First Cross-Coupling Reaction of Potassium Aryltrifluoroborates with Organic Chlorides in Aqueous Media Catalyzed by an Oxime-Derived Palladacycle<br>Emilio Alacid and Carmen Nájera*<br>Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain,<br>Fax: (+34)965903549<br>E-mail: cnajera@ua.es

Table of Contents

General Experimental Methods ......................................................................S1

Spectral Data of Compounds............................................................................S4

H-NMR and ${ }^{13}$ C-NMR spectra ........................................................................S8

General. Unless otherwise noted all commercials reagents and dry solvents were used without further purification. All reactions were carried out in absence of light and under argon atmosphere. Melting points were determined with a Reichert Thermovar hot plate apparatus and are uncorrected. IR spectra were recorded on a Nicolet 510 P-FT. ${ }^{1} \mathrm{H}-$ NMR ( 300 or 400 MHz ) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 75 or 100 MHz ) spectra were obtained on a Bruker AC-300 and Bruker AC-400, respectively, using $\mathrm{CDCl}_{3}$ as solvent and TMS as internal standard, unless otherwise stated. Low-resolution electron impact (EI) mass spectra were obtained at 70 eV on a Shimadzu QP-5000. Analytical TLC was performed on Merck aluminum sheets with silica gel $60 \mathrm{~F}_{254}$. Silica gel 60, (0.04-0.06 mm ) was employed for flash chromatography. Microwave reactions were performed with a CEM Discover Synthesis Unit (CEM Corp., Matthews, NC) with a continuous focused microwave power delivery system in glass vessels ( 10 mL ) sealed with a septum under magnetic stirring. The temperature of the reaction mixture inside the vessel was monitored using a calibrated infrared temperature control under the reaction vessel.

General procedure for aryl chlorides. A 2 M solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL}, 2 \mathrm{mmol})$ was added to an emulsion of aryl chloride ( 1 mmol ), TBAB (see, Table 1), potassium aryltrifluoroborate ( 1.5 mmol ) and commercially available complex $1(0.01-1 \mathrm{~mol} \% \mathrm{Pd}$, Table 1) in water ( 2 mL ). The mixture was stirred and heated under reflux and the reaction was monitored by GC until completion. In the case of MW heating, a 10 mL pressure tube sealed with a septum was used and the mixture was stirred and heated in a microwave reactor ( $30 \mathrm{~W}, 1 \mathrm{bar}, 100^{\circ} \mathrm{C}, 15-20 \mathrm{~min}$ and 40 psi of air stream cooling). Then, the crude reaction was cooled at room temperature and the product was extracted with diethyl ether ( $3 \times 15 \mathrm{~mL}$ ) and the combined organic layers were washed with water ( $3 \times 15 \mathrm{~mL}$ ) and dried over magnesium sulphate. The solvent was removed under vacuum and the products were purified by recrystallization or by flash chromatography.

General procedure for recycling experiments for the reaction of 4chloroacetophenone with $\mathrm{PhBF}_{3} \mathrm{~K}$. The reaction mixture described before was cooled at room temperature and extracted in the reaction flask with diethyl ether ( $6 \times 5 \mathrm{~mL}$ ) to afford the product. To the aqueous phase kept in the reaction flask was added again the
reagents expect palladacycles $\mathbf{1}$ and the mixture was heated again until the reaction was finished.

General procedure for allyl and benzyl chlorides.: A 1 M solution of $\mathrm{KOH}(2 \mathrm{~mL}, 2$ mmol ) was added to a solution of allyl or benzyl chloride ( 1 mmol ), TBAB ( $322 \mathrm{mg}, 1$ $\mathrm{mmol})$, potassium phenyltrifluoroborate $(276 \mathrm{mg}, 1.5 \mathrm{mmol})$ and catalyst $\mathbf{1}(0.29 \mathrm{mg}$, $0.1 \mathrm{~mol} \% \mathrm{Pd})$ in acetone ( 3 mL ) in a round-bottom flask. The mixture was stirred at rt or heated at $50^{\circ} \mathrm{C}$ and the reaction was monitored by GC until completion. In the case of MW heating, a 10 mL pressure tube sealed with a septum was used and the mixture was stirred and heated in a microwave reactor ( $30 \mathrm{~W}, 1 \mathrm{bar}, 50^{\circ} \mathrm{C}, 15-20 \mathrm{~min}$ and 40 psi of air stream cooling). Then, the crude reaction was cooled at room temperature and the product was extracted with diethyl ether ( $3 \times 15 \mathrm{~mL}$ ) and the combined organic layers were washed with water ( $3 \times 15 \mathrm{~mL}$ ) and dried over magnesium sulphate. The solvent was removed under slight vacuum and the products were purified by flash chromatography.

## General procedure for recycling experiments for the reaction of cinnamyl and

 benzyl chloride with $\mathbf{P h B F}_{3} \mathbf{K}$. The reaction mixture described before was cooled at room temperature and extracted in the reaction flask with diethyl ether ( $6 \times 5 \mathrm{~mL}$ ) to afford the product. To the aqueous phase kept in the reaction flask was added again the reagents expect palladacycles $\mathbf{1}$ and acetone ( 3 mL ). Then the mixture was heated again until the reaction was finished.Compounds 2aa, 2ba, 2cb, 2cc, 2da, 2ea, 2fa, 3a, 3b, 3c, 4a and 4c are commercially available. Compounds 2ga, 2ha, $\mathbf{4 b}$ and $\mathbf{4 b}$ have been previously reported.

4-Acetylbiphenyl (2aa): White solid; M.p. $=121-123{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.55$ (Hexane/Ethyl acetate 3:1); $\mathrm{IR}(\mathrm{KBr}) v=1680,1601 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=$ 8.03-8.00 (m, 2H, ArH), 7.69-7.66 (m, 2H, ArH), 7.63-7.60 (m, 2H, ArH), 7.49-7.38 $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=197.7(\mathrm{CO})$, 145.7, 139.8, 135.8 ( ArC ), 129.0, 128.9, 128.3, 127.3, $127.2(\mathrm{ArCH}), 26.6\left(\mathrm{CH}_{3}\right)$; MS (m/z, \%): $196\left(\mathrm{M}^{+}, 45\right), 181\left(\mathrm{M}^{+}-15,100\right), 153(36), 152(54), 151(20), 76(65)$.

4-Biphenylacetic acid (2ba): White solid; M.p. $=163-164{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.51$ (Hexane/Ethyl acetate 1:1); IR ( KBr ) $v=1688(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{H}-\mathrm{NMR}$ (Methanol- $\left.\mathrm{d}_{4}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ $(\mathrm{ppm})=7.63-7.33(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (Methanol- $\mathrm{d}_{4}, 75 \mathrm{MHz}$ ) $\delta_{\mathrm{C}}(\mathrm{ppm})=175.5\left(\mathrm{CO}_{2} \mathrm{H}\right), 142.1,141.1,135.1(\mathrm{ArC}), 130.8,129.8,128.2,128.0,127.9$ ( ArCH ), $41.5\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 213\left(\mathrm{M}^{+}+1,10\right), 212\left(\mathrm{M}^{+}, 19\right), 194\left(\mathrm{M}^{+}-18,7\right), 169$ (16), 168 (16), 167 (48), 166 (21), 165 (28), 164 (38), 163 (24), 141 (16), 139 (11), 128 (45), 126 (13), 115 (24), 91 (10), 82 (56), 76 (48), 65 (70).

2-Cyano-4'-methyl-1,1'-biphenyl (2cb): White solid; M.p. $=47-49{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (Hexane/Ethyl acetate 5:1); IR $(\mathrm{KBr}) v=2223(\mathrm{C} \equiv \mathrm{N}) \mathrm{cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta_{\mathrm{H}}(\mathrm{ppm})=7.74-7.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.49-7.37(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.05 \mathrm{~Hz}, \mathrm{ArH}), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}$ $(\mathrm{ppm})=145.6138 .7,135.3(\mathrm{ArC}), 133.8,132.8,130.0,129.5,128.7,127.3(\mathrm{ArCH})$, $119.0(\mathrm{CN}), 111.2(\mathrm{ArC}), 21.3\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 193\left(\mathrm{M}^{+}, 100\right), 165(35), 82(17)$.

2-Cyano-2'-methyl-1,1'-biphenyl (2cc): Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.53$ (Hexane/Ethyl acetate 5:1); H-NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.74(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.64-7.60$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{ArH}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.38-7.26(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{ArH}), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=145.9,138.1$, 135.8 (ArC), 132.9, 132.5, 130.6, 130.5, 129.5, 128.8, 127.6, 126.0, 118.2 (ArCH), $112.9(\mathrm{CN}), 20.0\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 193\left(\mathrm{M}^{+}, 100\right), 165(58), 152(10)$.

4-Methoxybiphenyl (2da): White solid; M.p. $=88-89{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.15$ (Hexane); IR $(\mathrm{KBr}) v=3064,3056,3032,3001,1606,1522,1251,1035 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$
$\mathrm{MHz}) \delta_{\mathrm{H}}(\mathrm{ppm})=7.55-7.28(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=9.1 \mathrm{~Hz}, \mathrm{ArH}), 3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=159.3(\mathrm{ArC}-\mathrm{O}), 140.9,133.9(\mathrm{ArC})$, 128.8, 128.3, 126.8, 126.7, 114.3 ( ArCH ), $55.4\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 184\left(\mathrm{M}^{+}, 100\right), 169$ $\left(\mathrm{M}^{+}-15,44\right), 141$ (37), 139 (10), 115 (30).

4-Biphenyl-4-amine (2ea): Brown solid; M.p. $=51^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.31$ (Hexane/Ethyl acetate 3:1); IR (KBr): $v=3424,3382,3300,3206,1617 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}$ $(\mathrm{ppm})=7.55-7.37(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 3.71$ (br. s., $2 \mathrm{H}, \mathrm{NH}_{2}$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=145.9,141.2,131.6(\mathrm{ArC}), 128.7,128.1,126.4$, 126.3, 115.4 ( ArCH ); MS (m/z, \%): 169 ( $\mathrm{M}^{+}, 100$ ), 84(12).

3-Phenylpyridine (2fa): Brown oil; $\mathrm{R}_{\mathrm{f}}=0.32$ (Hexane/Ethyl acetate 1:1); IR (film) $v=$ $1678,1607,1579 \mathrm{~cm}^{-1}$; H-NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.59$ $(\mathrm{d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}, \mathrm{ArH}), 7.87(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and $1.8 \mathrm{~Hz}, \mathrm{ArH}), 7.59-7.33(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=148.6,148.3(\mathrm{ArCH}), 137.9,136.7$ (ArC), 134.5, 129.2, 128.2, 127.2, 123.6 (ArCH); MS (m/z, \%): 155 ( $\mathrm{M}^{+}, 100$ ), 154 $\left(\mathrm{M}^{+}-1,51\right), 127$ (17), 77 (12), 64 (13), 51 (29).

4,5-Diphenyl-2-methyl-3(2H)-pyridazinone (2ga): ${ }^{1}$ White solid; M.p. $=180{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.50 (Hexane/Ethyl acetate 1:1); IR (KBr): $v=1630(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}}(\mathrm{ppm})=7.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.28-7.19(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=160.5(\mathrm{CO}), 140.8(\mathrm{ArC})$, 138.1 (ArCH), 136.9, 135.2, 132.7 (ArC), 130.6, 129.2, 128.7, 128.6, 128.4, 128.0 ( ArCH ), $40.7\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 262\left(\mathrm{M}^{+}, 32\right), 261$ (100), 191 (20), 189 (19).

2,4,6-Triphenylpyrimidine (2ha): ${ }^{2}$ White solid; M.p. $=82{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.14$ (Hexane/Ethyl acetate 5:1); H-NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=8.74-8.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.30-8.27$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.56-7.53(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$

[^0]$\delta_{\mathrm{C}}(\mathrm{ppm})=165.0,164.6,138.3,137.7,130.9,130.8,129.1,128.6,127.5,127.4,110.4 ;$ MS (m/z, \%): 308 (M ${ }^{+}, 76$ ), 205 (78), 204 (82), 102 (100), 77 (33), 76 (31).
(E)-1,3-Diphenylpropene (3a): Yellowish oil; $\mathrm{R}_{\mathrm{f}}=0.31$ (Hexane); IR (film) $v=3075$, $3056,2896,1722,1705,1601 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.37-7.19$ (m, 10H, ArH), $6.46(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{CH}), 6.40-6.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.55(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=140.3,137.6(\mathrm{ArC}), 132.1,129.3$, 128.74, 126.68, 128.6, 127.2 126.3, 126.2 ( ArCH and CH ), $39.4\left(\mathrm{CH}_{2}\right)$; MS ( $\mathrm{m} / \mathrm{z}, \%$ ): 194 ( $\mathrm{M}^{+}, 100$ ), 193 (62), 179 (51), 178 (46), 116 (65), 115 (92), 103 (31), 91 (48), 77 (21) 65 (33).

Allylbenzene (3b): Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.56$ (hexane); IR (film) $v=3082,3025,2977$, 1642, 1603, 1495, $1072 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.30-7.16(\mathrm{~m}, 5 \mathrm{H}$, ArH ), 6.03-5.89 (m, 1H, CH), 5.10-5.03 (m, 2H, CH2 $), 3.37$ (d, 2H, J = $6.7 \mathrm{~Hz}, \mathrm{CH}_{2}$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=140.1(\mathrm{ArC}), 137.6(\mathrm{CH}), 128.7,128.5(2 \mathrm{x}$ $\mathrm{ArCH})$, 126.2 ( ArCH ), $115.9\left(=\mathrm{CH}_{2}\right), 40.4\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 118\left(\mathrm{M}^{+}, 75\right), 117$ (100), 115 (43), 91 (52), 65 (23), 58 (29) 51 (27).

2-Methyl-3-phenylpropene (3c): Colorless oil; : $\mathrm{R}_{\mathrm{f}}=0.35$ (Hexane); IR (film) v $=3045,2992$, 2936, 1661, 1510, $1468 \mathrm{~cm}^{-1}$; H-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=$ 7.28-7.16 (m, 5H, ArH), $4.80(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHH}), 4.72(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CHH}), 3.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=145.1(\mathrm{C}), 139.8(\mathrm{ArC})$, 129.0, 128.4, 128.3, $126.1(\mathrm{ArCH}), 112.0\left(=\mathrm{CH}_{2}\right), 44.7\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}$, \%): $132\left(\mathrm{M}^{+}, 71\right), 117$ (100), 115 (53), 91 (76).

2,3-Diphenylpropene (3d): Colorless solid; M.p. $=53{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.45$ (Hexane); IR (film) $v=3056,3025,2911,1624,1602,1492,1440 \mathrm{~cm}^{-1} ;$ H-NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta_{\mathrm{H}}(\mathrm{ppm})=7.42(\mathrm{dd}, 2 \mathrm{H}, J=8.6$ and $1.5 \mathrm{~Hz}, \mathrm{ArH}), 7.29-7.16(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 5.48(\mathrm{~s}$, $1 \mathrm{H},=\mathrm{CHH}), 5.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.1 \mathrm{~Hz},=\mathrm{CHH}), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=147.0(\mathrm{C}), 140.9,139.6(\mathrm{ArC}), 129.1,128.5,128.4,127.6,126.3$, $126.2(\mathrm{ArCH}), 114.7\left(=\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 195\left(\mathrm{M}^{+}+1,16\right), 194\left(\mathrm{M}^{+}, 100\right)$, $193\left(\mathrm{M}^{+}-1,43\right), 178$ (85), 116 (51), 103 (89).

Diphenylmethane (4a): Colorless oil: $\mathrm{R}_{\mathrm{f}}=0.51$ (Hexane); IR (film) $v=3025,1600$, 1493, $1028 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.27-7.15(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$, $3.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=141.2(2 \mathrm{x} \mathrm{ArC}), 129.1$, 128.6 ( 4 x ArCH ), 126.2 ( 2 x ArCH ), $42.1\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 168\left(\mathrm{M}^{+}, 79\right), 167$ (100), 153 (31), 115 (16), 91 (25).

3-Benzylanisole (4b): ${ }^{3}$ Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.51$ (Hexane/Ethyl acetate 6:1); IR (film): v $=1258,1050 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=7.27-7.13(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, 6.77-6.70 (m, $3 \mathrm{H}, \mathrm{ArH}$ ), $3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=159.8,142.8,141.0(\mathrm{ArC}), 129.5,128.9,128.5,126.2,121.4,114.9$, $111.4(\mathrm{ArCH}), 55.1\left(\mathrm{CH}_{3}\right), 42.0\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 198\left(\mathrm{M}^{+}, 100\right), 183\left(\mathrm{M}^{+}-15,20\right)$, 167 (49), 165 (47) 153 (18), 152 (19), 91 (23), 65 (16).

4-Chlorobenzylbenzene (4c): Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.48$ (Hexane); IR (film): $v=3081$, 3059, 3026, 2913, 1602, 1489, 1452, 1406, 1092, $1015 \mathrm{~cm}^{-1} ; \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta_{\mathrm{H}}(\mathrm{ppm})=7.27-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}), 3.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=140.6,139.7,131.9$ ( ArC ), 130.3, 128.9, 128.7, 127.3, 127.2, $126.4(\mathrm{ArCH}), 41.3\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 204$ $\left(\mathrm{M}^{+}+2,13\right), 203\left(\mathrm{M}^{+}+1,7\right), 202\left(\mathrm{M}^{+}, 41\right), 167(100), 165(45), 152(16), 91(5)$.

5-Benzyl-2-chloropyridine (4d): ${ }^{4}$ Colorless oil; $\mathrm{R}_{\mathrm{f}}=0.38$ (Hexane/Ethyl acetate 9:1); H-NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=8.24(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{ArH}), 7.39(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.5 and $2.4 \mathrm{~Hz}, \mathrm{ArH}$ ), 7.31-7.12 (m, 6H, ArH), $3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=149.7(\mathrm{ArCH}), 149.4(\mathrm{ArC}), 139.3(\mathrm{ArCH}), 139.2,135.5(\mathrm{ArC})$, 128.8, 126.7, $124.0(\mathrm{ArCH}), 38.2\left(\mathrm{CH}_{2}\right) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}, \%): 205\left(\mathrm{M}^{+}+2,33\right), 203\left(\mathrm{M}^{+}, 100\right)$, $202\left(\mathrm{M}^{+}-1,85\right), 168\left(\mathrm{M}^{+}-35,57\right), 140(15), 139(30), 115(22), 91(28) 70(66), 65(34)$, 63 (43).

[^1]




2-Cyano-4'-methyl-1,1'-biphenyl
(2cb)

ej1334pur rmn 100

(2cb)





(2ea)

| Identifier | Chem. Shift [ppm] | $\mathrm{J}[\mathrm{Hz}]$ | Multiplicity | Connections |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 7.5184 | 8.2332 | 2 | $\mathrm{~J}(1,0)$ |
| 2 | 7.5095 | 1.0978 | 2 | $\mathrm{~J}(2,0)$ |
| 3 | 6.7052 | 8.7820 | 2 | $\mathrm{~J}(3,0)$ |


biphenyl-4-amine
(2ea)








| Identifier | Chem. Shift $[p p m]$ | $J[H z]$ | Multiplicity | Connections |
| :--- | :--- | ---: | :--- | :--- |
| 1 | 6.4424 | 15.9141 | 2 | $J(1,0)$ |
| 2 | 3.5274 | 6.3968 | 2 | $J(2,0)$ |


 ㅇํㄴํํ

1,3-diphenylpropene
(3a)









1-benzyl-3-methoxybenzene
(4b)







[^0]:    ${ }^{1}$ Maes, B. U. W.; R'Kyek, O.; Kosmrlj, J.; Lemière, G. L. F.; Esmans, E.; Rozenski, J.; Dommisse, R. A.; Haemers, A. Tetrahedron 2001, 57, 1323-1330.
    ${ }^{2}$ Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125-7128.

[^1]:    ${ }^{3}$ Vanier, C.; Lorgé, F.; Wagner, A. ; Mioskowski, C. Angew. Chem. Int. Ed. 2000, 39, 1679.
    ${ }^{4}$ Lantzsch, R. Eur. Pat. Appl. 1993, 10.

