Kumada Catalyst-Transfer Polycondensation of ThiopheneBased Oligomers: Robustness of a Chain Growth Mechanism

Supporting Information
Beryozkina Tetyana, Volodymyr Senkovskyy, Elisabeth Kaul, Anton Kiriy*
kiriy@ipfdd.de

Experimental Part.

Synthesis.

2-Bromo-3-hexyl-5-iodothiophene (6). NBS ($37.38 \mathrm{~g}, 0.21 \mathrm{~mol}$) was added to the solution of 3hexylthiophene $(33.66 \mathrm{~g}, 0.2 \mathrm{~mol})$ in 500 mL of a chloroform-acetic acid mixture $(50 / 50 \mathrm{v} / \mathrm{v})$ in the absence of light, under an argon atmosphere, at temperature $0^{\circ} \mathrm{C}$. The mixture was allowed to reach room temperature, and stirred overnight, and hydrolyzed with 500 mL of ice-water, and the aqueous phase extracted with chloroform. The combined extracts were washed with water, 1 M sodium hydroxide solution (50 ml), again with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography to give $44.45 \mathrm{~g}(0.18 \mathrm{~mol})$ of monobromide $4(90 \%$ yield $)$. Iodination was performed in a similar manner. To this end, NIS ($21.26 \mathrm{~g}, 95 \mathrm{mmol}$) was added to $4(22.25 \mathrm{~g}, 90$ mmol) in 500 mL of a chloroform-acetic acid mixture ($50 / 50 \mathrm{v} / \mathrm{v}$) in the absence of light, under an argon atmosphere, at temperature $0^{\circ} \mathrm{C}$. The mixture was allowed to reach room temperature, stirred overnight,
and then worked up according to above-described procedure. After vacuum distillation and purification by flash chromatography 28.54 g of $\mathbf{6}$ was obtained (85% yield).

5'-bromo-3,4'-dihexyl-5-iodo-[2,2']bithiophenyl (8). To 4.94 g (20 mmol) of 4 in THF (20 ml) at $-80{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(13.2 \mathrm{ml}, 21 \mathrm{mmol})$. After stirring at $-80^{\circ} \mathrm{C}$ for one hour tri(isopropyl)borate ($4.14 \mathrm{~g}, 22 \mathrm{mmol}$) was added and the solution was allowed to warm up to room temperature. After an additional two hours at room temperature, pinacol $(2.84 \mathrm{~g}, 24 \mathrm{mmol})$ was added and the resulting suspension was stirred over night at room temperature. Next, THF was taken off and the residue was dissolved in petrol ether. After the white precipitate was filtered off the resulting solution was filtered over neutral aluminium oxide. The solvent was taken off and the product was dried in vacuum. Dioxaborolane 5 was obtained as a brownish oil ($5.01 \mathrm{~g}, 85 \%$).

To a solution of $6(3.21 \mathrm{~g}, 10.9 \mathrm{mmol})$ in DME $(48 \mathrm{ml})\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.504 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added. After the mixture was stirred for 10 min at room temperature thiophene boronic ester $5(4.07 \mathrm{~g}, 10.9$ $\mathrm{mmol})$ and a 1 M aqueous solution of $\mathrm{NaHCO}_{3}(33 \mathrm{ml})$ were added. The reaction mixture was refluxed under vigorous stirring for 24 hours. Then it was poured into water (150 ml) and the organic phase was separated while the aqueous phase was extracted with ether (3 times 30 ml). The combined extracts were dried over sodium sulphate and the solvent was removed by rotary evaporation. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane) to yield bithiophene $7(2.79 \mathrm{~g}, 62 \%)$ as a yellow liquid. $7(2.79 \mathrm{~g}, 6.76 \mathrm{mmol})$ was further iodinated by NIS according to the protocol for the
preparation of $\mathbf{6}$ from 4 and $3.28 \mathrm{~g}(6 \mathrm{mmol})$ of $\mathbf{8}$ was obtained after the flash chromatography purification step.

5'-bromo-3,4',4'-trihexyl-5-iodo-[2,2';5',2']terthiophene (10). Bithiophene 7 ($829 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in THF (5 ml). At $-80^{\circ} \mathrm{C} n-\mathrm{BuLi}(1.32 \mathrm{ml}, 2.1 \mathrm{mmol})$ was added dropwise and the resulting solution was stirred for one hour at $-80^{\circ} \mathrm{C}$. After addition of zinc chloride $(2.1 \mathrm{mmol}$ as a 1 M solution in THF) the solution was allowed to warm up to room temperature. Next, this reaction mixture was transferred to a solution of $6(783.5 \mathrm{mg}, 2.1 \mathrm{mmol})$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](232 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (5 $\mathrm{ml})$ via cannula. The resulting orange solution was stirred at room temperature for 24 h under light protection. Then the reaction mixture was poured into water $(20 \mathrm{ml})$ and the organic layer was taken off while the water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times 20 ml). The combined organic phases were dried with MgSO_{4} and the solvent was removed by rotary evaporation. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane). Terthiophene 9 was obtained as an orange viscous liquid (348 mg) and further iodinated by NIS according to the protocol for the preparation of $\mathbf{6}$ from 4 and ($353 \mathrm{mg}, 25 \%$ overall yield accounting from 7).

5-bromo-3,3'-dihexyl-5'-iodo-[2,2']bithiophene (12). A solution of 4 ($5 \mathrm{~g}, 0.0202 \mathrm{~mol}$) in diethyl ether (75 ml) was added dropwise over 1 h to magnesium powder $(0.72 \mathrm{~g}, 0.03 \mathrm{~mol})$ suspended in diethyl ether $(25 \mathrm{ml})$. The Grignard reagent was added in small portions to a mixture of $4(5 \mathrm{~g}, 0.0202$ $\mathrm{mol})$ and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(0.1 \mathrm{~g})$ in diethyl ether $(100 \mathrm{ml})$ and stirred for 3 h . The reaction was quenched with water $(100 \mathrm{ml})$ and extracted with diethyl ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried and the solvent removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $)$ gave 11 ($3.42 \mathrm{~g}, 51 \%$) as a colourless liquid and further iodinated into 12 by NIS according to the protocol for the preparation of $\mathbf{6}$ from $\mathbf{4}$ and ($2.71 \mathrm{~g}, 49 \%$ yield).

5-bromo-5'-iodo-3,3'-dioctyl-[2,2';5',2'']terthiophene (15). The Kumada coupling reaction between commercially available 2,5-dibromothiophene and Grignard reagent prepared from 2-bromo-3octylthiophene (13) and Mg powder afforded $3,3^{\prime \prime}$-dioctyl-2, $2^{\prime}, 5^{\prime}, 2^{\prime \prime}$-terthiophene (14). It was sequentially brominated and then iodinated into 5 -bromo- $5^{\prime \prime}$-iodo-3, $3^{\prime \prime}$-dioctyl-[2, $\left.2^{\prime} ; 5^{\prime}, 2^{\prime \prime}\right]$ terthiophene (15) using NBS and NIS, respectively.

Into a thoroughly dried round-bottom flask supplied with refrigerator under argon atmosphere Mg powder $(1.0 \mathrm{~g}, 41 \mathrm{mmol})$ and I_{2} was added, and heated to form violet cloud for activation of the Mg powder. After that 10 mL of dry THF in one portion and 2-bromo-3-octylthiophene (13) (8.26 g, 30 mmol) in 30 mL of THF were added dropwise during 30 min and stirred for 2 hours. Thus-obtained Grignard reagent was added into the dry round-bottom flask supplied with refrigerator and contained 2,5-dibromthiophene ($3.14 \mathrm{~g}, 13 \mathrm{mmol}$) and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(0.1 \mathrm{~g})$ in 50 mL dry THF. The reaction was carried out during 2 days at $65^{\circ} \mathrm{C}$. The reaction mixture was quenched by water and extracted with chloroform; the organic solution was washed with diluted HCI , water and dried over MgSO_{4}. Then the
solution was filtrated, evaporated and purified by column chromatography to release a yellow oil of 3,3"-dioctyl-2,2', $5^{\prime}, 2^{\prime \prime}$-terthiophene (14) ($5.22 \mathrm{~g}, 85 \%$ yield). 14 was iodinated into $\mathbf{1 5}$ by NIS according to the protocol for the preparation of $\mathbf{6}$ from $\mathbf{4}$ and $(5.14 \mathrm{~g}, 69 \%$ yield $)$.

Preparation of the initiators. ${ }^{16}$ To a solution of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}(222 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry toluene $(3.5$ ml , glove-box, argon atmosphere) bromobenzene or o-bromotoluene (0.95 mmol) was added at room temperature. The homogeneous mixture was stirred for 15 min and was allowed to stand unperturbed overnight. The original deep red color of the reaction mixture gradually changes to brownish-yellow together with precipitation of $\mathrm{Ph}-\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{Br}$ or $o-\mathrm{Tol}-\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{Br}$ crystals, which were separated by filtration, washed with dry hexane and dried in vacuum. Yield: $0.07-0.08 \mathrm{~g}, 40-50 \%$.

Preparation of \boldsymbol{o}-Tol- $(\mathbf{3 H T})_{6}$-Br. o-Tol- $(3 \mathrm{HT})_{6}-\mathrm{H}$ was prepared by the standard polycondensation procedure (see Experimental part of the main text) of the monomer 1 initiated by the $o-\mathrm{Tol}-\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ Br at the monomer-to-initiator ratio of 6 , followed by the bromination of the $o-\mathrm{Tol}-(3 \mathrm{HT})_{6}-\mathrm{H}$ by NBS (${ }^{1} \mathrm{H}$ NMR S9 and S10).

Figure S1. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{1}$ prepared by GRIM at 6 to $t-\mathrm{BuMgCl}$ ratio of 0.75 (entry 1 of Table1). The $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ to $\mathrm{H} / \mathrm{Br} \mathrm{P} 3 \mathrm{HT}$ ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hf}}+\mathrm{I}_{\mathrm{Hg}}-1\right) / 2\right]=1 /[(0.9+1.47-1) / 2]=1 / 0.685$, that corresponds to the percentage of $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ of $1 / 1+0.685 \sim 60 \%$, whereas of H / Br P3HT of $\sim 40 \%$. On the other hand, $\mathrm{Mn}{ }_{\text {GPC }}$ is equal to 3000 , whereas $\mathrm{Mn}_{\text {NMR }}$ determined assuming that all polymer chains are Ph terminated (by setting the integral of $\mathrm{Hd}=1$) $\mathrm{Mn}_{\text {NMR }} \sim 6000$. The observed discrepancy between $\mathrm{Mn} \mathrm{GPC}^{\text {GP }}$ and $\mathrm{Mn}_{\text {NMR }}$ is mostly due to presence of P3HT without Ph -termination. $\mathrm{Mn}_{\mathrm{GPC}} / \mathrm{Mn}_{\text {NMR }}$ ratio of 0.5 corresponding to 50% content of $\mathrm{Ph}-\mathbf{P} 3 \mathbf{H T}$ is not too far from the content of $\mathrm{Ph}-\mathbf{P} 3 \mathbf{H T}$ determined by the direct integration of the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure S2. ${ }^{1} \mathrm{H}$ NMR of P3HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{1}$ prepared by GRIM at 6 to $t-\mathrm{BuMgCl}$ ratio of 0.9 (entry 2 of Table1). The $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ to $\mathrm{H} / \mathrm{Br} \mathrm{P} 3 \mathrm{HT}$ ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hf}}{ }^{+} \mathrm{I}_{\mathrm{Hg}}-1\right) / 2\right]=1 /[(1.01+0.76-1) / 2]=1 / 0.385$, that corresponds to the percentage of $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ of $1 / 1+0.385 \sim 72 \%$, whereas of H / Br P3HT of $\sim 28 \%$. On the other hand, Mn GPC is equal to 4300 , whereas $\mathrm{Mn}_{\text {NMR }}$ determined assuming that all polymer chains are Ph terminated (by setting the integral of $\mathrm{Hd}=1$) $\mathrm{Mn}_{\text {NMR }} \sim 6650$. The observed discrepancy between $\mathrm{Mn}_{\text {GPC }}$ and $\mathrm{Mn}_{\text {NMR }}$ is mostly due to presence of $\mathbf{P} 3 \mathbf{H T}$ without Ph -termination.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of P3HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{1}$ prepared by GRIM at 6 to $t-\mathrm{BuMgCl}$ ratio of 1.5 (entry 3 of Table1). The $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ to $\mathrm{H} / \mathrm{Br} \mathrm{P} 3 \mathrm{HT}$ ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hf}}+\mathrm{I}_{\mathrm{Hg}}-1\right) / 2\right]=1 /[(1.07+0.56-1) / 2]=1 / 0.315$, that corresponds to the percentage of Ph-P3HT of $1 / 1+0.315 \sim 76 \%$, whereas of H / Br P3HT of $\sim 24 \%$. On the other hand, Mn GPC is equal to 3800 , whereas $\mathrm{Mn}_{\mathrm{NMR}}$ determined assuming that all polymer chains are Ph terminated (by setting the integral of $\mathrm{Hd}=1$) $\mathrm{Mn}_{\text {NMR }} \sim 6000$. The observed discrepancy between $\mathrm{Mn} \mathrm{GPC}_{\mathrm{GP}}$ and $\mathrm{Mn}_{\text {NMR }}$ is mostly due to presence of P3HT without Ph-termination.

$$
\begin{aligned}
& \mathrm{DP}_{\mathrm{NMR}} \sim 36 \\
& \mathrm{Mn}_{\mathrm{NMR}} \sim 6000 \\
& \mathrm{Mn}_{\mathrm{GPC}}=3800 \\
& \mathrm{Mn}_{\mathrm{GPC}} / \mathrm{Mn}_{\mathrm{NMR}} \sim 0.63
\end{aligned}
$$

Figure S4. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{1}$ prepared by GRIM at 6 to $t-\mathrm{BuMgCl}$ ratio of 1.05 (entry 4 of Table1). The spectrum is nicely fitted by Ph / H P3HT and only traces of Br / H P3HT are recognizable (close to the detection limit of NMR of 5\%), so we estimate that $\mathrm{Ph} / \mathrm{H} \mathrm{P} 3 \mathrm{HT}$ content to be $\sim 95 \%$. A calculation of $\mathrm{Mn}_{\text {GPC }}$ from the NMR spectrum assuming that all polymer chains are Ph-terminated (by setting the integral of $\mathrm{Hd}=1$) gives essentially the same value that gives GPC $\left(\mathrm{Mn}_{\mathrm{NMR}} \sim 6000 ; \mathrm{Mn}_{\mathrm{GPC}}=6100\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{2 a}$ (entry 5 of Table1). The Ph-P3HT to H/Br P3HT ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hf}}+\mathrm{I}_{\mathrm{Hg}}-1\right) / 2\right]=1 /[(1.3-1) / 2]=$ $1 / 0.15$, that corresponds to the percentage of Ph- poly2a of $1 / 1+0.15 \sim 87 \%$, whereas of H/H poly2a of $\sim 13 \%$. A calculation of $\mathrm{Mn}_{\mathrm{GPC}}$ from the NMR spectrum assuming that all polymer chains are $\mathrm{Ph}-$ terminated (by setting the integral of $\mathrm{Hd}=1$) gives the value close to one obtained by GPC $\left(\mathrm{Mn}_{\text {NMR }} \sim\right.$ $4500 ; \mathrm{Mn}_{\mathrm{GPC}}=5300$).

Figure S5a. ${ }^{1} \mathrm{H}$ NMR of crude reaction mixture obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{2 a}$ (entry 5 of Table1) highlights the co-existence of the poly2a and a product of the protonation of the 2 monomer suggesting the chain growth polycondensation mechanism.. The conversion of 87% can be deduced from the spectra $(7 / 7+1=0.87)$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of 3 aa (entry 6 of Table1). The Ph-P3HT to H / Br P3HT ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hf}}{ }^{+} \mathrm{I}_{\mathrm{Hg}^{-}}\right.\right.$ $1) / 2]=1 /[(1.01+0.85-1) / 2]=1 / 0.43$, that corresponds to the percentage of $\mathrm{Ph}-\mathrm{P} 3 \mathrm{HT}$ of $1 / 1+0.43 \sim 69$ $\%$, and of H / Br poly3b of $\sim 31 \%$. On the other hand, $\mathrm{Mn}_{\mathrm{GPC}}=5700$, whereas $\mathrm{Mn}_{\mathrm{NMR}}$ determined assuming that all polymer chains are Ph -terminated (by setting the integral of $\mathrm{Hb}=2$) Mn NMR ~ 8200. The observed discrepancy between $\mathrm{Mn}_{\text {GPC }}$ and $\mathrm{Mn}_{\text {NMR }}$ is mostly due to presence of poly3b without Phtermination. $\mathrm{Mn}_{\mathrm{GPC}} / \mathrm{Mn}_{\mathrm{NMR}}$.

Figure S6a. ${ }^{1} \mathrm{H}$ NMR of crude reaction mixture obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $3 \mathbf{a}$ (entry 6 of Table1) highlights the co-existence of the poly3a and a product of the protonation of the $\mathbf{3 a}$ monomer (Figure S6b) suggesting the chain growth polycondensation mechanism.. The conversion of 85% can be deduced from the spectra $(5.7 / 5.7+1=0.85)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{2 b}$ prepared by GRIM at $\mathbf{6}$ to $t-\mathrm{BuMgCl}$ ratio of 0.9 (entry 3 of Table1). The Ph -poly2b to H / Br poly2b ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hg}}+\mathrm{I}_{\mathrm{Hi}}-1\right) / 2\right]=1 /[(1.22+2.18-1) / 2]=1 / 1.2$, that corresponds to the percentage of Ph-poly2b of $1 / 1+1.2 \sim 45 \%$, and of H / Br poly $2 \mathbf{b}$ of $\sim 55 \%$. On the other hand, Mn GPC $=3300$, whereas $\mathrm{Mn}_{\text {NMR }}$ determined assuming that all polymer chains are Ph -terminated (by setting the integral of $\mathrm{Hb}=2) \mathrm{Mn}_{\text {NMR }} \sim 7500$. The observed discrepancy between $\mathrm{Mn}_{\text {GPC }}$ and $\mathrm{Mn}_{\text {NMR }}$ is due to presence of poly2b without Ph-termination.

Figure S7a. ${ }^{1} \mathrm{H}$ NMR of crude reaction mixture obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{2 b}$ (entry 7 of Table1) highlights the co-existence of the poly2b and a product of the protonation of the $\mathbf{2 b}$ monomer (Figure S7b) suggesting the chain growth polycondensation mechanism.. The conversion of 75% can be deduced from the spectra $(1 / 1+0.34=0.75)$.

15

Figure S8. ${ }^{1} \mathrm{H}$ NMR of P 3 HT obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{3 b}$ (entry 8 of Table1). The Ph -poly3b to H / Br poly3b ratio is estimated as follows: $1 /\left[\left(\mathrm{I}_{\mathrm{Hg}}+\mathrm{I}_{\mathrm{Hi}}{ }^{-}\right.\right.$ $1) / 2]=1 /[(2.22+3.33-1) / 2]=1 / 2.275$, that corresponds to the percentage of $\mathrm{Ph} / \mathrm{H} \mathrm{P} 3 \mathrm{HT}$ of $1 / 1+2.275 \sim$ 31%, whereas of H / Br poly $3 \mathbf{b}$ of $\sim 69 \%$. On the other hand, $\mathrm{Mn}_{\mathrm{GPC}}=4200$, whereas $\mathrm{Mn}_{\mathrm{NMR}}$ determined assuming that all polymer chains are Ph-terminated (by setting the integral of $\mathrm{Hb}=2$) Mn NMR ~ 15500. The observed discrepancy between $\mathrm{Mn}_{\text {GPC }}$ and $\mathrm{Mn}_{\text {NMR }}$ is mostly due to presence of poly3b without Ph -termination. $\mathrm{Mn}_{\mathrm{GPC}} / \mathrm{Mn}_{\text {NMR }}$ ratio of 0.27 corresponding to 27% content of Ph poly3b is quite close to the content determined by the direct integration of the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure S8a. ${ }^{1} \mathrm{H}$ NMR of crude reaction mixture obtained upon the $\mathrm{Ph}-\mathrm{Ni}(\mathrm{PPh} 3)_{2}-\mathrm{Br}$ mediated polymerization of $\mathbf{3 b}$ (entry 7 of Table1) highlights the co-existence of the poly3b and a product of the protonation of the $\mathbf{3 b}$ monomer (Figure S 8 b) suggesting the chain growth polycondensation mechanism.. The conversion of 68% can be deduced from the spectra $(2 / 2+0.92=0.68)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR of $o-\mathrm{Tol} / \mathrm{H}$ sexi-3HT.

Figure S10. ${ }^{1} \mathrm{H}$ NMR of $o-\mathrm{Tol} / \mathrm{Br}$ sexi-3HT.

Monomer precursors.

