1609, 1509, 1418, 1239, 1175, 1013, 816, 740, 697; HR-ESIMS (m / z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{IN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$405.0458, found 405.0470; Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 427.0278$, found 427.0247.

5-(4-Benzoyloxy)-benzyl-1-methyl-1H-imidazole-4-carboxaldehyde (11): EtMgBr (3.0 M in
 ether, $1.90 \mathrm{ml}, 5.69 \mathrm{mmol})$ was added into a solution of $7(2.19 \mathrm{~g}, 5.42 \mathrm{mmol})$ in dry THF $(30 \mathrm{ml})$ at rt , and the resulting mixture was stirred at rt for 20 min . N-Methylformanilide $(0.74 \mathrm{ml}, 5.96 \mathrm{mmol})$ was added and the resulting mixture was stirred at rt overnight. Half saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction and the organic layer was extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude product. This residue was purified through a short plug of silica gel (hexane/EtOAc, 3:2) to give 11 as an off-white solid ($1.09 \mathrm{~g}, 66 \%$); m.p. $148-150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=10.01(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=187.5,157.9$, 138.7, 138.0, 137.8, 136.9, 129.4, 128.7, 128.6, 128.1, 127.5, 115.3, 70.1, 31.7, 28.5; IR $(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3107,3032,2859,1674,1510,1244,1175,799,780,740,698 ;$ HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.1441, found 307.1462; Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 329.1260 , found 329.1258 .
\{5-[4-(Benzoyloxy)-benzyl]-1-methyl-1H-imidazol-4-yl\}-(4-methoxyphenyl)-methanol (12): A few drops of p-bromoanisole (from $2.21 \mathrm{ml}, 17.6 \mathrm{mmol}$) was added dropwise to a two necked round-bottom flask containing freshly-crushed oven-dried, magnesium turnings ($0.42 \mathrm{~g}, 17.6$
$\mathrm{mmol})$ and a small crystal of iodine in THF (20 ml). This mixture was then heated at $45^{\circ} \mathrm{C}$ under nitrogen until the iodine color faded. The remainder of the p -
 bromoanisole was added dropwise over 10 min while heating at the same temperature. After the addition was complete, the mixture was heated to reflux for 1 h and then cooled to rt , then, a solution of 3 $(1.08 \mathrm{~g}, 3.52 \mathrm{mmol})$ in THF (10 ml) was added and the resulting mixture was stirred at reflux overnight. After cooling to $0^{\circ} \mathrm{C}$, sat, $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added and the organic layer was extracted with EtOAc (x3), washed once with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a thick, brown oil. The crude product was purified through a short plug of silica gel (EtOAc) to give 12 as a pale yellow solid ($1.47 \mathrm{~g}, 100 \%$); m.p. $124-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.42-7.29(\mathrm{~m}, 8 \mathrm{H}), 6.89-6.76(\mathrm{~m}, 6 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{br}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta=158.8,157.5,140.9,137.1,137.0,136.2$, $130.2,129.1,128.7,128.1,127.6,125.9,115.1,113.7,70.1,69.5,55.3,31.8,28.2 ; \mathrm{IR}^{\left(\mathrm{KBr}, \mathrm{cm}^{-}\right.}$ ${ }^{1}$): 3198 (br), 3031, 2932, 2835, 1611, 1584, 1509, 1454, 1302, 1244, 1175, 1035, 801, 752, 698; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$415.2016, found 415.2016; Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 437.1856$, found 437.1817 .

5-[4-(Benzoyloxy)-benzyl]-4-[methoxy-(4-methoxy-phenyl)-methyl]-1-methyl-1H-imidazole

(13): TFA ($0.53 \mathrm{ml}, 6.81 \mathrm{mmol}$) was added to a solution of $4(1.42$
 $\mathrm{g}, 3.41 \mathrm{mmol}$) in anhyd $\mathrm{MeOH}(20 \mathrm{ml})$ at rt and the mixture was then heated at $55{ }^{\circ} \mathrm{C}$ for overnight. Sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$ was added to the above reaction mixture and the aqueous layer was extracted with EtOAc (x3) and the organic layer was washed with aq. $\mathrm{NaHCO}_{3}(\mathrm{x} 2)$, washed with water, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated to give $\mathbf{1 3}(1.58 \mathrm{~g}$,
quant) as a pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 7 \mathrm{H}), 6.92-6.76$ $(\mathrm{m}, 6 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\delta=158.9,157.5,139.5,137.2,137.1,133.7,130.5,129.2,128.7,128.2,128.1,1127.6$, $127.1,115.0,113.7,79.5,70.1,56.8,55.3,31.7,28.3$; IR $\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)=3032,2971,2916,1610$, 1509, 1244, 1174, 1011, 804, 742; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$429.2117, found 429.2176; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 451.1992$, found 451.1955 .

2-Azido-5-[4-(benzoyloxy)-benzyl]-4-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-

imidazole (14): n-Butyl lithium (1.6 M solution in hexanes, $0.72 \mathrm{ml}, 1.14 \mathrm{mmol}$) was added
 dropwise to a stirred solution of $5(445 \mathrm{mg}, 1.04 \mathrm{mmol})$ in dry THF (8 ml) at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 min at the same temperature. The cooling bath was removed for 10 min , then the reaction mixture was re-cooled to $-78{ }^{\circ} \mathrm{C}$, and then TsN_{3} ($246 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (1 ml) was added dropwise. After stirring for an additional 10 min at $-78^{\circ} \mathrm{C}$, the reaction mixture was allowed to come to rt and stirred for 40 min . The reaction was quenched by the careful addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{ml})$. The aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{ml}$), and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a pale brown oil. The crude product was purified through a short column of silica gel (hexane/EtOAc, 4:1) to give unreacted starting material and $6(283 \mathrm{mg}, 58 \%)$ as a reddish brown oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.49-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.98-6.88$ $(\mathrm{m}, 6 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta=159.1,157.6,139.8,137.1,136.9,133.4,130.3,129.2,128.7,128.5,128.1,127.6$, $126.2,115.1,113.8,79.2,70.1,56.9,55.3,29.5,28.7$; IR (neat, cm^{-1}): 3032, 2933, 2835, 2137, $1610,1509,1244,1173,1088,1033,832,744,697$; HR-ESIMS (m / z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2}$
$[\mathrm{M}+\mathrm{H}-\mathrm{MeOH}]^{+} 438.1925$, found 438.1898 ; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 492.2006$, found 492.1977.

2-Amino-5-[4-(hydroxy)-benzyl]-4-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-

imidazole (6): Azide 6 ($258 \mathrm{mg}, 0.55 \mathrm{mmol}$) was dissolved in $\mathrm{EtOH}(3 \mathrm{ml})$ and stirred under a
 hydrogen atmosphere (55 psi) in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal (77 mg) at rt for overnight. The catalyst was filtered through a pad of celite and the filtrate was concentrated to give amine 6 (196 mg, quant) as a pale yellow solid; m.p 91$95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz} 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta=160.0,156.3,147.0,130.8$, $128.9,127.8,126.9,124.3,123.3,115.4,113.8,75.1,55.7,54.5,28.7,27.0 ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=$ 3548, 3475, 3417, 2996, 2934, 1614, 1512, 1247, 1174, 1114, 823, 618; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$354.1827, found 354.1812; Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 376.1645, found 376.1632.

2-Amino-5-(4-hydroxy-benzyl)-5-[methoxy-(4-methoxy-phenyl)-methyl]-3-methyl-3,5-dihydro-imidazol-4-one (Calcaridine A): Amine $6(175 \mathrm{mg}, 0.51 \mathrm{mmol})$ and 2-
 benzenesulfonyl-3-(4-nitrophenyl)oxaziridine ($311 \mathrm{mg}, 1.02$ mmol) were dissolved in methanol (5 ml) at rt . Then, the mixture was heated at $40^{\circ} \mathrm{C}$ for 4 h . After checking TLC the reaction was stopped, concentrated and purified by flash column chromatography using 10% methanol in EtOAc to
give a pale yellow solid ($100 \mathrm{mg}, 54 \%$), of a 1:2 mixture of diastereomers calcaridine A and epicalcaridine A .

1-Methyl-4-iodoimidazole-5-carboxaldehyde (16): A solution of EtMgBr (3.0 M in ether, 2.62
 $\mathrm{ml}, 7.86 \mathrm{mmol}$) was added into a solution of 4,5-diiodo-1-methyl-1Himidazole (8) $(2.50 \mathrm{~g}, 7.50 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at rt over 10 min . The resulting mixture was stirred at rt under nitrogen atmosphere with monitoring by TLC to ensure all starting material reacted with the Grignard reagent. Then, N methylformanilide ($1.01 \mathrm{ml}, 8.23 \mathrm{mmol}$) was added dropwise to above mixture and stirred at rt for a further 16 h . Half saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added to it and the resulting suspension was extracted with dichloromethane. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the resulting residue was purified by flash chromatography (EtOAc/hexanes, 1:4) to give a white solid, $1(1.09 \mathrm{~g}, 61 \%)$; m.p. $69-72{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=9.62(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}$, 1H), $3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=181.3,145.0,130.0,100.3,34.5 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):=2811,1666$, 1504, 1338, 1243, 964, 782, 707; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{IN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$236.9519, found 236.9527; Calcd. for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{IN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$258.9339, found 258.9362 .

5-[1,3]Dioxolan-2-yl-4-iodo-1-methyl-1H-imidazole (17): p-Toluenesulfonic acid monohydrate
 $(140 \mathrm{mg}, 0.74 \mathrm{mmol})$ and ethylene glycol $(95 \%, 4.10 \mathrm{ml}, 73.7 \mathrm{mmol})$ were added to a solution of $\mathbf{1}(3.48 \mathrm{~g}, 14.7 \mathrm{mmol})$ in toluene (75 ml). The reaction mixture was heated to reflux for 22 h with a Dean-Stark condenser fitted. The mixture was cooled to rt , and then the reaction mixture was washed with sat. NaHCO_{3} (3×25 $\mathrm{ml})$ and water. The resulting toluene solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and purified by chromatography (hexane/EtOAc, 65:35) to give 17 (4.02 g, 97\%) as an off-white solid; m.p. 115 $-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.39(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=141.9,127.0,98.8,87.8,65.3,33.2 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):=2951,2887,1578$, 1494, 1473, 1370, 1245, 1217, 1085, 952, 815; HR-ESIMS (m / z): Calcd. for $\mathrm{C}_{7} \mathrm{H}_{10}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right.$ $[\mathrm{M}+\mathrm{H}]^{+}$280.9782, found 280.9791; Calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$302.9610, found 302.9612.

(4-Benzyloxyphenyl)-(5-[1,3]dioxolan-2-yl-1-methyl-1H-imidazol-4-yl)-methanol (18): A

 solution of $\mathrm{EtMgBr}(3.0 \mathrm{M}$ in ether, $2.67 \mathrm{ml}, 8.02 \mathrm{mmol})$ was added to a solution of $2(2.14 \mathrm{~g}, 7.64 \mathrm{mmol})$ in dry THF $(20 \mathrm{ml})$ at rt over 10 min . The resulting mixture was stirred at rt until all the starting material reacted (TLC analysis, ca. 30 min) and then 4benzyloxybenzaldehyde ($1.78 \mathrm{~g}, 8.40 \mathrm{mmol}$) in dry THF (10 ml) was added at rt followed by stirring for 38 h . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added to quench the reaction and the organic layer was extracted with EtOAc and washed once with brine. The EtOAc solution was dried (anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to give the crude product which was purified by column chromatography ($\mathrm{EtOAc} \rightarrow \mathrm{EtOH} / \mathrm{EtOAc}, 1: 9$) to give 18 as a white solid ($2.46 \mathrm{~g}, 87 \%$); m.p. $160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.40-7.27(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H})$, $5.84(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=158.1,145.0$, $138.8,137.2,136.2,128.6,128.0,127.9,127.5,121.8,114.7,97.3,70.1,69.5,65.1,33.0 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):=3176(\mathrm{br}), 3120,2918,1606,1511,1419,1226,1076,1035,951,843,698 ;$ HRESIMS (m/z): Calcd. forC $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \quad[\mathrm{M}+\mathrm{H}]^{+}$367.1652, found 367.1662; Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$389.1472, found 389.1469.
$\mathrm{HCl}(10 \mathrm{ml})$ was added to a solution of acetal $3(2.23 \mathrm{~g}, 6.09 \mathrm{mmol})$
 in THF (100 ml) and the resulting cloudy reaction was heated at 55 ${ }^{\circ} \mathrm{C}$ (The reaction became clear while all solid dissolving after 10 \min) while the reaction progress was monitored by taking 0.5 ml aliquots and neutralizing with sat'd NaHCO_{3}. The aqueous layer was extracted with EtOAc, and the organic layer was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product which was evaluated by H^{1} NMR. After all starting material was consumed (2 h), the reaction was worked-up following the above procedure giving the pure aldehyde (1.95 g , quant), as a cream colored solid, was isolated; m.p. $135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=9.90(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, 7.41-7.31 (m, 7H), $6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $=180.4,158.7,156.8,142.1,137.0,135.1,128.7,128.1,128.0,127.5,126.6,115.1,70.9,70.1$, 34.5; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=3327$ (br), 3088, 3009, 2862, 1655, 1513, 1352, 1297, 1245, 1045, 1014, 807, 786, 741, 715; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$323.1390, found 323.1382; Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$345.1210, found 345.1198.

4-(4-Benzyloxy)benzyl-1-methyl-1H-imidazole-5-carbaldehyde (19): $\mathrm{Et}_{3} \mathrm{SiH}$ ($3.86 \mathrm{ml}, 24.20$ $\mathrm{mmol})$ and TFA ($2.80 \mathrm{ml}, 36.29 \mathrm{mmol}$) were added to a solution of
 the aldehyde $4(1.95 \mathrm{~g}, 6.05 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ under nitrogen at r.t. Then the resulting mixture was stirred for 24 h while monitoring the reaction progress by TLC. Then, the reaction was quenched with saturated aqueous NaHCO_{3} solution. The organic layer was extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{ml})$. Combined organic extracts were dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a yellowish white solid, which was purified over silica gel with (EtOAc/hexanes, 3:1) to give 19 as a pale
yellow solid, $(1.21 \mathrm{~g}, 65 \%)$; m.p. $85-86{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=9.85(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, 7.40-7.30 (m, 5H), $7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=179.1,157.6,155.8,142.9,137.1,131.3,129.7,128.6,128.0,127.5$, 127.0, 115.2, 70.1, 34.4, 33.2; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=3121,3058,3028,2915,2826,2746,1763$, 1665, 1520, 1332, 1247, 1171, 1009, 845, 744, 699, 633; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.1441, found 307.1444; Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$329.1266, found 329.1207 .

4-(4-Benzyloxybenzyl)-5-[hydroxyl-(4-methoxyphenyl)-methyl]-1-methyl-1H-imidazole

(20): A few drops of p-bromoanisole (from $1.98 \mathrm{ml}, 15.8 \mathrm{mmol}$) was added dropwise to a two
 neck round-bottom flask containing freshly-crushed, oven-dried magnesium turnings $(0.38 \mathrm{~g}, 15.8 \mathrm{mmol})$ and a small crystal of iodine in THF (25 ml). This mixture was then heated at $45{ }^{\circ} \mathrm{C}$ under nitrogen until the iodine color faded. The rest of the p bromoanisole was added dropwise over 10 min while heating at the same temperature. After the addition was completed, the mixture was heated at reflux for 1 h and cooled to rt . A solution of $5(1.21 \mathrm{~g}, 3.95 \mathrm{mmol})$ in THF (10 ml) was added. The resulting mixture was stirred at reflux for overnight and cooled to $0^{\circ} \mathrm{C}$; sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added and the organic layer was extracted with EtOAc (x3), washed once with brine, and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give thick brown oil, which was purified by a short plug of silica gel with 100% EtOAc to give a white solid, 20 ($1.64 \mathrm{~g}, 84 \%$); m.p. $148-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.41-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.34$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR: $\delta=159.0,157.3,138.4,137.2,132.6_{1}, 132.55,129.7,129.0,128.6,128.0$,
$127.5,127.0,115.1,113.9,70.1,65.5,55.4,33.4,32.1 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=3200(\mathrm{br}), 3115,2998$, 2908, 2834, 1611, 1510, 1459, 1238, 1173, 1032, 804, 697; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$415.2016, found 415.2034; Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$437.1836, found 437.1819.

4-(4-Benzyloxybenzyl)-5-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-imidazole (21)

$\mathrm{NaH}(60 \%, 162 \mathrm{mg}, 4.05 \mathrm{mmol})$ was added portionwise to a stirred mixture of alcohol 20 ($1.12 \mathrm{~g}, 2.70 \mathrm{mmol}$) in anhydrous THF (25 $\mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After completion of the addition the resulting mixture was stirred for 10 min at the same temperature. The reaction was warmed to rt and stirred for 1.5 h and then re-cooled $\left(0^{\circ} \mathrm{C}\right)$ followed by the dropwise addition of $\mathrm{MeI}(0.20 \mathrm{ml})$. After 10 min the reaction was allowed to come to rt and stirred for 36 h . Water (20 ml) was added to the reaction mixture and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and the residue was purified through short plug of silica gel with (EtOAc/hexanes, 3:1) to give the 21 as a pale yellow oil $(0.97 \mathrm{~g}, 84 \%) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.41-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2$ H), 7.09 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H})$, $5.01(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=158.9,157.2$, $142.1,138.4,137.3,133.3,132.0,129.7,128.6,127.9,127.5,127.3,125.2,114.9,113.8,75.0$, $70.1,56.6,55.3,33.0,32.7$; IR (neat, cm^{-1}): 3032, $29311609,1509,1246,1174,1086,1031$, 805, 741, 698; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$429.2173, found 429.2181; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 451.1992$, found 451.1951 .

2-Azido-4-(4-benzyloxybenzyl)-5-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1H-

 imidazole (22): n-Butyl lithium (1.33 M solution in hexane, $1.87 \mathrm{ml}, 2.49 \mathrm{mmol}$) was added dropwise to a stirred solution of $7(888 \mathrm{mg}, 2.07 \mathrm{mmol})$ in dry THF (10 ml) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 45 \min at the same temperature. Then, the ice/acetone bath was removed for 5 min followed by re-cooling to $-78^{\circ} \mathrm{C}$ and dropwise addition of TsN_{3} ($491 \mathrm{mg}, 2.49 \mathrm{mmol}$). After 1 h stirring at -78 ${ }^{\circ} \mathrm{C}$, the reaction was quenched by the careful addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 ml). The aqueous layer was extracted with EtOAc (3 x 25 ml), and then the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a pale brown oil, which was purified through a short column of silica gel (hexane/EtOAc, 4:1) to give $\mathbf{8}(972 \mathrm{mg}, 76 \%)$ as a thick, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\delta=158.9,157.3,140.8,139.6$, $137.3,133.0,131.8,129.7,128.6,128.0,127.5,127.3,124.3,114.9,113.8,75.0,70.1,56.5,55.3$, 32.8, 30.4; IR (neat cm^{-1}): 2932, 2835, 2136, 1610, 1509, 1248, 1172, 1085, 1033, 833, 738, 697; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$470.2187, found 470.2191; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 492.2006$, found 492.1969.
(4R*, $8 S^{*}$) and (4R*, $8 R^{*}$)-2-Azido-4-(4-benzyloxybenzyl)-4-[methoxy-(4-methoxyphenyl)-methyl]-1-methyl-1,5-dihydroimidazol-5-one (24) and (epi-24): 3-(4-Nitrophenyl)-2(phenylsulfonyl)oxaziridine ($254 \mathrm{mg}, 0.83 \mathrm{mmol}$) was added to a stirred solution of azide 22 ($255 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ at rt and stirred overnight. On completion of the reaction, the solvent was removed and the yellow residue was purified by gravity column chromatography
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ toluene, $\left.1: 1\right)$ to give epi-24 (123 mg, $\left.47 \%\right)$ as a pale yellow semi-solid; ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta=7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$,

$6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J$
$=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=14.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}$,
3H), $2.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=173.7,160.2,158.4,158.3$,
$136.7,130.7,128.9,128.6,128.1,127.6,125.4,124.5,115.0,114.0,84.1,79.0,70.0,57.7,55.3$, 38.3, 27.1; IR (neat, $\left.\mathrm{cm}^{-1}\right)=2931,1764,1599,1512,1455,1250,1177,1098,1029,834,797$, 738, 698; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 486.2136$, found 486.2141 .

From the above reaction 24 ($121 \mathrm{mg}, 46 \%$) as a pale yellow solid; m.p. $54-56{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.35-$ $7.26(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~m}, 4 \mathrm{H}), 4.90$ (s, 2H), $4.77(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1$ H), $3.13(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta=175.4,160.7,159.1$, $158.3,136.7,130.5,130.1,128.6,128.1,127.6,125.3,123.6,114.9,114.3,84.2,79.0,69.9,57.1$, $55.4,38.4,27.4 ;$ IR $\left(\right.$ neat $\left.^{2} \mathrm{~cm}^{-1}\right)=2931,1764,1599,1512,1455,1250,1177,1098,1029,834$, 797, 738, 698; Calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 486.2136$, found 486.2138 .
(4R*, $\mathbf{8} \boldsymbol{R}^{*}$)-epi-Calcaridine epi-(1): Azide epi-24 ($94 \mathrm{mg}, 0.20 \mathrm{mmol}$) was dissolved in EtOH (3
 ml) and stirred under a hydrogen atmosphere (55 psi) in the presence of $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal $(40 \mathrm{mg})$ at rt overnight. The catalyst was filtered through a pad of Celite and the filtrate was concentrated to give epi-calcaridine A, epi-1 (73 mg , quant) as an off-white solid; m.p. $218-220{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=172.2,160.5,157.8,156.8,130.9,129.0,126.2,124.40114 .9,113.5,84.1,73.5$, $56.3,54.4,38.3,24.1 ;$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=3311(\mathrm{br}), 3001,2830,1770,1693,1613,1560,1513$, 1440, 1309, 1256, 1089, 1032, 832, 793, 718; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 370.1761, found 370.1761; Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$392.1586, found 392.1512.
(4R*, $\mathbf{8 S}^{*}$)-Calcaridine A (1): Following the procedure above, azide 24 ($102 \mathrm{mg}, 0.21 \mathrm{mmol}$)
 and $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal (40 mg) in $\mathrm{EtOH}(3 \mathrm{ml})$ gave calcaridine A, (1) (78 mg, quant) as a pale yellow solid; m.p. $163-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \quad \delta=7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}$, $3 \mathrm{H}), 2.50(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta=173.3,160.7,158.7,156.9,130.8,129.4,126.1$, $123.0,114.9,114.1,84.2,73.1,56.1,54.6,37.9,24.6 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)=3265(\mathrm{br}), 2833,1781$, 1692, 1612, 1560, 1513, 1449, 1346, 1250, 1093, 1023, 836, 799; HR-ESIMS (m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.1761$, found 370.1761 .

X-ray crystallography. A suitable crystal of compound epi-1 covered with a layer of hydrocarbon oil was selected and mounted with paratone-N oil in a cryo-loop, and immediately placed in the low-temperature nitrogen stream. The X-ray intensity data were measured at 100(2) K on a Bruker SMART APEX CCD area detector system equipped with a Oxford Cryosystems 700 Series cooler, a graphite monochromator, and a Mo K α fine-focus sealed tube $(\lambda=0.71073 \AA)$. The data frames were integrated with the Bruker SAINT-Plus software package. Data were corrected for absorption effects using the multi-scan technique (SADABS). Structures were solved and refined using Bruker SHELXTL (Version 6.14) software package. Further details are in the cif file (deposited at the Cambridge Crystallographic Data Centre, CCDC 696635).

Table S1. Crystal data and structure refinement for epi-1•MeOH.

Identification code	dias530s	
Empirical formula	C 21 H 27 N 3 O 5	
Formula weight	401.46	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1) / \mathrm{n}$	$\beta=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=12.3916(6) \AA 1.228(1)^{\circ}$.	
	$\mathrm{b}=8.4464(4) \AA$	$\gamma=90^{\circ}$.
Volume	$\mathrm{c}=19.6714(10) \AA$	
Z	$2019.49(17) \AA \AA^{3}$	
Density (calculated)	4	
Absorption coefficient	$1.320 \mathrm{Mg} / \mathrm{m}^{3}$	

$\mathrm{F}(000) \quad 856$

Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
$0.36 \times 0.15 \times 0.08 \mathrm{~mm}^{3}$
1.80 to 26.00°.
$-15<=\mathrm{h}<=15,-10<=\mathrm{k}<=10,-24<=1<=24$
16278
$3969[\mathrm{R}(\mathrm{int})=0.0248]$
100.0 \%

Semi-empirical from equivalents
0.9929 and 0.9665

Full-matrix least-squares on F^{2}
3969 / 0 / 274
1.043
$\mathrm{R} 1=0.0477, \mathrm{wR} 2=0.1291$
$\mathrm{R} 1=0.0544, \mathrm{wR} 2=0.1372$
0.777 and -0.600 e. \AA^{-3}

Figure S1. Crystal structure of epi-1•MeOH (epi-1 crystallizes with a molecule of MeOH)

Table S2. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for epi- $\mathbf{1} \mathbf{\bullet} \mathbf{M e O H}$.

$\mathrm{N}(1)-\mathrm{C}(2)$	1.368(2)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.387(2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.398(2)	$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{N}(1)-\mathrm{C}(4)$	1.453(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.392(2)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.348(2)	$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{N}(2)-\mathrm{C}(3)$	1.460(2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.390(2)
$\mathrm{N}(3)-\mathrm{C}(1)$	1.280(2)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.384(2)
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})$	0.8800	$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	0.8800	$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.2165(19)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.518(2)
$\mathrm{O}(2)-\mathrm{C}(12)$	1.4176(19)	$\mathrm{C}(12)-\mathrm{H}(12)$	1.0000
$\mathrm{O}(2)-\mathrm{C}(19)$	1.426(2)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.389(2)
$\mathrm{O}(3)-\mathrm{C}(16)$	1.369(2)	$\mathrm{C}(13)-\mathrm{C}(18)$	1.401(2)
$\mathrm{O}(3)-\mathrm{C}(20)$	1.427(2)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.390(2)
$\mathrm{O}(4)-\mathrm{C}(9)$	1.372(2)	$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{D})$	0.76(3)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.393(2)
$\mathrm{O}(5)-\mathrm{C}(21)$	1.400 (2)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{D})$	0.88(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.396(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.525(2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.382(2)
$\mathrm{C}(3)-\mathrm{C}(5)$	1.540(2)	$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(12)$	1.554(2)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9800	C(19)-H(19A)	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9800	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	0.9800	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	1.511(2)	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.393(2)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(11)$	1.397(2)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800

$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C}) \quad 0.9800$

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	111.30(13)	$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	123.62(14)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)$	113.47(13)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	124.89(13)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.9
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	111.83(13)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.9
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.9
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	120.0	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.9
$\mathrm{H}(3 \mathrm{~A})-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~B})$	120.0	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.7
$\mathrm{C}(12)-\mathrm{O}(2)-\mathrm{C}(19)$	111.82(13)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	117.39(15)
$\mathrm{C}(16)-\mathrm{O}(3)-\mathrm{C}(20)$	116.77(14)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	121.25(15)
$\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{H}(4 \mathrm{D})$	104(2)	$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	121.35(15)
$\mathrm{C}(21)-\mathrm{O}(5)-\mathrm{H}(5 \mathrm{D})$	107.9(16)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.61(15)
$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(2)$	129.69(15)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.2
$\mathrm{N}(3)-\mathrm{C}(1)-\mathrm{N}(1)$	122.20(15)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.2
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	108.11(13)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.95(15)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	126.35(15)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.0
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	126.69(14)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.0
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.94(13)	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	118.46(15)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	101.72(12)	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	122.13(15)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	112.83(13)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.41(15)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	111.75(13)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.91(16)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	111.46(13)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	107.32(12)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.0
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(12)$	111.28(13)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	121.73(15)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	112.20(13)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(3)$	105.87(12)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(3)$	112.35(13)

$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{H}(12)$	108.8	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18)$	119.4
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	108.8	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{H}(12)$	108.8	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$118.15(15)$	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.76(14)$	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	$121.08(14)$	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.36(15)$	$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.3	$\mathrm{H}(20 \mathrm{C}(20)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	$\mathrm{O}(5)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(15)$	$\mathrm{O}(5)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5	
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.2	$\mathrm{O}(5)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$116.17(15)-\mathrm{H}(21 \mathrm{~B})$	109.5	
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	$119.69(15)$	$119.87(15)$	120.1

Symmetry transformations used to generate equivalent atoms:

© JEOL

©

©

Filename Author Experiment Sample_id Solvert Creation_time Revision time Current_time	
Comment Data_format Dim_size Dim_title Dim_units Dimensions Site Spectrometer	$\begin{aligned} & =\text { single pulse decouple } \\ & =10 \text { COMPLEX } \\ & =52428 \\ & =13 C \\ & =1 \mathrm{pPm} \\ & =X \\ & =\text { ECX } 300 \\ & =\text { EELTA2_NMR } \end{aligned}$
Field_strength X-acq_duration x -domain x frec x \times-offset X -poirts ${ }^{\mathrm{X}}$ - prescans \times Xeseep Irx_dcmain Irr_freq Irr_offse Clipped Mod return Scans Total scans	
X_90_width X_acq time X _angle X -atn $\mathrm{X}_{\mathrm{X}} \mathrm{pulse}$ Irr_atn_dec Irr_atn_noe Decoupling Initial_wait Noe Recvr Relaxation delay Repetition_time Temp_set	
 11	

©

© JEOL

© JEOL

© JEOL

