Supporting Information

to
 pH Effects on Iron-Catalyzed Oxidation using
 Fenton's Reagent

Christopher K. Duesterberg ${ }^{1}$, Steven E. Mylon ${ }^{2}$ and T. David Waite ${ }^{1}$
${ }^{1}$ School of Civil and Environmental Engineering, The University of New South Wales Sydney, NSW 2052, Australia
${ }^{2}$ Department of Chemistry, Lafayette College, Easton, PA 18042

Revised Version Submitted Environmental Science \& Technology

August 2008

[^0]
Mathematical Justification of Use of Scavenging Factor, Θ

Key reactions relating to Fenton-mediated hydroxyl radical production and consumption by both target formic acid (HCOOH) and a scavenger (Scav) that competes with formic acid for hydroxyl radicals can be written:

Fenton $\rightarrow \mathrm{HO}^{\bullet} \quad$ Production rate $=\mathrm{k} \mathrm{M}. \mathrm{~s}^{-1}$
where production rate can be assumed constant for any given $\mathrm{pH},[\mathrm{Fe}]_{\mathrm{T}},[\mathrm{HCOOH}]_{\mathrm{T}}$ and $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]_{\mathrm{T}}$
$\mathrm{HCOOH}+\mathrm{HO}^{\bullet} \rightarrow$ products \quad Rate constant $\mathrm{k}_{\mathrm{HCOOH}}$
$\mathrm{Scav}+\mathrm{HO}^{\bullet} \rightarrow$ products \quad Rate constant $\mathrm{k}_{\text {Scav }}$

Rate expressions for these reactions can be written as:

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{HCOOH}]}{\mathrm{dt}}=-\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right] \\
& \frac{\mathrm{d}[\mathrm{Scav}]}{\mathrm{dt}}=-\mathrm{k}_{\mathrm{Sav}}[\mathrm{Scav}]\left[\mathrm{HO}{ }^{\bullet}\right] \\
& \frac{\mathrm{d}\left[\mathrm{HO}^{\bullet}\right]}{\mathrm{dt}}=\mathrm{k}-\mathrm{k}_{\mathrm{HCoOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right]-\mathrm{k}_{\mathrm{Scav}}[\mathrm{Scav}]\left[\mathrm{HO} \mathrm{H}^{\bullet}\right]
\end{aligned}
$$

Since HO^{\bullet} is both produced and consumed in these reactions, it will reach a steady state concentration, $\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}$ thus
$\frac{{\mathrm{d}\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}}_{\mathrm{dt}}=0=\mathrm{k}-\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}-\mathrm{k}_{\mathrm{Scav}}[\mathrm{Scav}]\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}}{}$
where $\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}=\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]+\mathrm{k}_{\mathrm{Scav}}[\mathrm{Scav}]}$
Obviously, if no scavenger had been present,

$$
\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}^{\mathrm{No} \mathrm{Scav}}=\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]}
$$

Thus, a rate expression for the degradation of HCOOH that accounts for the presence of a scavenger but is expressed in scavenger free terms can be written as:

$$
\begin{aligned}
\frac{\mathrm{d}[\mathrm{HCOOH}]}{\mathrm{dt}} & =-\left(\frac{\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}}{\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}^{\mathrm{No} \text { Scav }}}\right) \mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}^{\mathrm{No} \mathrm{Scav}} \\
& =-\left(\frac{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]}{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]+\mathrm{k}_{\mathrm{Scav}}[\mathrm{Scav}]}\right) \mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}^{\mathrm{NoScav}} \\
& =-\Theta \mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]\left[\mathrm{HO}^{\bullet}\right]_{\mathrm{ss}}^{\mathrm{No} \mathrm{Scav}}
\end{aligned}
$$

where $\Theta=\frac{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]}{\mathrm{k}_{\mathrm{HCOOH}}[\mathrm{HCOOH}]+\mathrm{k}_{\mathrm{Scav}}[\mathrm{Scav}]}$

[^0]: Corresponding author: Phone +61-2-9385 5060, Fax +61-2-9385 6139, Email d.waite@unsw.edu.au

