

A Threefold "Butterfly Valve" in Command of the Encapsulation's Kinetic Stability. Molecular Baskets at Work

Bao-Yu Wang, Xiaoguang Bao, Zhiqing Yan, Veselin Maslak, Christopher M. Hadad and Jovica D. Badjić*

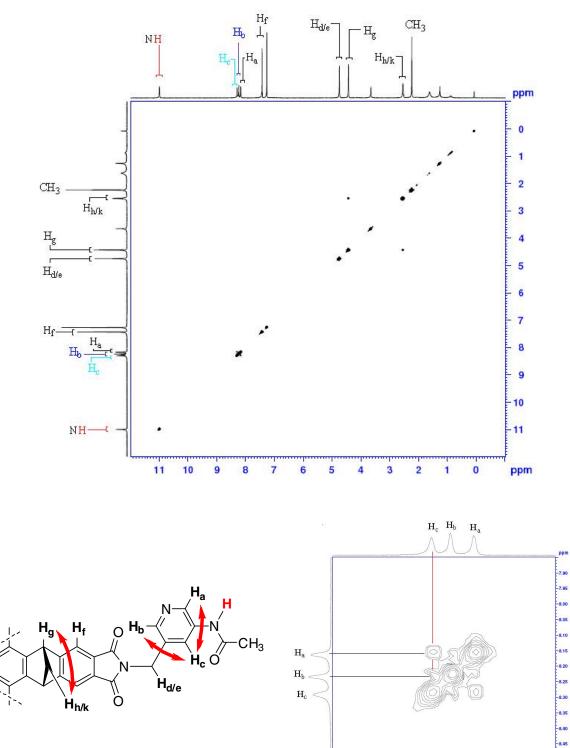
Contribution from the Department of Chemistry, The Ohio State University, 100 W. 18th

Avenue, Columbus, OH 43210

E-mail: badjic@chemistry.ohio-state.edu

Supporting Information

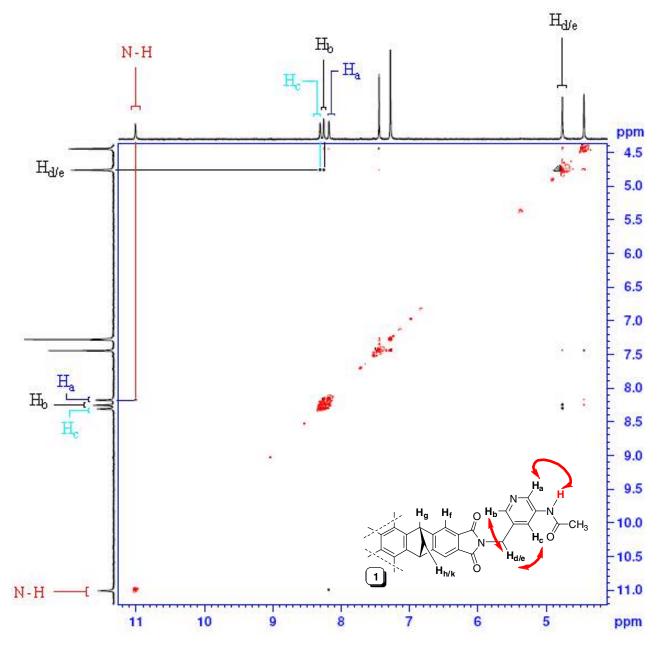
General Information


All chemicals were purchased from commercial sources, and used as received unless stated otherwise. All solvents were dried prior to use according to standard literature protocols. Chromatography purifications were performed using silica gel 60 (Sorbent Technologies 40-75µm, 200 x 400 mesh). Thin-layer chromatography (TLC) was performed on silica-gel plate w/UV254 (200µm). Chromatograms were visualized by UV-light and stained using 20% phosphomolybdic acid in ethanol, if required. All NMR samples were prepared in J. Young Valve NMR Tubes purchased from Norell. ¹H and ¹³C NMR spectra were recorded, at 400 MHz and 100 MHz respectively, on a Bruker DPX400 spectrometer. They were referenced using the solvent residual signal as an internal standard. NMR samples were prepared using CDCl₃ and CD₂Cl₂ purchased from Cambridge Isotope Laboratories. The chemical shift values are expressed as δ values, and the couple constants (J) are given in Hertz (Hz). The following abbreviations have been used for the signal multiplicities: s, singlet; d, doublet; t, triplet; m, multiplet; and br, broad. Reported temperatures were corrected with a neat methanol standard.¹ HR MALDI-TOF mass spectra were measured on a Bruker Relfex III MALDI-TOF spectrometer on samples made with 2,5-dihydroxybenzoic acid.

Synthetic Procedures

Molecular basket 1: A solution (dry DMSO, 5.0 mL) of *tris*-anhydride **3** (8.8 mg, 0.014 mmol) and **4** (7.0 mg, 0.042 mmol) was stirred for 30 min under an atmosphere of nitrogen (room temperature). Subsequently, neat pyridine (0.5 mL) was added portionwise and the temperature was raised to 120 °C. The reaction was allowed to complete for 12 h (overnight), after which the solvent was evaporated in *vacuum* and the residue purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 8:1) to yield desired **1** as a white solid (9.5 mg, 63 %). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 10.98 (s, 3-NH), 8.29 (t, *J* = 1.6 Hz, 3H), 8.24 (d, *J* = 1.6 Hz, 3H), 8.16 (d, *J* = 2.4 Hz, 3H), 7.43 (s, 6H), 4.74 (s, 6H), 4.23 (s, 6H), 2.54 (q, *J* = 3.6 Hz, 6H) and 2.23 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 169.7, 167.0, 156.7, 145.1, 142.3, 137.5, 135.2, 134.9, 133.3, 130.1, 116.1, 66.1, 49.0, 38.3 and 23.7 ppm; HR MALDI-TOF *m*/*z* calcd for C₆₃H₄₆N₉O₉: 1072.3418 [M+H]⁺, found: 1072.2285.

Model compound 2: A solution (dry DMSO, 2.0 mL) of phthalic anhydride (3.0 mg, 0.02 mmol) and **4** (3.3 mg, 0.02 mmol) was stirred for 30 min under an atmosphere of nitrogen (room temperature). Subsequently, neat pyridine (0.2 mL) was added portionwise and the temperature was raised to 120 °C. The reaction was allowed to complete for 12 h (overnight), after which the solvent was evaporated in *vacuum* and the residue purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 8:1) to yield a white solid (4.1 mg, 70 %). ¹H NMR (400 MHz, CDCl₃, 298 K): δ = 8.62 (d, *J* = 2.4 Hz, 1H), 8.44 (d, *J* = 1.2 Hz, 1H), 8.08 (br, 1H), 7.87 (m, 2H), 7.73 (m, 2H), 7.4 (br, NH), 4.88 (s, 2H) and 2.19 ppm (s, 3H); ¹³C NMR (63 MHz, CDCl₃, 298 K): δ = 168.5, 167.8, 147.5, 145.2, 138.3, 134.2, 131.9, 127.2, 123.5, 123.2, 38.5 and 23.6 ppm; HRMS (EI): *m/z* calcd for C₁₆H₁₃N₃O₃Na: 318.0855 [*M* + Na]⁺, found: 318.0836.


Figure S1. 1 H- 1 H COSY NMR spectrum (400 MHz) of 4.66 mM of molecular basket 1 in CDCl₃ at 300K.


1

8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 ppm

8.50

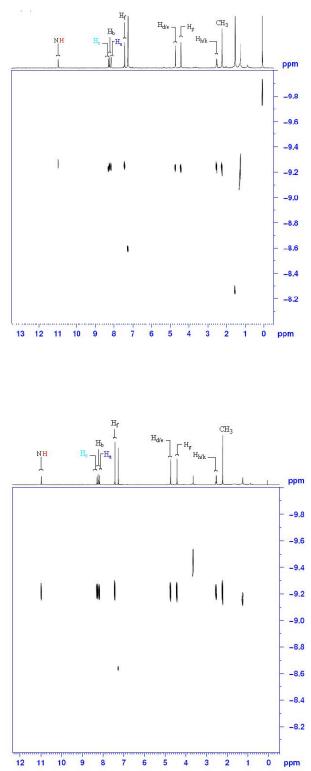


Figure S2. 1 H- 1 H ROESY NMR spectrum (400 MHz) of molecular basket 1 in CDCl₃ (1.86 mM) at 300 K.

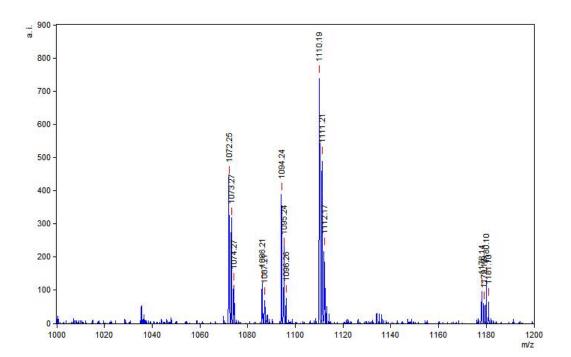
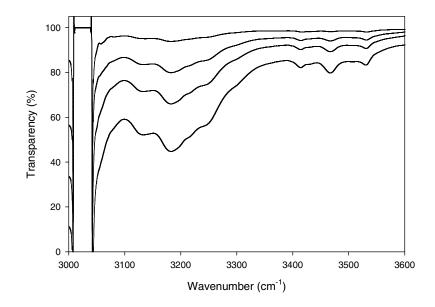


Figure S3. ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY NMR spectrum (400 MHz) of model compound **2** in CDCl₃ (12.7 mM) at 300K.


Figure S4. (Top) 2D NMR DOSY spectrum (500 MHz) of **1** in CDCl₃ (0.7 mM) at 298 \pm 1 K; (Bottom) 2D NMR DOSY spectrum (500 MHz) of **1** in CDCl₃ (13.0 mM) at 298 \pm 1 K.


Figure S5. High-Resolution MALDI-TOF mass spectrum of **1**, showing a signal at m/z 1072.2285 amu corresponding to the [M+H] ion. Also, note the presence of [M+Na]⁺ and M+K]⁺ ions at 1094 and 1110 amu, respectively.

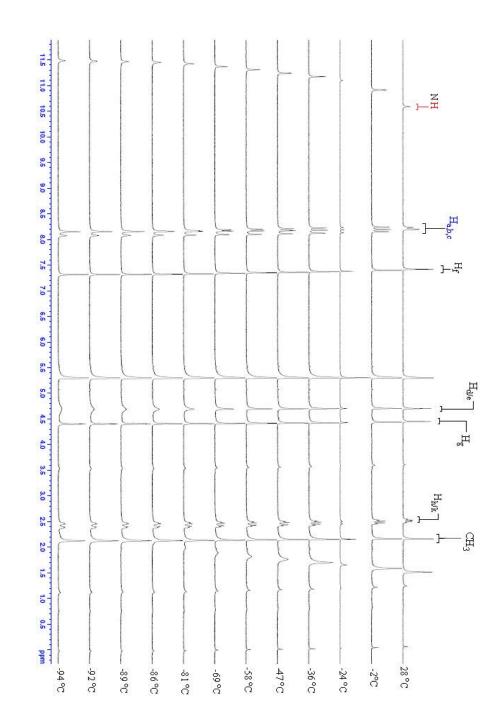


Figure S6. A selected region of FT-IR spectra of **1** (from 3600 to 3000 cm⁻¹) in CHCl₃ (3.0, 6.0 and 12.0 mM) at 298K.

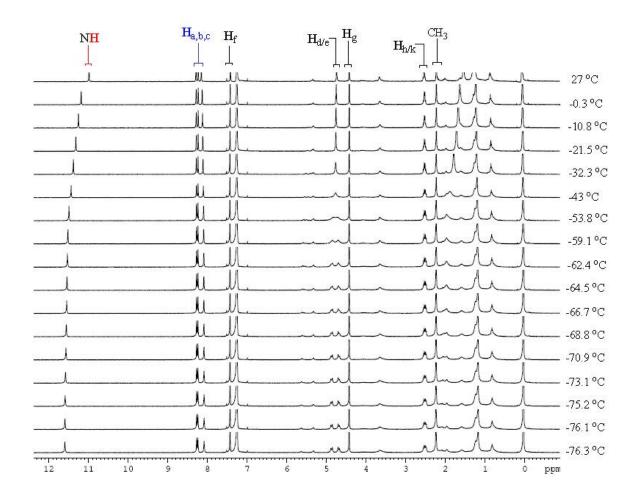


Figure S7. A selected region of the FT-IR spectra (from 3600 to 3000 cm⁻¹) of **1** in CDCl₃ (2.2, 4.4, 8.7, and 17.8 mM) at 298K.

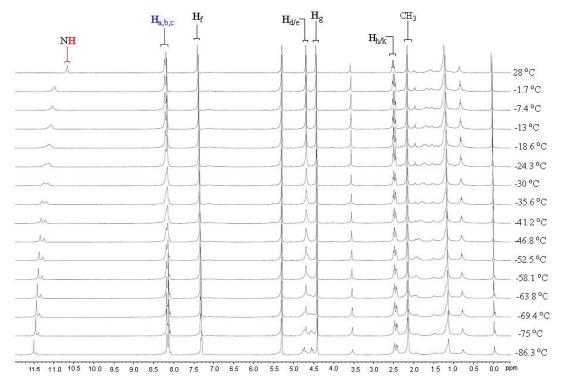


Figure S8. Variable temperature (VT) 1 H NMR spectra (400 MHz) of **1** in CD₂Cl₂ (2.53 mM).

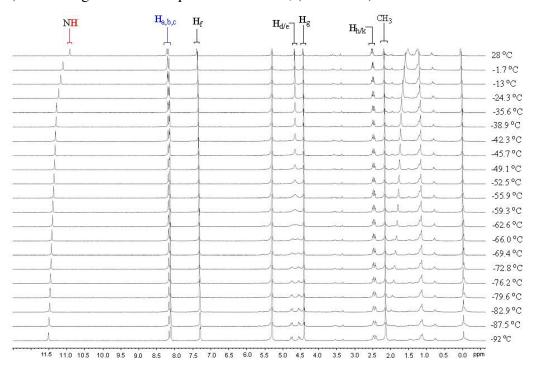
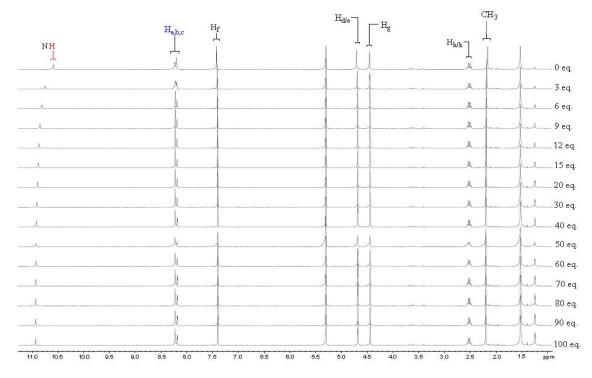
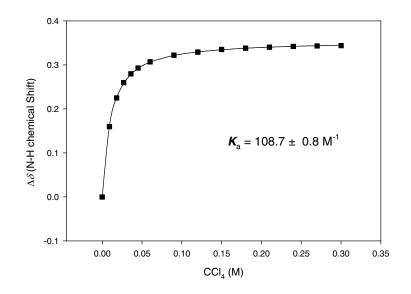
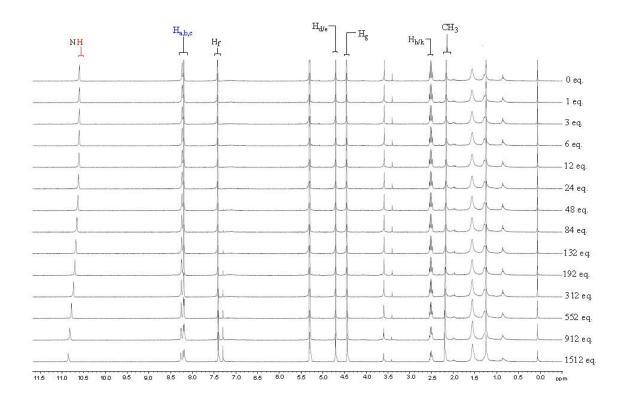
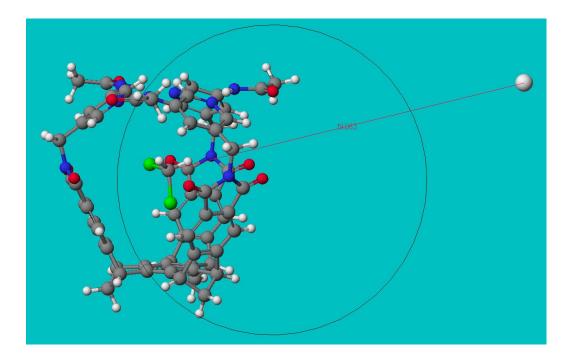


Figure S9. Variable temperature (VT) 1 H NMR spectra (400 MHz) of **1** in CDCl₃ (1.17 mM).


Figure S10. Variable temperature (VT) ¹H NMR spectra (400 MHz) of **1** in CD_2Cl_2 (2.4 mM), containing 1.5 molar equivalents of CCl_4 (3.7 mM).


Figure S11. Variable temperature (VT) 1 H NMR spectra (400 MHz) of **1** in CD₂Cl₂ (2.98 mM) containing 50.0 molar equivalents of CCl₄ (149.0 mM).


Figure S12. ¹H-NMR spectra (400 MHz) of **1** in CD_2Cl_2 , (2.98 mM, 298K), obtained after incremental additions of neat CCl_4 .


The nonlinear curve fitting (SigmaPlot 9.0) of ¹H NMR chemical shifts of the N–H resonance (above) in **1** to a 1:1 equilibrium model (see the main text ref. 17) afforded the association (binding) constant K_{a} .

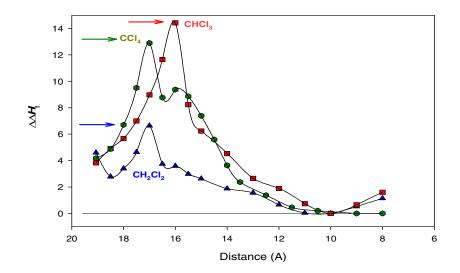


Figure S13. ¹H-NMR spectra (400 MHz) of **1** in CD_2Cl_2 (2.56 mM, 298 K) obtained after incremental additions of neat $CDCl_3$.

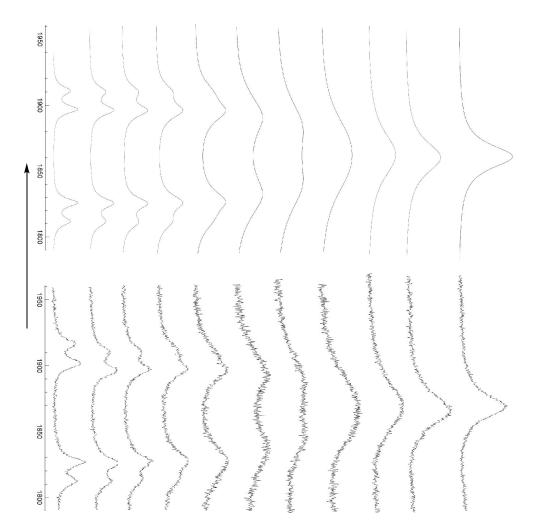


Figure S14. The reaction coordinate, χ , for the egress of CH₂Cl₂ from 1 (top). Computed energy profiles (PM3, CAChe), for the decomplexation of CH₂Cl₂, CHCl₃ and CCl₄ from 1, are shown at the bottom. (see ref. 6 in the text)

Figure S15. Simulated and experimental (WINDNMR-Pro) resonances for the $\mathbf{H}_{d/e}$ protons in 1 (CD₂Cl₂, 2.98 mM), containing 50.0 molar equivalents of CCl₄ (149 mM). Apparent first-order rate constants k_1/k_{-1} for the $\mathbf{1}_A/\mathbf{1}_B$ interconversion at the examined temperatures.

ERROR: invalidaccess OFFENDING COMMAND: --filter--STACK: /LZWDecode -filestream-[40 0 0 -141 0 141] true 141 40 -savelevel-[1 0 0 -1 0 6600]