Unusual Structural and Spectroscopic Features of Some PNP-Pincer Complexes of Iron

Elizabeth M. Pelczar, Thomas J. Emge, Karsten Krogh-Jespersen*, and Alan S. Goldman*

Department of Chemistry and Chemical Biology,

Rutgers-The State University of New Jersey, New Brunswick, New Jersey 08903

alan.goldman@rutgers.edu, kroghjes@rutgers.edu

Supporting Information

		Page #
I.	Structural Data for (PNP)FeCl ₂ , 1 .	
	(a) Figure S-1. ORTEP Diagram of 1	S3
	(b) Table S1. Crystal data and structure refinement for 1	S4
	(c) Table S2. Atomic coordinates for 1	S5
	(d) Table S3. Bond lengths and angles for 1	S6
	(e) Table S4. Torsion angles [°] for 1	S9
II.	Structural Data for (PNP)Fe(CO) ₂ 3 .	
	(a) Figure S-2. ORTEP Diagram of 3	S11
	(b) Table S5. Crystal data and structure refinement for 3	S12
	(c) Table S6. Atomic coordinates for 3	S13
	(d) Table S7. Bond lengths and angles for 3	S14
	(e) Table S8. Torsion angles [°] for 3	S18
III.	Infrared spectra of (PNP)Fe(CO) ₂ and (PNP)Fe(¹³ CO) ₂	S20
IV.	Optimized geometries and absolute energies (a.u.) for	
	(^{tBu} PNP)FeCl ₂ , 1 ; quintet, triplet and singlet states.	S21

V.	Optimized geometries and absolute energies (a.u.) for (^{tBu} PNP)FeHCl, 2 ; quintet, triplet and singlet states.	S27
VI.	Optimized geometry and absolute energies (a.u.) for the (^{tBu} PNP)FeHCl:MeCN adduct	S32
VII.	Optimized geometries and absolute energies (a.u.) for (^{tBu} PNP)Fe(CO) ₂ , 3-SQP and 3-TBP , and the TS for their interconversion. Electronic transition energies for 3-SQP and 3-TBP .	S34
VIII.	Optimized geometry and absolute energies (a.u.) for (^{iPr} PNP)Fe(CO) ₂ , 4 . Electronic transition energies for 4 .	S40
IX.	Calculation of magnetic moment of (^{tBu}PNP)FeCl ₂ (1).	S42
X.	Complete Reference 64	S43

I. Structural Data for (PNP)FeCl₂ (1)

Figure S-1 : ORTEP Diagram of (PNP)FeCl₂

Identification code	fecl2pnp		
Empirical formula	pirical formula C23 H43 Cl2 Fe N P2		
Formula weight	ormula weight 522.27		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/n		
Unit cell dimensions	a = 12.0831(9) Å	α= 90°.	
	b = 15.5084(12) Å	β= 91.093(2)°.	
	c = 14.5049(11) Å	$\gamma = 90^{\circ}$.	
Volume	2717.6(4) Å ³		
Ζ	4		
Density (calculated)	1.277 Mg/m ³		
Absorption coefficient	0.880 mm ⁻¹		
F(000)	1112		
Crystal size	0.21 x 0.06 x 0.03 mm ³		
Theta range for data collection	1.92 to 30.57°.		
Index ranges	-17<=h<=17, -22<=k<=22, -20<=l<=20		
Reflections collected	31924		
Independent reflections	8292 [R(int) = 0.0456]		
Completeness to theta = 30.57°	99.4 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.9999 and 0.8338		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	8292 / 0 / 434		
Goodness-of-fit on F ²	1.012		
Final R indices [I>2sigma(I)]	R1 = 0.0349, WR2 = 0.0753		
R indices (all data)	indices (all data) $R1 = 0.0534$, $wR2 = 0.0823$		
Largest diff. peak and hole 0.618 and -0.300 e.Å ⁻³			

Table S1. Crystal data and structure refinement for (PNP)FeCl₂

	X	у	Z	U(eq)
Fe(1)	8902(1)	1834(1)	2298(1)	13(1)
Cl(1)	8608(1)	2923(1)	3425(1)	20(1)
Cl(2)	8730(1)	2469(1)	867(1)	19(1)
P(1)	7206(1)	916(1)	2484(1)	13(1)
P(2)	10955(1)	1773(1)	2619(1)	13(1)
N(1)	9490(1)	482(1)	1808(1)	13(1)
C(2)	8794(1)	-194(1)	1749(1)	15(1)
C(3)	9046(1)	-930(1)	1246(1)	19(1)
C(4)	10064(1)	-988(1)	830(1)	20(1)
C(5)	10802(1)	-314(1)	935(1)	17(1)
C(6)	10498(1)	412(1)	1426(1)	14(1)
C(7)	7772(1)	-171(1)	2327(1)	17(1)
C(8)	11313(1)	1140(1)	1592(1)	16(1)
C(9)	6593(1)	837(1)	3661(1)	15(1)
C(10)	7587(2)	882(1)	4339(1)	21(1)
C(11)	5855(2)	1621(1)	3833(1)	21(1)
C(12)	5950(2)	6(1)	3844(1)	22(1)
C(13)	6114(1)	1012(1)	1552(1)	19(1)
C(14)	5786(2)	1964(1)	1461(1)	24(1)
C(15)	5083(2)	452(1)	1692(1)	26(1)
C(16)	6662(2)	723(1)	652(1)	26(1)
C(17)	11459(1)	1121(1)	3641(1)	18(1)
C(18)	11005(2)	1531(1)	4521(1)	24(1)
C(19)	10964(2)	211(1)	3560(1)	22(1)
C(20)	12720(2)	1040(1)	3730(1)	25(1)
C(21)	11799(1)	2785(1)	2480(1)	18(1)
C(22)	11831(2)	3290(1)	3385(1)	26(1)
C(23)	11167(2)	3335(1)	1764(1)	24(1)
C(24)	12976(2)	2632(1)	2138(2)	27(1)

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for (PNP)FeCl₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Fe(1)-Cl(2)	2.3028(5)	C(13)-C(14)	1.533(3)
Fe(1)-N(1)	2.3286(13)	C(13)-C(15)	1.535(2)
Fe(1)-Cl(1)	2.3816(5)	C(13)-C(16)	1.541(2)
Fe(1)-P(1)	2.5149(5)	C(14)-H(14A)	0.97(2)
Fe(1)-P(2)	2.5168(5)	C(14)-H(14B)	0.97(2)
P(1)-C(7)	1.8351(16)	C(14)-H(14C)	0.943(19)
P(1)-C(9)	1.8772(16)	C(15)-H(15A)	0.998(19)
P(1)-C(13)	1.8774(17)	C(15)-H(15B)	1.00(2)
P(2)-C(8)	1.8438(17)	C(15)-H(15C)	0.96(2)
P(2)-C(21)	1.8843(17)	C(16)-H(16A)	0.98(2)
P(2)-C(17)	1.8851(17)	C(16)-H(16B)	0.96(2)
N(1)-C(2)	1.346(2)	C(16)-H(16C)	0.98(2)
N(1)-C(6)	1.3520(19)	C(17)-C(20)	1.531(2)
C(2)-C(3)	1.392(2)	C(17)-C(19)	1.537(2)
C(2)-C(7)	1.507(2)	C(17)-C(18)	1.538(2)
C(3)-C(4)	1.383(2)	C(18)-H(18A)	1.00(2)
C(3)-H(3)	0.917(19)	C(18)-H(18B)	1.02(2)
C(4)-C(5)	1.382(2)	C(18)-H(18C)	0.95(2)
C(4)-H(4)	0.967(19)	С(19)-Н(19А)	0.94(2)
C(5)-C(6)	1.385(2)	C(19)-H(19B)	0.96(2)
C(5)-H(5)	0.912(19)	С(19)-Н(19С)	0.97(2)
C(6)-C(8)	1.514(2)	C(20)-H(20A)	0.95(2)
C(7)-H(7A)	0.95(2)	C(20)-H(20B)	0.93(2)
C(7)-H(7B)	0.95(2)	C(20)-H(20C)	0.96(2)
C(8)-H(8A)	0.97(2)	C(21)-C(22)	1.530(3)
C(8)-H(8B)	0.982(19)	C(21)-C(24)	1.533(2)
C(9)-C(12)	1.531(2)	C(21)-C(23)	1.537(2)
C(9)-C(11)	1.532(2)	C(22)-H(22A)	0.94(2)
C(9)-C(10)	1.539(2)	C(22)-H(22B)	0.95(2)
С(10)-Н(10А)	0.96(2)	C(22)-H(22C)	0.97(2)
С(10)-Н(10В)	0.96(2)	C(23)-H(23A)	0.96(2)
C(10)-H(10C)	0.96(2)	C(23)-H(23B)	0.96(2)
С(11)-Н(11А)	0.98(2)	C(23)-H(23C)	1.02(2)
C(11)-H(11B)	1.00(2)	C(24)-H(24A)	0.97(2)
С(11)-Н(11С)	0.94(2)	C(24)-H(24B)	0.97(2)
С(12)-Н(12А)	0.96(2)	C(24)-H(24C)	0.98(2)
C(12)-H(12B)	0.99(2)	Cl(2)-Fe(1)-N(1)	97.61(3)
C(12)-H(12C)	0.96(2)	Cl(2)-Fe(1)-Cl(1)	107.628(17)

Table S3. Bond lengths [Å] and angles [°] for (PNP)FeCl_2.

N(1)-Fe(1)-Cl(1)	153.95(3)	P(1)-C(7)-H(7A)	107.1(12)
Cl(2)-Fe(1)-P(1)	106.190(16)	C(2)-C(7)-H(7B)	110.1(12)
N(1)-Fe(1)-P(1)	77.13(3)	P(1)-C(7)-H(7B)	114.3(12)
Cl(1)-Fe(1)-P(1)	101.249(16)	H(7A)-C(7)-H(7B)	105.2(16)
Cl(2)-Fe(1)-P(2)	104.774(16)	C(6)-C(8)-P(2)	111.32(11)
N(1)-Fe(1)-P(2)	73.59(3)	C(6)-C(8)-H(8A)	109.3(12)
Cl(1)-Fe(1)-P(2)	93.402(16)	P(2)-C(8)-H(8A)	103.1(12)
P(1)-Fe(1)-P(2)	139.582(16)	C(6)-C(8)-H(8B)	109.7(11)
C(7)-P(1)-C(9)	101.98(7)	P(2)-C(8)-H(8B)	113.2(11)
C(7)-P(1)-C(13)	104.04(8)	H(8A)-C(8)-H(8B)	110.0(16)
C(9)-P(1)-C(13)	112.11(7)	C(12)-C(9)-C(11)	109.97(14)
C(7)-P(1)-Fe(1)	101.54(5)	C(12)-C(9)-C(10)	108.67(14)
C(9)-P(1)-Fe(1)	118.08(5)	C(11)-C(9)-C(10)	108.01(14)
C(13)-P(1)-Fe(1)	116.14(5)	C(12)-C(9)-P(1)	115.00(12)
C(8)-P(2)-C(21)	102.74(7)	C(11)-C(9)-P(1)	109.71(11)
C(8)-P(2)-C(17)	105.80(8)	C(10)-C(9)-P(1)	105.18(11)
C(21)-P(2)-C(17)	111.33(7)	C(9)-C(10)-H(10A)	110.0(12)
C(8)-P(2)-Fe(1)	96.66(5)	C(9)-C(10)-H(10B)	112.0(12)
C(21)-P(2)-Fe(1)	118.84(5)	H(10A)-C(10)-H(10B)	104.1(16)
C(17)-P(2)-Fe(1)	117.92(5)	C(9)-C(10)-H(10C)	111.6(12)
C(2)-N(1)-C(6)	118.54(13)	H(10A)-C(10)-H(10C)	105.5(16)
C(2)-N(1)-Fe(1)	121.78(10)	H(10B)-C(10)-H(10C)	113.2(16)
C(6)-N(1)-Fe(1)	118.70(10)	C(9)-C(11)-H(11A)	111.0(12)
N(1)-C(2)-C(3)	122.02(14)	C(9)-C(11)-H(11B)	109.2(12)
N(1)-C(2)-C(7)	117.67(14)	H(11A)-C(11)-H(11B)	109.7(17)
C(3)-C(2)-C(7)	120.02(14)	C(9)-C(11)-H(11C)	109.5(12)
C(4)-C(3)-C(2)	119.14(16)	H(11A)-C(11)-H(11C)	106.9(17)
C(4)-C(3)-H(3)	123.0(12)	H(11B)-C(11)-H(11C)	110.5(18)
C(2)-C(3)-H(3)	117.8(12)	C(9)-C(12)-H(12A)	108.1(12)
C(5)-C(4)-C(3)	118.72(15)	C(9)-C(12)-H(12B)	113.3(12)
C(5)-C(4)-H(4)	120.6(11)	H(12A)-C(12)-H(12B)	107.9(17)
C(3)-C(4)-H(4)	120.6(11)	C(9)-C(12)-H(12C)	112.8(12)
C(4)-C(5)-C(6)	119.66(15)	H(12A)-C(12)-H(12C)	106.8(16)
C(4)-C(5)-H(5)	121.7(12)	H(12B)-C(12)-H(12C)	107.8(17)
C(6)-C(5)-H(5)	118.7(12)	C(14)-C(13)-C(15)	110.29(15)
N(1)-C(6)-C(5)	121.73(15)	C(14)-C(13)-C(16)	108.82(15)
N(1)-C(6)-C(8)	117.59(14)	C(15)-C(13)-C(16)	108.04(15)
C(5)-C(6)-C(8)	120.62(14)	C(14)-C(13)-P(1)	108.40(12)
C(2)-C(7)-P(1)	113.70(11)	C(15)-C(13)-P(1)	114.86(12)
C(2)-C(7)-H(7A)	105.7(12)	C(16)-C(13)-P(1)	106.22(11)

C(13)-C(14)-H(14A)	108.9(13)	H(20A)-C(20)-H(20C)	107.6(18)
C(13)-C(14)-H(14B)	113.2(13)	H(20B)-C(20)-H(20C)	108.1(18)
H(14A)-C(14)-H(14B)	107.1(18)	C(22)-C(21)-C(24)	110.43(15)
C(13)-C(14)-H(14C)	112.4(12)	C(22)-C(21)-C(23)	107.41(15)
H(14A)-C(14)-H(14C)	107.1(17)	C(24)-C(21)-C(23)	108.62(15)
H(14B)-C(14)-H(14C)	107.9(17)	C(22)-C(21)-P(2)	109.81(12)
C(13)-C(15)-H(15A)	111.2(11)	C(24)-C(21)-P(2)	114.43(12)
C(13)-C(15)-H(15B)	110.9(11)	C(23)-C(21)-P(2)	105.80(11)
H(15A)-C(15)-H(15B)	110.3(15)	C(21)-C(22)-H(22A)	112.1(13)
C(13)-C(15)-H(15C)	106.9(12)	C(21)-C(22)-H(22B)	110.0(14)
H(15A)-C(15)-H(15C)	108.7(16)	H(22A)-C(22)-H(22B)	110.8(19)
H(15B)-C(15)-H(15C)	108.7(16)	C(21)-C(22)-H(22C)	109.0(12)
C(13)-C(16)-H(16A)	105.1(12)	H(22A)-C(22)-H(22C)	108.3(17)
C(13)-C(16)-H(16B)	112.7(13)	H(22B)-C(22)-H(22C)	106.4(18)
H(16A)-C(16)-H(16B)	109.1(17)	C(21)-C(23)-H(23A)	110.6(12)
C(13)-C(16)-H(16C)	113.2(12)	C(21)-C(23)-H(23B)	111.7(13)
H(16A)-C(16)-H(16C)	109.0(17)	H(23A)-C(23)-H(23B)	111.5(17)
H(16B)-C(16)-H(16C)	107.7(17)	C(21)-C(23)-H(23C)	107.5(11)
C(20)-C(17)-C(19)	108.45(15)	H(23A)-C(23)-H(23C)	108.4(16)
C(20)-C(17)-C(18)	109.54(14)	H(23B)-C(23)-H(23C)	106.9(16)
C(19)-C(17)-C(18)	107.36(15)	C(21)-C(24)-H(24A)	108.5(12)
C(20)-C(17)-P(2)	114.61(12)	C(21)-C(24)-H(24B)	110.4(13)
C(19)-C(17)-P(2)	108.27(11)	H(24A)-C(24)-H(24B)	106.6(17)
C(18)-C(17)-P(2)	108.37(12)	C(21)-C(24)-H(24C)	110.7(14)
C(17)-C(18)-H(18A)	113.2(12)	H(24A)-C(24)-H(24C)	108.8(18)
C(17)-C(18)-H(18B)	112.4(12)	H(24B)-C(24)-H(24C)	111.7(19)
H(18A)-C(18)-H(18B)	106.0(17)		
C(17)-C(18)-H(18C)	108.8(13)		
H(18A)-C(18)-H(18C)	106.5(17)		
H(18B)-C(18)-H(18C)	109.7(17)		
С(17)-С(19)-Н(19А)	109.5(14)		
C(17)-C(19)-H(19B)	111.2(12)		
H(19A)-C(19)-H(19B)	108.3(18)		
С(17)-С(19)-Н(19С)	113.6(12)		
H(19A)-C(19)-H(19C)	104.9(18)		
H(19B)-C(19)-H(19C)	108.9(16)		
С(17)-С(20)-Н(20А)	108.8(13)		
C(17)-C(20)-H(20B)	112.3(13)		
H(20A)-C(20)-H(20B)	108.8(18)		
С(17)-С(20)-Н(20С)	111.1(12)		

Table S4. Torsion angles [°] for (PNP)FeCl_2.

Cl(2)-Fe(1)-P(1)-C(7)	105.57(6)	Fe(1)-N(1)-C(2)-C(3)	163.34(12)
N(1)-Fe(1)-P(1)-C(7)	11.26(7)	C(6)-N(1)-C(2)-C(7)	168.58(14)
Cl(1)-Fe(1)-P(1)-C(7)	-142.14(6)	Fe(1)-N(1)-C(2)-C(7)	-22.87(19)
P(2)-Fe(1)-P(1)-C(7)	-33.06(7)	N(1)-C(2)-C(3)-C(4)	3.1(3)
Cl(2)-Fe(1)-P(1)-C(9)	-144.00(6)	C(7)-C(2)-C(3)-C(4)	-170.52(15)
N(1)-Fe(1)-P(1)-C(9)	121.70(7)	C(2)-C(3)-C(4)-C(5)	0.5(3)
Cl(1)-Fe(1)-P(1)-C(9)	-31.71(6)	C(3)-C(4)-C(5)-C(6)	-1.9(2)
P(2)-Fe(1)-P(1)-C(9)	77.37(6)	C(2)-N(1)-C(6)-C(5)	3.7(2)
Cl(2)-Fe(1)-P(1)-C(13)	-6.51(6)	Fe(1)-N(1)-C(6)-C(5)	-165.18(12)
N(1)-Fe(1)-P(1)-C(13)	-100.82(7)	C(2)-N(1)-C(6)-C(8)	-173.33(14)
Cl(1)-Fe(1)-P(1)-C(13)	105.78(6)	Fe(1)-N(1)-C(6)-C(8)	17.76(18)
P(2)-Fe(1)-P(1)-C(13)	-145.14(6)	C(4)-C(5)-C(6)-N(1)	-0.2(2)
Cl(2)-Fe(1)-P(2)-C(8)	-57.79(6)	C(4)-C(5)-C(6)-C(8)	176.79(15)
N(1)-Fe(1)-P(2)-C(8)	35.94(6)	N(1)-C(2)-C(7)-P(1)	33.51(19)
Cl(1)-Fe(1)-P(2)-C(8)	-167.03(6)	C(3)-C(2)-C(7)-P(1)	-152.57(13)
P(1)-Fe(1)-P(2)-C(8)	81.18(6)	C(9)-P(1)-C(7)-C(2)	-148.41(12)
Cl(2)-Fe(1)-P(2)-C(21)	50.74(6)	C(13)-P(1)-C(7)-C(2)	94.87(13)
N(1)-Fe(1)-P(2)-C(21)	144.47(7)	Fe(1)-P(1)-C(7)-C(2)	-26.10(13)
Cl(1)-Fe(1)-P(2)-C(21)	-58.50(6)	N(1)-C(6)-C(8)-P(2)	21.16(18)
P(1)-Fe(1)-P(2)-C(21)	-170.29(6)	C(5)-C(6)-C(8)-P(2)	-155.93(13)
Cl(2)-Fe(1)-P(2)-C(17)	-169.64(6)	C(21)-P(2)-C(8)-C(6)	-164.36(11)
N(1)-Fe(1)-P(2)-C(17)	-75.91(7)	C(17)-P(2)-C(8)-C(6)	78.79(12)
Cl(1)-Fe(1)-P(2)-C(17)	81.13(6)	Fe(1)-P(2)-C(8)-C(6)	-42.74(11)
P(1)-Fe(1)-P(2)-C(17)	-30.66(7)	C(7)-P(1)-C(9)-C(12)	-43.06(14)
Cl(2)-Fe(1)-N(1)-C(2)	-100.96(11)	C(13)-P(1)-C(9)-C(12)	67.66(14)
Cl(1)-Fe(1)-N(1)-C(2)	93.31(13)	Fe(1)-P(1)-C(9)-C(12)	-153.25(10)
P(1)-Fe(1)-N(1)-C(2)	3.99(11)	C(7)-P(1)-C(9)-C(11)	-167.62(12)
P(2)-Fe(1)-N(1)-C(2)	155.81(12)	C(13)-P(1)-C(9)-C(11)	-56.90(13)
Cl(2)-Fe(1)-N(1)-C(6)	67.57(11)	Fe(1)-P(1)-C(9)-C(11)	82.19(12)
Cl(1)-Fe(1)-N(1)-C(6)	-98.16(12)	C(7)-P(1)-C(9)-C(10)	76.43(12)
P(1)-Fe(1)-N(1)-C(6)	172.52(11)	C(13)-P(1)-C(9)-C(10)	-172.85(11)
P(2)-Fe(1)-N(1)-C(6)	-35.66(10)	Fe(1)-P(1)-C(9)-C(10)	-33.76(12)
C(6)-N(1)-C(2)-C(3)	-5.2(2)	C(7)-P(1)-C(13)-C(14)	-166.07(11)

C(9)-P(1)-C(13)-C(14)	84.51(13)
Fe(1)-P(1)-C(13)-C(14)	-55.43(12)
C(7)-P(1)-C(13)-C(15)	70.08(14)
C(9)-P(1)-C(13)-C(15)	-39.34(15)
Fe(1)-P(1)-C(13)-C(15)	-179.28(11)
C(7)-P(1)-C(13)-C(16)	-49.27(14)
C(9)-P(1)-C(13)-C(16)	-158.69(12)
Fe(1)-P(1)-C(13)-C(16)	61.37(13)
C(8)-P(2)-C(17)-C(20)	67.31(14)
C(21)-P(2)-C(17)-C(20)	-43.58(15)
Fe(1)-P(2)-C(17)-C(20)	173.95(11)
C(8)-P(2)-C(17)-C(19)	-53.87(13)
C(21)-P(2)-C(17)-C(19)	-164.77(11)
Fe(1)-P(2)-C(17)-C(19)	52.77(13)
C(8)-P(2)-C(17)-C(18)	-170.03(12)
C(21)-P(2)-C(17)-C(18)	79.08(13)
Fe(1)-P(2)-C(17)-C(18)	-63.39(13)
C(8)-P(2)-C(21)-C(22)	-165.99(12)
C(17)-P(2)-C(21)-C(22)	-53.16(14)
Fe(1)-P(2)-C(21)-C(22)	88.92(12)
C(8)-P(2)-C(21)-C(24)	-41.17(15)
C(17)-P(2)-C(21)-C(24)	71.67(15)
Fe(1)-P(2)-C(21)-C(24)	-146.25(12)
C(8)-P(2)-C(21)-C(23)	78.37(13)
C(17)-P(2)-C(21)-C(23)	-168.79(12)
Fe(1)-P(2)-C(21)-C(23)	-26.71(14)

II. Structural Data for (PNP)Fe(CO)₂ (3)

Identification code	fehco	
Empirical formula	C25 H43 Fe N O2 P2	
Formula weight	507.39	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 11.7404(12) Å	α= 90°.
	b = 14.5944(14) Å	β= 90°.
	c = 15.3327(15) Å	$\gamma = 90^{\circ}$.
Volume	2627.2(4) Å ³	
Z	4	
Density (calculated)	1.283 Mg/m ³	
Absorption coefficient	0.717 mm ⁻¹	
F(000)	1088	
Crystal size	0.29 x 0.25 x 0.18 mm ³	
Theta range for data collection	1.93 to 30.56°.	
Index ranges	-16<=h<=16, -20<=k<=20, -21<=l<=21	
Reflections collected	31387	
Independent reflections	8025 [R(int) = 0.0228]	
Completeness to theta = 30.56°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.9999 and 0.9146	
Refinement method	Full-matrix least-squares on F ²	!
Data / restraints / parameters	8025 / 0 / 335	
Goodness-of-fit on F ²	1.041	
Final R indices [I>2sigma(I)]	R1 = 0.0219, wR2 = 0.0561	
R indices (all data)	R1 = 0.0230, wR2 = 0.0565	
Absolute structure parameter 0.002(6)		
Largest diff. peak and hole	0.362 and -0.180 e.Å ⁻³	

Table S5. Crystal data and structure refinement for (PNP)Fe(CO)₂

	Х	у	Ζ	U(eq)
Fe(1)	3493(1)	4841(1)	9565(1)	9(1)
P(1)	2067(1)	5699(1)	9055(1)	10(1)
P(2)	5170(1)	4168(1)	9449(1)	10(1)
N(1)	3159(1)	4041(1)	8496(1)	10(1)
C(1)	2293(1)	4234(1)	7931(1)	12(1)
C(2)	1947(1)	3624(1)	7289(1)	16(1)
C(3)	2524(1)	2802(1)	7180(1)	17(1)
C(4)	3448(1)	2624(1)	7717(1)	16(1)
C(5)	3742(1)	3242(1)	8367(1)	12(1)
C(6)	1801(1)	5174(1)	7981(1)	14(1)
C(7)	4723(1)	3068(1)	8967(1)	14(1)
C(8)	2292(1)	6946(1)	8743(1)	13(1)
C(9)	3489(1)	7025(1)	8344(1)	19(1)
C(10)	2236(1)	7554(1)	9555(1)	19(1)
C(11)	1447(1)	7309(1)	8056(1)	19(1)
C(12)	639(1)	5577(1)	9622(1)	14(1)
C(13)	767(1)	5821(1)	10594(1)	20(1)
C(14)	-346(1)	6139(1)	9240(1)	19(1)
C(15)	310(1)	4556(1)	9548(1)	19(1)
C(16)	6179(1)	4661(1)	8607(1)	13(1)
C(17)	5556(1)	4679(1)	7724(1)	18(1)
C(18)	6463(1)	5661(1)	8835(1)	17(1)
C(19)	7292(1)	4124(1)	8485(1)	19(1)
C(20)	6023(1)	3804(1)	10437(1)	14(1)
C(21)	5177(1)	3552(1)	11164(1)	24(1)
C(22)	6769(1)	4589(1)	10781(1)	22(1)
C(23)	6768(1)	2949(1)	10267(1)	22(1)
C(24)	4126(1)	5771(1)	10071(1)	13(1)
O(1)	4551(1)	6377(1)	10452(1)	18(1)
C(25)	2844(1)	4198(1)	10409(1)	13(1)
O(2)	2449(1)	3862(1)	11030(1)	19(1)

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for (PNP)Fe(CO)₂. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Fe(1)-C(24)	1.7310(12)	С(10)-Н(10В)	0.9800
Fe(1)-C(25)	1.7708(12)	C(10)-H(10C)	0.9800
Fe(1)-N(1)	2.0503(9)	C(11)-H(11A)	0.9800
Fe(1)-P(2)	2.2066(4)	C(11)-H(11B)	0.9800
Fe(1)-P(1)	2.2322(3)	C(11)-H(11C)	0.9800
P(1)-C(6)	1.8427(11)	C(12)-C(14)	1.5340(16)
P(1)-C(12)	1.8974(11)	C(12)-C(13)	1.5404(17)
P(1)-C(8)	1.8985(12)	C(12)-C(15)	1.5428(16)
P(2)-C(7)	1.8439(12)	C(13)-H(13A)	0.9800
P(2)-C(20)	1.8930(12)	C(13)-H(13B)	0.9800
P(2)-C(16)	1.8939(12)	C(13)-H(13C)	0.9800
N(1)-C(1)	1.3648(14)	C(14)-H(14A)	0.9800
N(1)-C(5)	1.3664(14)	C(14)-H(14B)	0.9800
C(1)-C(2)	1.3885(16)	C(14)-H(14C)	0.9800
C(1)-C(6)	1.4905(16)	C(15)-H(15A)	0.9800
C(2)-C(3)	1.3878(17)	C(15)-H(15B)	0.9800
C(2)-H(2)	0.9500	C(15)-H(15C)	0.9800
C(3)-C(4)	1.3859(18)	C(16)-C(19)	1.5342(16)
C(3)-H(3)	0.9500	C(16)-C(18)	1.5370(16)
C(4)-C(5)	1.3871(15)	C(16)-C(17)	1.5399(16)
C(4)-H(4)	0.9500	C(17)-H(17A)	0.9800
C(5)-C(7)	1.4965(16)	C(17)-H(17B)	0.9800
C(6)-H(6A)	0.9900	C(17)-H(17C)	0.9800
C(6)-H(6B)	0.9900	C(18)-H(18A)	0.9800
C(7)-H(7A)	0.9900	C(18)-H(18B)	0.9800
C(7)-H(7B)	0.9900	C(18)-H(18C)	0.9800
C(8)-C(10)	1.5296(17)	C(19)-H(19A)	0.9800
C(8)-C(9)	1.5375(17)	C(19)-H(19B)	0.9800
C(8)-C(11)	1.5413(16)	С(19)-Н(19С)	0.9800
C(9)-H(9A)	0.9800	C(20)-C(22)	1.5365(17)
C(9)-H(9B)	0.9800	C(20)-C(21)	1.5377(17)
C(9)-H(9C)	0.9800	C(20)-C(23)	1.5452(16)
C(10)-H(10A)	0.9800	C(21)-H(21A)	0.9800

Table S7. Bond lengths [Å] and angles [°] for (PNP)Fe(CO)₂.

C(21)-H(21B)	0.9800	C(23)-H(23A)	0.9800
C(21)-H(21C)	0.9800	C(23)-H(23B)	0.9800
C(22)-H(22A) 0.9800		C(23)-H(23C)	0.9800
C(22)-H(22B)	0.9800	C(24)-O(1)	1.1717(14)
C(22)-H(22C)	0.9800	C(25)-O(2)	1.1679(14)
C(24)-Fe(1)-C(25)	105.78(5)	C(1)-C(2)-H(2)	120.1
C(24)-Fe(1)-N(1)	152.52(5)	C(4)-C(3)-C(2)	118.15(11)
C(25)-Fe(1)-N(1)	101.57(4)	C(4)-C(3)-H(3)	120.9
C(24)-Fe(1)-P(2)	90.13(4)	C(2)-C(3)-H(3)	120.9
C(25)-Fe(1)-P(2)	101.94(4)	C(3)-C(4)-C(5)	120.01(11)
N(1)-Fe(1)-P(2)	81.55(3)	C(3)-C(4)-H(4)	120.0
C(24)-Fe(1)-P(1)	92.21(4)	C(5)-C(4)-H(4)	120.0
C(25)-Fe(1)-P(1)	103.35(4)	N(1)-C(5)-C(4)	122.26(11)
N(1)-Fe(1)-P(1)	84.04(3)	N(1)-C(5)-C(7)	116.23(10)
P(2)-Fe(1)-P(1)	152.917(13)	C(4)-C(5)-C(7)	121.51(10)
C(6)-P(1)-C(12)	102.72(5)	C(1)-C(6)-P(1)	111.32(7)
C(6)-P(1)-C(8)	101.37(5)	C(1)-C(6)-H(6A)	109.4
C(12)-P(1)-C(8)	109.18(5)	P(1)-C(6)-H(6A)	109.4
C(6)-P(1)-Fe(1)	101.92(4)	C(1)-C(6)-H(6B)	109.4
C(12)-P(1)-Fe(1)	116.69(4)	P(1)-C(6)-H(6B)	109.4
C(8)-P(1)-Fe(1)	121.45(4)	H(6A)-C(6)-H(6B)	108.0
C(7)-P(2)-C(20)	103.07(5)	C(5)-C(7)-P(2)	108.48(8)
C(7)-P(2)-C(16)	103.63(5)	C(5)-C(7)-H(7A)	110.0
C(20)-P(2)-C(16)	108.70(5)	P(2)-C(7)-H(7A)	110.0
C(7)-P(2)-Fe(1)	99.58(4)	C(5)-C(7)-H(7B)	110.0
C(20)-P(2)-Fe(1)	122.20(4)	P(2)-C(7)-H(7B)	110.0
C(16)-P(2)-Fe(1)	116.38(4)	H(7A)-C(7)-H(7B)	108.4
C(1)-N(1)-C(5)	117.24(9)	C(10)-C(8)-C(9)	108.60(10)
C(1)-N(1)-Fe(1)	122.15(7)	C(10)-C(8)-C(11)	109.19(10)
C(5)-N(1)-Fe(1)	120.37(7)	C(9)-C(8)-C(11)	106.84(10)
N(1)-C(1)-C(2)	122.33(11)	C(10)-C(8)-P(1)	110.21(8)
N(1)-C(1)-C(6)	116.48(10)	C(9)-C(8)-P(1)	107.42(8)
C(2)-C(1)-C(6)	120.96(10)	C(11)-C(8)-P(1)	114.37(8)
C(3)-C(2)-C(1)	119.83(11)	C(8)-C(9)-H(9A)	109.5
C(3)-C(2)-H(2)	120.1	C(8)-C(9)-H(9B)	109.5

109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	C(12)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) C(19)-C(16)-C(18) C(19)-C(16)-C(17) C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	109.5 109.5 109.5 109.15(10) 107.80(10) 106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) C(19)-C(16)-C(18) C(19)-C(16)-C(17) C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	109.5 109.5 109.15(10) 107.80(10) 106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5 109.5 109.5 109.5 109.5	H(15B)-C(15)-H(15C) C(19)-C(16)-C(18) C(19)-C(16)-C(17) C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	109.5 109.15(10) 107.80(10) 106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5 109.5 109.5 109.5	C(19)-C(16)-C(18) C(19)-C(16)-C(17) C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	109.15(10) 107.80(10) 106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5 109.5 109.5	C(19)-C(16)-C(17) C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	107.80(10) 106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5 109.5	C(18)-C(16)-C(17) C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	106.62(9) 114.97(8) 109.96(8)
109.5 109.5 109.5	C(19)-C(16)-P(2) C(18)-C(16)-P(2) C(17)-C(16)-P(2)	114.97(8) 109.96(8)
109.5 109.5	C(18)-C(16)-P(2) C(17)-C(16)-P(2)	109.96(8)
109.5	C(17)-C(16)-P(2)	
100 5	e(17) e(10) 1(2)	107.99(8)
109.5	С(16)-С(17)-Н(17А)	109.5
109.5	С(16)-С(17)-Н(17В)	109.5
109.5	H(17A)-C(17)-H(17B)	109.5
109.5	С(16)-С(17)-Н(17С)	109.5
109.5	H(17A)-C(17)-H(17C)	109.5
109.5	H(17B)-C(17)-H(17C)	109.5
108.59(9)	C(16)-C(18)-H(18A)	109.5
107.44(9)	C(16)-C(18)-H(18B)	109.5
108.62(11)	H(18A)-C(18)-H(18B)	109.5
116.19(8)	C(16)-C(18)-H(18C)	109.5
109.57(8)	H(18A)-C(18)-H(18C)	109.5
106.19(8)	H(18B)-C(18)-H(18C)	109.5
109.5	С(16)-С(19)-Н(19А)	109.5
109.5	С(16)-С(19)-Н(19В)	109.5
109.5	H(19A)-C(19)-H(19B)	109.5
109.5	С(16)-С(19)-Н(19С)	109.5
109.5	H(19A)-C(19)-H(19C)	109.5
109.5	H(19B)-C(19)-H(19C)	109.5
109.5	C(22)-C(20)-C(21)	107.32(11)
109.5	C(22)-C(20)-C(23)	109.74(10)
109.5	C(21)-C(20)-C(23)	107.18(10)
109.5	C(22)-C(20)-P(2)	111.53(8)
109.5	C(21)-C(20)-P(2)	107.75(8)
109.5	C(23)-C(20)-P(2)	113.04(8)
109.5	C(20)-C(21)-H(21A)	109.5
109.5	C(20)-C(21)-H(21B)	109.5
	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 108.59(9) 107.44(9) 108.62(11) 116.19(8) 109.57(8) 109.57(8) 109.5 109	109.5 $C(17)-C(16)-P(2)$ 109.5 $C(16)-C(17)-H(17A)$ 109.5 $C(16)-C(17)-H(17B)$ 109.5 $H(17A)-C(17)-H(17B)$ 109.5 $C(16)-C(17)-H(17C)$ 109.5 $H(17A)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ 109.5 $H(17B)-C(17)-H(17C)$ $108.59(9)$ $C(16)-C(18)-H(18A)$ $107.44(9)$ $C(16)-C(18)-H(18B)$ $108.62(11)$ $H(18A)-C(18)-H(18C)$ $108.62(11)$ $H(18A)-C(18)-H(18C)$ $109.57(8)$ $H(18A)-C(18)-H(18C)$ $109.57(8)$ $H(18B)-C(18)-H(18C)$ 109.5 $C(16)-C(19)-H(19A)$ 109.5 $C(16)-C(19)-H(19B)$ 109.5 $C(16)-C(19)-H(19C)$ 109.5 $H(19A)-C(19)-H(19C)$ 109.5 $H(19A)-C(19)-H(19C)$ 109.5 $C(22)-C(20)-C(23)$ 109.5 $C(22)-C(20)-C(23)$ 109.5 $C(21)-C(20)-P(2)$ 109.5 $C(21)-C(20)-P(2)$ 109.5 $C(23)-C(20)-P(2)$ 109.5 $C(23)-C(20)-P(2)$ 109.5 $C(23)-C(20)-P(2)$ 109.5 $C(23)-C(20)-P(2)$ 109.5 $C(20)-C(21)-H(21A)$ 109.5 $C(20)-C(21)-H(21A)$ 109.5 $C(20)-C(21)-H(21B)$

H(21A)-C(21)-H(21B)	109.5
С(20)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(20)-C(22)-H(22A)	109.5
C(20)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(20)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(20)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(20)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
O(1)-C(24)-Fe(1)	176.68(10)
O(2)-C(25)-Fe(1)	171.87(10)

C(24)-Fe(1)-P(1)-C(6)	144.06(5)	Fe(1)-N(1)-C(1)-C(2)	-169.54(9)
C(25)-Fe(1)-P(1)-C(6)	-109.16(6)	C(5)-N(1)-C(1)-C(6)	-169.65(9)
N(1)-Fe(1)-P(1)-C(6)	-8.64(5)	Fe(1)-N(1)-C(1)-C(6)	15.93(13)
P(2)-Fe(1)-P(1)-C(6)	49.44(5)	N(1)-C(1)-C(2)-C(3)	-3.12(18)
C(24)-Fe(1)-P(1)-C(12)	-104.96(6)	C(6)-C(1)-C(2)-C(3)	171.17(11)
C(25)-Fe(1)-P(1)-C(12)	1.83(6)	C(1)-C(2)-C(3)-C(4)	-0.79(18)
N(1)-Fe(1)-P(1)-C(12)	102.34(5)	C(2)-C(3)-C(4)-C(5)	2.71(18)
P(2)-Fe(1)-P(1)-C(12)	160.42(4)	C(1)-N(1)-C(5)-C(4)	-2.87(16)
C(24)-Fe(1)-P(1)-C(8)	32.64(6)	Fe(1)-N(1)-C(5)-C(4)	171.65(9)
C(25)-Fe(1)-P(1)-C(8)	139.43(6)	C(1)-N(1)-C(5)-C(7)	177.09(10)
N(1)-Fe(1)-P(1)-C(8)	-120.06(5)	Fe(1)-N(1)-C(5)-C(7)	-8.38(13)
P(2)-Fe(1)-P(1)-C(8)	-61.98(5)	C(3)-C(4)-C(5)-N(1)	-0.89(18)
C(24)-Fe(1)-P(2)-C(7)	176.47(5)	C(3)-C(4)-C(5)-C(7)	179.15(11)
C(25)-Fe(1)-P(2)-C(7)	70.30(5)	N(1)-C(1)-C(6)-P(1)	-22.69(12)
N(1)-Fe(1)-P(2)-C(7)	-29.82(5)	C(2)-C(1)-C(6)-P(1)	162.70(9)
P(1)-Fe(1)-P(2)-C(7)	-88.41(5)	C(12)-P(1)-C(6)-C(1)	-102.66(8)
C(24)-Fe(1)-P(2)-C(20)	64.30(6)	C(8)-P(1)-C(6)-C(1)	144.46(8)
C(25)-Fe(1)-P(2)-C(20)	-41.86(6)	Fe(1)-P(1)-C(6)-C(1)	18.56(8)
N(1)-Fe(1)-P(2)-C(20)	-141.99(5)	N(1)-C(5)-C(7)-P(2)	-20.12(12)
P(1)-Fe(1)-P(2)-C(20)	159.42(5)	C(4)-C(5)-C(7)-P(2)	159.84(9)
C(24)-Fe(1)-P(2)-C(16)	-73.02(6)	C(20)-P(2)-C(7)-C(5)	161.49(8)
C(25)-Fe(1)-P(2)-C(16)	-179.18(5)	C(16)-P(2)-C(7)-C(5)	-85.24(8)
N(1)-Fe(1)-P(2)-C(16)	80.69(5)	Fe(1)-P(2)-C(7)-C(5)	35.06(8)
P(1)-Fe(1)-P(2)-C(16)	22.10(5)	C(6)-P(1)-C(8)-C(10)	165.99(8)
C(24)-Fe(1)-N(1)-C(1)	-85.57(13)	C(12)-P(1)-C(8)-C(10)	58.07(10)
C(25)-Fe(1)-N(1)-C(1)	100.18(9)	Fe(1)-P(1)-C(8)-C(10)	-82.31(9)
P(2)-Fe(1)-N(1)-C(1)	-159.27(9)	C(6)-P(1)-C(8)-C(9)	-75.86(9)
P(1)-Fe(1)-N(1)-C(1)	-2.27(8)	C(12)-P(1)-C(8)-C(9)	176.22(8)
C(24)-Fe(1)-N(1)-C(5)	100.18(12)	Fe(1)-P(1)-C(8)-C(9)	35.85(9)
C(25)-Fe(1)-N(1)-C(5)	-74.07(9)	C(6)-P(1)-C(8)-C(11)	42.54(10)
P(2)-Fe(1)-N(1)-C(5)	26.48(8)	C(12)-P(1)-C(8)-C(11)	-65.39(10)
P(1)-Fe(1)-N(1)-C(5)	-176.52(8)	Fe(1)-P(1)-C(8)-C(11)	154.24(7)
C(5)-N(1)-C(1)-C(2)	4.88(16)	C(6)-P(1)-C(12)-C(14)	-66.90(10)

Table S8. Torsion angles [°] for (PNP)Fe(CO)₂.

C(8)-P(1)-C(12)-C(14)	40.10(10)
Fe(1)-P(1)-C(12)-C(14)	-177.42(7)
C(6)-P(1)-C(12)-C(13)	169.60(8)
C(8)-P(1)-C(12)-C(13)	-83.40(9)
Fe(1)-P(1)-C(12)-C(13)	59.09(9)
C(6)-P(1)-C(12)-C(15)	52.47(9)
C(8)-P(1)-C(12)-C(15)	159.48(8)
Fe(1)-P(1)-C(12)-C(15)	-58.04(9)
C(7)-P(2)-C(16)-C(19)	-66.51(9)
C(20)-P(2)-C(16)-C(19)	42.62(10)
Fe(1)-P(2)-C(16)-C(19)	-174.65(7)
C(7)-P(2)-C(16)-C(18)	169.84(8)
C(20)-P(2)-C(16)-C(18)	-81.03(9)
Fe(1)-P(2)-C(16)-C(18)	61.70(8)
C(7)-P(2)-C(16)-C(17)	53.87(9)
C(20)-P(2)-C(16)-C(17)	163.00(8)
Fe(1)-P(2)-C(16)-C(17)	-54.27(9)
C(7)-P(2)-C(20)-C(22)	163.05(8)
C(16)-P(2)-C(20)-C(22)	53.54(9)
Fe(1)-P(2)-C(20)-C(22)	-86.59(9)
C(7)-P(2)-C(20)-C(21)	-79.41(9)
C(16)-P(2)-C(20)-C(21)	171.08(9)
Fe(1)-P(2)-C(20)-C(21)	30.95(10)
C(7)-P(2)-C(20)-C(23)	38.83(10)
C(16)-P(2)-C(20)-C(23)	-70.68(10)
Fe(1)-P(2)-C(20)-C(23)	149.19(7)
C(25)-Fe(1)-C(24)-O(1)	18.6(17)
N(1)-Fe(1)-C(24)-O(1)	-155.6(17)
P(2)-Fe(1)-C(24)-O(1)	-83.9(17)
P(1)-Fe(1)-C(24)-O(1)	123.1(17)
C(24)-Fe(1)-C(25)-O(2)	8.3(7)
N(1)-Fe(1)-C(25)-O(2)	-174.4(7)
P(2)-Fe(1)-C(25)-O(2)	101.9(7)
P(1)-Fe(1)-C(25)-O(2)	-87.9(7)

III. Infrared spectra of (PNP)Fe(CO)₂ and (PNP)Fe(¹³CO)₂

Infrared spectrum of (PNP)Fe(CO)₂ (THF solvent)

Infrared spectrum of (PNP)Fe(¹³CO)₂ (THF solvent)

IV. Optimized geometries and absolute energies (a.u.) for (^{tBu}PNP)FeCl₂, **1**; quintet, triplet and singlet states.

PBEPBE Structures and Energetics for (^{tBu}PNP)FeCl₂, 1.

(^{tBu}PNP)FeCl₂, square planar, 1-SQP, quintet

Charge = 0 Multiplicity = 5Fe,0,0.0057356183,-0.4801111418,-0.6954081588 N,0,-0.0200472272,1.6975773747,0.220279995 P,0,2.3336477344,-0.2033186129,0.2231186498 P,0,-2.3529930192,-0.1430813564,0.0845952036 C,0,2.2582642706,1.4551814839,1.1035002346 C,0,2.9731450577,-1.373840662,1.6120614309 C,0,3.6477612435,0.058522425,-1.1565150728 C,0,-2.419296898,1.6830515497,-0.3683272181 C,0,-3.7479027517,-0.8984755902,-1.0074236569 C,0,-2.8049565259,-0.2471983922,1.9556161458 C,0,1.1050485917,2.3263957199,0.6441744184 C,0,1.1739549021,3.7275713763,0.763160348 C,0,0.0264567002,4.4924150877,0.4906949466 C.0.-1.1482297594.2.423930296.0.0104758673 C,0,-1.158963188,3.8267849392,0.1386177765 H,0,2.1108390828,4.2029143129,1.0862372906 H,0,0.0504612629,5.5886134905,0.5731105321 H,0,-2.0878403696,4.3832028715,-0.0505439058 H,0,2.0835686751,1.2230168872,2.1753940958 H,0,3.2167154588,2.0068827641,1.053547081 H,0,-2.504728514,1.6893842747,-1.4753043601 H.0,-3.3049131617.2.2100159888,0.040097868 Cl.0.0.045776094.-2.7986925744.-0.7211545219 Cl,0,-0.1101521631,0.5545203454,-2.7651485854 C.0.5.1047215936.0.1138724204.-0.6570955454 H,0,5.4546272093,-0.8569141525,-0.2591963963 H,0,5.7634570391,0.3745627521,-1.5121455112 H.0,5.2549366293,0.8879924874,0.1218162359 C,0,3.4734879965,-1.0866453584,-2.1816084018 H,0,2.4529319219,-1.0887793301,-2.6092652618 H,0,4.1938955289,-0.9370008411,-3.0130560298 H,0,3.663465017,-2.083492481,-1.7426256937 C,0,3.3133780209,1.3967711558,-1.8571183261 H.0,3.527147567,2.2737539665,-1.2144065009 H,0,3.9542241452,1.4869354593,-2.758984339 H,0,2.2586345153,1.4413448315,-2.190760798 C,0,-3.1688530697,-1.0291465565,-2.4352305422 H,0,-2.8784926368,-0.0587362484,-2.8787692111 H,0,-2.2748338033,-1.6795137755,-2.4567494571 H,0,-3.9473713827,-1.4833433526,-3.0841292191 C,0,-5.0340391556,-0.0467823748,-1.069142715 H,0,-5.7590778918,-0.5477450623,-1.7448306347 H,0,-5.5261612959,0.0739316588,-0.0875710579 H,0,-4.8440655881,0.9597136872,-1.4895540867 C.0.-4.0697881466.-2.3245895784.-0.5084546253 H,0,-4.7249750395,-2.8205735728,-1.2544188628 H,0,-3.1506513711,-2.9355257751,-0.4105977578

H,0,-4.6101940383,-2.3290952896,0.4571017374 C.0.-4.2725643696.0.0873634108.2.2853629801 H.0.-4.9763846568.-0.6621317863.1.8791849205 H.0,-4.4030227393,0.0971845406,3.3883129095 H.0.-4.5680475481.1.0864275104.1.9086283681 C,0,-2.4573350979,-1.6745940096,2.4401300646 H,0,-1.4164583522,-1.9460235402,2.1796917447 H.0,-2.5623140643,-1.7188030197,3.54450161 H,0,-3.1202101916,-2.444964314,2.0085195895 C,0,-1.8941101195,0.7425582442,2.716872901 H,0,-0.8244499981,0.5575963276,2.5048121882 H,0,-2.1185455319,1.7991856167,2.4745550916 H.0,-2.0582196238,0.6066499068,3.8064294115 C.0.3.4096234593.-2.7133366141.0.9790361219 H,0,4.344540309,-2.6180727865,0.3944617315 H.0.3.6003469447,-3.4486783845,1.7886585365 H,0,2.6160047603,-3.1247282072,0.3253259135 C,0,4.1110058765,-0.7974645187,2.4811478356 H,0,4.35244213,-1.527210644,3.2826414346 H,0,5.0372535726,-0.6176769652,1.9081390156 H,0,3.8252651817,0.1487647997,2.9812490215 C.0.1.7409671744,-1.6479162836,2.5059488739 H,0,0.9340875762,-2.1319874338,1.9232008852 H,0,2.0348665925,-2.3311142009,3.3302137328 H.0,1.3363688125,-0.7257564982,2.9718722755

SCF Done: E(UPBE-PBE) = -2682.18345057 A.U. after 2 cycles

Sum of electronic and zero-point Energies=	-2681.579631
Sum of electronic and thermal Energies=	-2681.540116
Sum of electronic and thermal Enthalpies=	-2681.539172
Sum of electronic and thermal Free Energies=	-2681.649424

(^{tBu}PNP)FeCl₂, square planar, 1-SQP, triplet

```
Charge = 0 Multiplicity = 3
Fe,0,0.0096417299,-0.2688205695,-0.4456991384
N.0.-0.0145970855,1.6331934323,0.1610063552
P,0,2.260042963,-0.2112925792,0.2167366477
P,0,-2.26516919,-0.1321344438,0.0438396524
C,0,2.2435399697,1.4184448277,1.1351137483
C,0,2.8967385071,-1.4477900764,1.5491635317
C,0,3.5318919364,0.0298944085,-1.2059822373
C.0.-2.398447475,1.6657721289,-0.4712495826
C,0,-3.5707747429,-1.0135325909,-1.0675749537
C,0,-2.7723124821,-0.230604318,1.9047893257
C.0.1.0917098389,2.2761380154,0.66965921
C,0,1.1343641756,3.6683059293,0.8453591466
C.0.0.0049248762,4.4501091872,0.5515888513
C,0,-1.1449305954,2.3922746491,-0.0526469334
C,0,-1.1561245827,3.7836675674,0.1246500659
H,0,2.0560303653,4.1256176134,1.2308774034
H,0,0.0214981311,5.5418327772,0.6743004009
H,0,-2.0818543335,4.3365365568,-0.0862449977
H,0,2.0701068703,1.1725419281,2.2048484883
H,0,3.2031593625,1.9675894696,1.0855059696
```

H,0,-2.4267760358,1.6214935694,-1.5804312751 H.0.-3.3040328145.2.1958191715.-0.115396195 Cl,0,-0.022915937,-2.53280858,-0.685117226 C1,0,-0.0694803353,0.5370840632,-2.6786886585 C.0.5.0000115959.0.0082257309.-0.735896321 H,0,5.3206399238,-0.9879026386,-0.3786794391 H,0,5.6454177091,0.269273335,-1.6006522131 H.0,5.2015769961.0.7523132073.0.0604117252 C,0,3.2859272672,-1.0770030046,-2.2565080108 H,0,2.2539698571,-1.0264708134,-2.6505487938 H,0,3.9888719706,-0.9240305651,-3.1022666442 H,0,3.4567740979,-2.0919022969,-1.8519078482 C.0.3.2462914433.1.4048703584.-1.8531101113 H,0,3.5167206684,2.2479806028,-1.1869308357 H,0,3.8732120778,1.4920245558,-2.7649364023 H.0,2.1883119052,1.5037070509,-2.1627363036 C,0,-2.9667760129,-1.1587723333,-2.4818734943 H,0,-2.7338426014,-0.187142382,-2.9544170241 H,0,-2.0318329459,-1.7468734257,-2.4687946231 H,0,-3.7123829203,-1.6826068869,-3.1169902856 C,0,-4.8871264048,-0.2111680298,-1.1781250934 H.0.-5.5793778623,-0.7685330578,-1.8435065329 H,0,-5.3996929382,-0.0698306733,-0.2102578315 H,0,-4.7298159044,0.7831123062,-1.6386138202 C.0,-3.8535021956,-2.432743955,-0.5279396857 H,0,-4.4627715142,-2.9769369415,-1.2789834241 H,0,-2.9149139408,-3.0007105247,-0.3795252522 H,0,-4.4289816986,-2.4262843529,0.4171345089 C,0,-4.2599460105,0.064989911,2.1777525359 H,0,-4.9264629309,-0.7138116133,1.7646113764 H,0,-4.4261142674,0.0907343223,3.2755259996 H,0,-4.5742418702,1.0474240846,1.7734166964 C,0,-2.4003525104,-1.6361800225,2.4307817723 H,0,-1.3582123091,-1.9007975333,2.1710397137 H,0,-2.4966531617,-1.6454192387,3.5366598755 H,0,-3.0554708703,-2.428614318,2.0295338737 C,0,-1.9202685757,0.8021960787,2.6771636287 H,0,-0.8383086889,0.6408595964,2.5119265046 H,0,-2.1627780899,1.8464683173,2.4019150097 H,0,-2.1233566594,0.6852505139,3.7620950913 C,0,3.2761988066,-2.7854528058,0.8764242495 H,0,4.1867974537,-2.7023204479,0.253523004 H,0,3.4854920877,-3.5364640343,1.6668968905 H,0,2.4459066304,-3.1662540894,0.251272911 C,0,4.0811469521,-0.9167767384,2.3867554736 H.0,4.3137928648,-1.6615449055,3.1766729499 H.0,4.9984578014,-0.7712579086,1.7906770652 H,0,3.8464240395,0.0359505464,2.9012096159 C,0,1.7005631108,-1.7103479117,2.4928780688 H.0.0.8519870665.-2.1478915506.1.9351085443 H,0,2.0137644847,-2.4313630738,3.2768264868 H,0,1.3516052981,-0.7929653771,3.0099791752

SCF Done: E(UPBE-PBE) = -2682.17696240 A.U. after 1 cycles

Sum of electronic and zero-point Energies= -2681.571737

Sum	of electronic	and thermal	Energies=	-2681.534089
Sum	of electronic	and thermal	Enthalpies=	-2681.533144
Sum	of electronic	and thermal	Free Energies=	-2681.636211

(^{tBu}PNP)FeCl₂, square planar, 1-SQP, singlet

	 	/		-/		
1	Charge =	0	Mu	ltinli	icity =	= 1

Charge =	0 Mult	iplicity = 1
26	0	-0.0113 -0.28017 -0.21015
7	0	-0.00053 1.6319 0.1978
15	0	2.27613 -0.20071 0.13314
15	0	-2.26755 -0.11997 -0.03637
6	Ő	2 31111 1 45163 1 03088
6	0	2.91111 1.49109 1.09000
0	0	2.95575 -1.57572 1.51172
0	0	3.34230 -0.02387 -1.30730
6	0	-2.3/335 1.68492 -0.51983
6	0	-3.56518 -0.98/// -1.1/486
6	0	-2.85879 -0.1883 1.80839
6	0	1.13004 2.29324 0.62332
6	0	1.18451 3.69149 0.73894
6	0	0.05175 4.4673 0.44486
6	0	-1.11794 2.39537 -0.07272
6	0	-1 11453 3 79409 0 04837
1	Ő	2 12182 4 15848 1 07129
1	0	0.07575 5.56284 0.52659
1	0	0.07375 5.50284 0.52059
1	0	-2.03398 4.34048 -0.18993
1	0	2.20538 1.21321 2.1099
l	0	3.25958 2.01111 0.92016
1	0	-2.38694 1.66738 -1.62947
1	0	-3.27963 2.21836 -0.17105
17	0	-0.12365 -2.56217 -0.29733
17	0	-0.02663 0.32763 -2.41746
6	0	5.0234 -0.05925 -0.8834
1	0	5.33292 -1.04507 -0.48984
1	0	5 64656 0 14586 -1 7795
1	Ő	5 26729 0 71688 -0 13091
6	0	3 24987 -1 17108 -2 30442
1	0	210508 + 14521 + 263801
1	0	2.17576 -1.14551 -2.05801
1	0	3.90323 -1.04802 -3.19392
ĺ	0	3.45424 -2.16/33 -1.8690/
6	0	3.27109 1.3315 -1.998
1	0	3.55803 2.19036 -1.3592
1	0	3.8923 1.38329 -2.91677
1	0	2.21205 1.43714 -2.296
6	0	-2.91457 -1.21702 -2.55712
1	0	-2.62946 -0.27436 -3.05829
1	0	-2.00405 -1.83753 -2.4805
1	0	-3 65491 -1 74154 -3 19829
6	Õ	-4 83815 -0 13413 -1 37239
1	0	5 52011 0 68821 2 04105
1	0	-5.55011 -0.08851 -2.04105
1	0	-5.3/961 0.0/26/ -0.4324
ĺ	0	-4.6166 0.83132 -1.86/1
6	0	-3.9358 -2.37369 -0.60249
1	0	-4.53385 -2.91725 -1.36324
1	0	-3.03014 -2.97377 -0.39048
1	0	-4.55331 -2.309 0.31281
6	0	-4.34348 0.17586 2.01238
1	0	-5.0269 -0.5778 1.58027

1	0	-4.55572 0.22376 3.10155
1	0	-4.5981 1.16602 1.58405
6	0	-2.5753 -1.59474 2.38586
1	0	-1.53476 -1.91566 2.19053
1	0	-2.73346 -1.56908 3.48462
1	0	-3.24066 -2.37002 1.96915
6	0	-2.0044 0.8203 2.61186
1	0	-0.92341 0.59278 2.54134
1	0	-2.15711 1.86744 2.28848
1	0	-2.29438 0.75347 3.68129
6	0	3.27036 -2.75866 0.90077
1	0	4.15075 -2.72971 0.23098
1	0	3.50224 -3.47189 1.71971
1	0	2.40172 -3.15178 0.33815
6	0	4.19337 -0.83531 2.26259
1	0	4.44092 -1.54306 3.08193
1	0	5.08735 -0.75036 1.62204
1	0	4.01106 0.15051 2.73411
6	0	1.80998 -1.55027 2.53809
1	0	0.92429 -2.01641 2.06864
1	0	2.15837 -2.21732 3.35449
1	0	1.50637 -0.59285 3.01066

SCF Done: E(RPBE-PBE) = -2682.15844641A.U. after6 cyclesSum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=-2681.552782
-2681.514574
-2681.513630
-2681.617679

(^{tBu}PNP)FeCl₂, trigonal bipyramid, 1-TBP, quintet, C2 sym

Charge = 0 Multiplicity = 5Fe,0,0.,0.,0.7428801824 N,0,0.,0.,-1.6710823404 P,0,0.8385918073,-2.2822782441,0.0794065226 P,0,-0.8385918073,2.2822782441,0.0794065226 C,0,1.6415296115,-1.8293988576,-1.5616497524 C,0,2.2739776887,-3.0490096475,1.1066513389 C,0,-0.4792720356,-3.60740881,-0.3963807323 C,0,-1.6415296115,1.8293988576,-1.5616497524 C,0,-2.2739776887,3.0490096475,1.1066513389 C,0,0.4792720356,3.60740881,-0.3963807323 C,0,0.7649659101,-0.8896782322,-2.3584756239 C,0,0.781516079,-0.9210480286,-3.7681519202 C,0,0.,0.,-4.4827236163 C,0,-0.7649659101,0.8896782322,-2.3584756239 C,0,-0.781516079,0.9210480286,-3.7681519202 H,0,1.413992154,-1.654221352,-4.2872429204 H,0,0.,0.,-5.5824574295 H,0,-1.413992154,1.654221352,-4.2872429204 H,0,2.563887977,-1.2819951663,-1.2806021941 H,0,1.9480617615,-2.6969803614,-2.1772340158 H,0,-2.563887977,1.2819951663,-1.2806021941 H,0,-1.9480617615,2.6969803614,-2.1772340158 C,0,-2.6762032955,4.4841931823,0.7105458005 H,0,-3.5572725573,4.7832126978,1.3165865572

H,0,-1.8776679754,5.2224394307,0.9106416609 H.0.-2.9692638727.4.5603659059.-0.3555299414 C,0,-3.512925495,2.1352999882,0.9530815268 H,0,-4.0048825657,2.255983024,-0.0328790937 H.0.-3.2652828563.1.0688413604.1.1220363228 H,0,-4.255508254,2.4269830137,1.7244656853 C,0,-1.8267014098,3.0040549345,2.5881828003 H,0,-0.9195736227,3.6060196851,2.7784574183 H,0,-2.6433299453,3.4117793528,3.220390339 H,0,-1.6265661178,1.9643715218,2.9090937262 C,0,0.,4.6597559756,-1.4170284227 H,0,-0.851644542,5.2602816286,-1.052887132 H.0.0.8359226673.5.3598620682.-1.6277673157 H,0,-0.2843096492,4.2000621702,-2.3844728098 C,0,0.9751592884,4.2905781002,0.8980296701 H.0,1.8496021173,4.9289650479,0.6525798949 H,0,0.2092611707,4.943915995,1.35693623 H,0,1.3022041544,3.5384146755,1.6426473359 C,0,1.680281932,2.8448043712,-1.0092907436 H,0,2.0565867806,2.064319959,-0.3200661434 H,0,1.4326401523,2.381524865,-1.9836218891 H,0,2.5026147898,3.5695455023,-1.1879922669 C,0,3.512925495,-2.1352999882,0.9530815268 H,0,3.2652828563,-1.0688413604,1.1220363228 H.0,4.255508254,-2.4269830137,1.7244656853 H,0,4.0048825657,-2.255983024,-0.0328790937 C,0,2.6762032955,-4.4841931823,0.7105458005 H,0,3.5572725573,-4.7832126978,1.3165865572 H,0,1.8776679754,-5.2224394307,0.9106416609 H,0,2.9692638727,-4.5603659059,-0.3555299414 C,0,1.8267014098,-3.0040549345,2.5881828003 H,0,0.9195736227,-3.6060196851,2.7784574183 H,0,2.6433299453,-3.4117793528,3.220390339 H,0,1.6265661178,-1.9643715218,2.9090937262 C,0,0.,-4.6597559756,-1.4170284227 H,0,0.851644542,-5.2602816286,-1.052887132 H,0,-0.8359226673,-5.3598620682,-1.6277673157 H,0,0.2843096492,-4.2000621702,-2.3844728098 C,0,-0.9751592884,-4.2905781002,0.8980296701 H,0,-1.8496021173,-4.9289650479,0.6525798949 H,0,-0.2092611707,-4.943915995,1.35693623 H,0,-1.3022041544,-3.5384146755,1.6426473359 C,0,-1.680281932,-2.8448043712,-1.0092907436 H,0,-2.0565867806,-2.064319959,-0.3200661434 H,0,-1.4326401523,-2.381524865,-1.9836218891 H.0.-2.5026147898.-3.5695455023.-1.1879922669 Cl.0.-1.7192342388,-0.7781543889,2.1072367322 Cl,0,1.7192342388,0.7781543889,2.1072367322

SCF Done: E(UPBE-PBE) = -2682.18342516 A.U. after 4 cycles

Sum of electronic and zero-point Energies= -2681.578626

-2001.370020
-2681.539474
-2681.538530
-2681.647303

V. Optimized geometries and absolute energies (a.u.) for (^{tBu}PNP)FeHCl, **2**; quintet, triplet and singlet states.

PBEPBE Structure and Energy for (^{tBu}PNP)FeHCl, 2.

(^{tBu}PNP)FeHCl, square planar, singlet

Charge = 0 Multiplicity = 1Fe,0,-0.0089213837,-0.28084041,-0.0374453627 N,0,0.0616747984,1.6388291123,0.1252609599 P.0.2.2038251372,-0.2506616338,0.1029090293 P,0,-2.236538172,-0.0456536475,-0.0709302088 C,0,2.3962173573,1.426909586,0.9121143216 C,0.3.174636179,-1.413180458,1.300131501 C,0,3.1385762372,-0.0744195365,-1.5830442496 C,0,-2.3156109626,1.771173707,-0.5426875686 C.0.-3.2963330302,-0.8428578487,-1.4770602097 C,0,-3.1389284692,-0.1597438806,1.6285005768 C,0,1.2194820871,2.2901720768,0.5337563542 C,0,1.307654924,3.6839697189,0.6488578777 C,0,0.1899710987,4.4960465404,0.3860469642 C,0,-1.0411011404,2.4496400978,-0.1092442755 C,0,-0.9995423042,3.8459419291,0.0154560013 H,0,2.2626369851,4.1238556107,0.9695079259 H,0,0.2415782703,5.5894563485,0.477596686 H,0,-1.9150714821,4.4174183964,-0.1932720367 H.0.2.3506787912.1.2280727772.2.0038888483 H,0,3.3577679137,1.9392542504,0.7119076435 H,0,-2.3791691567,1.7909945604,-1.6509971745 H,0,-3.2062165159,2.3099102971,-0.1623799919 Cl,0,-0.047163439,-2.5198428098,-0.5123625862 H,0,0.0043472245,-0.3419289502,1.4306109908 C,0,4.6611019589,0.1334515139,-1.4690505202 H,0,5.1772160537,-0.7681584317,-1.0896567678 H,0,5.076050649,0.3490491116,-2.4768787218 H.0.4.9257616326.0.9881868478.-0.8151630927 C,0,2.8428991062,-1.3120139312,-2.4598589032 H.0.1.7564837562,-1.5046884646,-2.5402698698 H.0.3.246223135.-1.1356453052.-3.4796463701 H,0,3.3101731455,-2.2324590618,-2.0674090987 C,0,2.5211290151,1.1576581549,-2.2865735673 H,0,2.7439025066,2.108218145,-1.7642400834 H,0,2.9412262753,1.2330325591,-3.3114959464 H,0,1.4205520981,1.068459654,-2.3780897139 C.0.-2.3786863358.-0.8603868139.-2.7236186777 H,0,-2.0659209104,0.157381304,-3.0371701756 H,0,-1.4730958031,-1.4685866439,-2.5412837728 H.0.-2.9346863241.-1.3063874524.-3.575282943 C,0,-4.5859069511,-0.067243827,-1.8245676054 H.0.-5.0773142089.-0.5661104161.-2.6868803021 H,0,-5.314905685,-0.05057608,-0.9955971598 H,0,-4.3844664578,0.9784430409,-2.128896189 C,0,-3.643745595,-2.3021039907,-1.1117480309 H,0,-4.0914337493,-2.800626909,-1.9975666814 H,0,-2.737109799,-2.866653762,-0.8211812756

```
H,0,-4.3856136303,-2.3617063779,-0.2921062871
C.0.-4.6616337166.0.0667690565.1.5733079993
H,0,-5.1866537695,-0.7453969751,1.0369821461
H.0.-5.0613742983.0.0893566241.2.6093199526
H.0.-4.9284000673.1.0318743302.1.0974286348
C,0,-2.8264122844,-1.5461886623,2.2347877285
H,0,-1.7347720273,-1.7230553204,2.2702457098
H,0,-3.227113124,-1.5908989101,3.269571288
H,0,-3.2823678195,-2.3720428485,1.6585873408
C,0,-2.511178924,0.9215175996,2.5374356972
H,0,-1.409728253,0.8228905144,2.5764613586
H,0,-2.7592020002,1.9492611925,2.2071182526
H.0.-2.9078307927.0.7971652078.3.5668579446
C.0.3.5055515658.-2.7474018811.0.5976556757
H,0,4.2944741036,-2.6337029939,-0.1705917791
H.0.3.8850823259,-3.4664967993,1.3538857754
H,0,2.6041768377,-3.1849914696,0.127429607
C,0,4.4682256552,-0.7746397696,1.8531235451
H,0,4.9597915036,-1.5017814463,2.5336688915
H,0,5.1966915409,-0.5160872392,1.0643233589
H,0,4.2661540511,0.1377759104,2.4474659463
C.0.2.2294779138,-1.7180263267.2.4850901637
H,0,1.31904488,-2.2429498715,2.1435648783
H,0,2.7665140027,-2.3654705316,3.2107724275
H.0,1.9135642552,-0.8018088904,3.0232294057
```

SCF Done: E(RPBE-PBE) = -2222.72113716 A.U. after 4 cycles

Sum of electronic and zero-point Energies=	-2222.109818
Sum of electronic and thermal Energies=	-2222.073116
Sum of electronic and thermal Enthalpies=	-2222.072172
Sum of electronic and thermal Free Energies=	-2222.172637

(^{tBu}PNP)FeHCl, square planar, triplet

```
Charge = 0 Multiplicity = 3
Fe,0,0.0129581456,-0.3935698206,0.0744218772
N,0,-0.0183433088,1.6401632195,-0.3438145083
P,0,2.2414829141,-0.1297334812,0.1694477052
P,0,-2.2448594205,-0.2107712633,-0.0142099983
C,0,2.2579767724,1.6979777216,0.6126202649
C,0,3.2991242506,-0.9324803136,1.5676819012
C.0.3.1897925544.-0.1801975418.-1.522429628
C,0,-2.3595029242,1.4028494986,-1.0106232006
C,0,-3.3129976444,-1.3733974703,-1.1331768331
C,0,-3.1520698059,0.1663078753,1.6530443082
C,0,1.0529825323,2.4097414267,0.0418060052
C,0,1.0147705062,3.8131464634,-0.0033501393
C,0,-0.1541179069,4.46965639,-0.4283212933
C,0,-1.1788421615,2.2824671179,-0.7041449567
C,0,-1.2715952217,3.6822528696,-0.7607496887
H,0,1.9023693046,4.3819275318,0.3075773165
H.0,-0.2000897877,5.5665695382,-0.4775079037
H.0,-2.2192169469,4.1450369349,-1.0696013656
H,0,2.1645507934,1.715948567,1.719559569
H,0,3.1960487522,2.2290237332,0.3552154274
H,0,-2.3187462041,1.0799666668,-2.0714098726
```

H,0,-3.3101579396,1.9546657711,-0.8747323532 Cl.0.0.1771462623.-2.6541633073.-0.4862047021 H,0,-0.0351525423,-0.1260287644,1.6175436119 C.0.4.6650680968.0.2614587198.-1.4341960146 H.0.5.2877336255.-0.4717156398.-0.8881794875 H,0,5.0784223971,0.3382227847,-2.4623224722 H,0,4.7906392295,1.2531681105,-0.9553754137 C,0,3.1098135822,-1.5909799596,-2.1476135341 H,0,2.0677930516,-1.9582009678,-2.1949252426 H,0,3.5200478924,-1.5439046732,-3.1788440629 H,0,3.6992195742,-2.3387027381,-1.58803203 C,0,2.4395363956,0.7884408836,-2.467070739 H.0,2.5116612949,1.8454289817,-2.1455831477 H,0,2.8900183814,0.7166929152,-3.479069354 H,0,1.3677204078,0.5251109537,-2.5532329384 C.0.-2.4998940877.-1.6262514372.-2.4268272424 H,0,-2.4144303797,-0.7182942048,-3.0584193497 H,0,-1.4874926932,-2.0107491676,-2.2072065635 H,0,-3.035807316,-2.388050176,-3.0312844575 C,0,-4.6841116706,-0.7969894111,-1.5529458337 H,0,-5.1350913503,-1.4797526205,-2.3038532309 H.0.-5.3979618049.-0.7137022663.-0.7165022519 H,0,-4.5936716346,0.1968932182,-2.0338260189 C,0,-3.5002399152,-2.7186597858,-0.3992215497 H.0,-3.9709681734,-3.4495621057,-1.0900811449 H,0,-2.5256274318,-3.1317155762,-0.0752728104 H,0,-4.1647080706,-2.6224945924,0.4812136742 C,0,-4.682026575,0.3246046534,1.5649488073 H,0,-5.1918002286,-0.6345670155,1.3566986348 H,0,-5.0601214308,0.6874767404,2.5441364027 H,0,-4.9918624926,1.0627490235,0.7991971397 C,0,-2.7991953675,-0.9701618842,2.6385141196 H,0,-1.7012448151,-1.08356956,2.723414914 H,0,-3.2076256405,-0.7229074621,3.6412290587 H,0,-3.2236750595,-1.944316303,2.3312385246 C,0,-2.5527071166,1.4822741101,2.1992439257 H,0,-1.4468773852,1.4325861908,2.2307688608 H,0,-2.8559187509,2.3647266473,1.6024210599 H,0,-2.9200759116,1.6381467059,3.2352216576 C,0,3.7625378101,-2.3354546635,1.1181518825 H,0,4.5736727361,-2.2899310131,0.3662655832 H,0,4.1610068038,-2.8803941926,1.9994064762 H,0,2.9220320963,-2.9241696258,0.7017394055 C,0,4.5157500621,-0.0827108149,1.9962070021 H,0,5.059367311,-0.6195529821,2.8020384486 H.0,5.2315757454,0.0935393024,1.1742338778 H.0,4.2147017019,0.8999957464,2.4089228568 C,0,2.3692577484,-1.1095394475,2.7893199065 H.0,1.5185269826,-1.7749368059,2.5543278854 H.0.2.957735696.-1.5568973342.3.618678919 H,0,1.9482732407,-0.1498700904,3.1476544332

SCF Done: E(UPBE-PBE) = -2222.70537765 A.U. after 1 cycles

Sum of electronic and zer	o-point Energies=	-2222.095841
Sum of electronic and the	rmal Energies=	-2222.058742

Sum of electronic and thermal Enthalpies=	-2222.057797
Sum of electronic and thermal Free Energies=	-2222.160599

(tBuPNP)FeHCl, square planar, quintet

Charge = 0 Multiplicity = 5Fe,0,-0.0050034537,-0.5665441901,-0.4085370795 N,0,0.0094176345,1.6595205388,0.1485085243 P,0,-2.4152952808,-0.1423373057,-0.1135835876 P,0,2.4319950839,-0.1978270899,0.0275886351 C,0,-2.3409185386,1.663583593,-0.6354100386 C,0,-3.6506818565,-0.8866516507,-1.3913545401 C,0,-3.1973567852,-0.0958263203,1.6532300008 C,0,2.3604020746,1.4754005803,0.8930287847 C,0,3.3467702055,-1.2593091847,1.3463444017 C.0.3.5081574571.0.1253622503.-1.5332321803 C.0.-1.0978241412.2.3893426189.-0.1598414945 C,0,-1.0944011895,3.7966153793,-0.1093491808 C,0,0.0864553733,4.4721902774,0.2414167377 C,0,1.1555951603,2.3072237078,0.4974676762 C,0,1.2290650786,3.7138636264,0.540792967 H,0,-2.0103949005,4.3485254795,-0.3628322198 H,0,0.1151114365,5.5707640585,0.2788941839 H,0,2.1741314662,4.1986619327,0.8232394415 H,0,-2.2898156323,1.6206094246,-1.7445304421 H.0.-3.2469418719.2.2439897169.-0.3699057306 H,0,2.2778992836,1.2458459468,1.9762438316 H.0.3.2883189716.2.0671134554.0.7671393508 Cl,0,-0.1083837125,-2.8528709757,-0.0067030099 H,0,-0.0278829755,-0.077169908,-1.9870129401 C.0.-4.6747188602.0.3354763702.1.7264330964 H,0,-5.3510037222,-0.401472604,1.2543758415 H,0,-4.9790065017,0.4227147928,2.7915890868 H.0,-4.8499237166,1.3224541444,1.2536638037 C,0,-3.0166123416,-1.4961016737,2.2845745638 H,0,-1.9672456238,-1.8405583534,2.2061339288 H.0,-3.293407157,-1.4501936307,3.3590482767 H,0,-3.6526207449,-2.2623922713,1.8068928973 C,0,-2.3511270471,0.8993105755,2.4808626562 H.0,-2.471569442,1.9464706154,2.1411487497 H,0,-2.6779071463,0.8527541825,3.5408461793 H.0,-1.272987378,0.6464155875,2.4477849827 C,0,2.3006468133,-1.5349921917,2.4530348332 H,0,1.9605558072,-0.6080241633,2.9591125017 H,0,1.4146864938,-2.0596230494,2.0474302593 H,0,2.7619212723,-2.1794863871,3.2308102948 C,0,4.5860632708,-0.5947162723,1.982819999 H,0,4.9923952109,-1.2681183307,2.7670336598 H.0,5.39342298,-0.4103506483,1.2527836056 H,0,4.3417459586,0.3666936708,2.4767486547 C.0.3.7346969924.-2.6081487871.0.7029756945 H,0,4.0974196906,-3.2974690963,1.4939199034 H,0,2.8629397444,-3.0840394582,0.2126621556 H.0,4.549014951,-2.4983031934,-0.0391679791 C,0,5.0077904818,0.3642214221,-1.2792157785

H,0,5.5204349016,-0.5447462762,-0.9108318217 H.0.5.495822833.0.651888629.-2.2345648111 H,0,5.1901418796,1.1857661694,-0.5573280078 C,0,3.3001291384,-1.0850415416,-2.4720840957 H.0.2.2213117169.-1.2413255261.-2.6685380962 H,0,3.808522952,-0.8898128793,-3.4397552984 H,0,3.7147359446,-2.0217577895,-2.055332 C,0,2.8966303751,1.369080607,-2.2180561766 H,0,1.804435324,1.2444045644,-2.3636340335 H,0,3.0819354523,2.3007576358,-1.6477722999 H,0,3.3643683416,1.4930829106,-3.2172833072 C,0,-4.1322661763,-2.2615894321,-0.8790235337 H.0.-4.8287825657,-2.1753840121,-0.0233969162 H,0,-4.6767194151,-2.7779082405,-1.6969774057 H,0,-3.2792461727,-2.9033361405,-0.5830855064 C.0.-4.8603398703.0.0146348727.-1.7191336739 H,0,-5.4996394949,-0.4993110105,-2.4679872361 H,0,-5.490670758,0.2307024937,-0.8378345399 H,0,-4.5492420797,0.9785128231,-2.167415852 C,0,-2.8374535958,-1.1278651673,-2.6844556474 H,0,-1.9899994581,-1.8146694711,-2.5039680574 H,0,-3.5091448768,-1.5777003201,-3.4467758442 H,0,-2.413140673,-0.1965797379,-3.1062418166

SCF Done: E(UPBE-PBE) = -2222.69626798 A.U. after 12 cycles

-2222.088125
-2222.050219
-2222.049275
-2222.155496

VI. Optimized geometry and absolute energies (a.u.) for the (^{tBu}PNP)FeHCl:MeCN adduct.

(^{tBu}PNP)FeHCl:MeCN Adduct, octahedral, singlet

Charge = 0 Multiplicity = 1Fe,0,-0.007571188,-0.2252176868,0.1863017619 N,0,0.0238375277,1.5459247702,-0.5824921278 P,0,-2.1873302646,-0.2825340967,-0.2895239054 P,0,2.2187846118,-0.1758482047,-0.1092615261 C,0,-2.1772400258,1.0975605561,-1.5731034112 C,0,-2.9305095708,-1.7790893957,-1.2667392856 C.0.-3.4910638769.0.3306969047.1.0129412592 C,0,2.3927405413,1.6961025505,0.0822141532 C,0,3.5154630685,-0.8444050862,1.1660565615 C,0,2.8370361321,-0.5611794099,-1.9044040451 C,0,-1.0634681694,2.0620087444,-1.2556117862 C.0.-1.1049567238.3.3951956991.-1.691681152 C.0.0.0056084306,4.2365175204,-1.4973560342 C,0,1.1455931948,2.3421843201,-0.475253903 C.0.1.1525717388.3.6788192516.-0.9059238844 H,0,-2.0079856351,3.7577874026,-2.2022811273 H,0,-0.0117045502,5.2847709074,-1.8264898287 H,0,2.0687716184,4.2721023199,-0.7767558792 H,0,-1.9224106444,0.5925831016,-2.5297158475 H,0,-3.1434960248,1.6176860096,-1.7205709616 H.0,2.4530964234,1.8579265565,1.1790712517 H,0,3.3013479993,2.1446173248,-0.3677677275 Cl,0,-0.0076516607,-2.410381702,1.1263067614 H.0.-0.0171933192.-0.8066277219.-1.1972038983 C,0,-4.9665241788,0.3305881967,0.5648441543 H,0,-5.366201226,-0.6885379629,0.4105794843 H,0,-5.5816488213,0.8040334124,1.3602534906 H,0,-5.1257454756,0.9157551508,-0.3628184918 C,0,-3.3356487203,-0.5366139625,2.2832638566 H,0,-2.2763149424,-0.6357157395,2.5803762105 H,0,-3.9013594086,-0.0692312322,3.1179517041 H,0,-3.7327603892,-1.5579378243,2.1403813166 C.0.-3.1131851188,1.7916910515,1.3563662026 H.0,-3.2899790124,2.4808153515,0.5079999117 H,0,-3.752355626,2.1362960192,2.1972838633 H,0,-2.0593004251,1.8896028677,1.6689171087 C,0,2.8726169396,-0.7260481382,2.5655570669 H,0,2.6989376164,0.330665053,2.853902958 H,0,1.911890408,-1.2731118986,2.6083874848 H,0,3.5712105655,-1.1646398232,3.3096316248 C,0,4.8444539061,-0.0578933481,1.1808788633 H,0,5.4908805716,-0.4715911658,1.9842627128 H,0,5.4075878189,-0.1300849021,0.2350326696 H,0,4.6897641563,1.0147326055,1.4101558505 C.0.3.7787979568,-2.3432668271,0.9039537895 H.0,4.3780661088,-2.7525693938,1.7446925309 H,0,2.8285839336,-2.9098230382,0.8544786274 H,0,4.3558130031,-2.5165361327,-0.0237730607 C,0,4.3496828441,-0.3623392292,-2.1300774741 H,0,4.9621183184,-1.1012326852,-1.5810285599

H,0,4.5706035762,-0.4959501876,-3.2103555351 H.0.4.6900794557.0.6547646589.-1.8505033289 C,0,2.4388267646,-2.0137338656,-2.2509986628 H,0,1.3587860844,-2.173948077,-2.0741077432 H.0.2.6526697956.-2.2023709246.-3.3242929074 H,0,2.9943742624,-2.761823982,-1.658329231 C,0,2.0863236902,0.3768242022,-2.8771035497 H,0,0.9908089293,0.2714800625,-2.7693859897 H,0,2.3559720525,1.4418854846,-2.7378500625 H,0,2.3591135511,0.0963564863,-3.9162412855 C,0,-3.3960856624,-2.8635811572,-0.26858973 H,0,-4.2979223824,-2.5634863141,0.2979799422 H.0.-3.6563130191.-3.7823926084.-0.8353991269 H,0,-2.5856451914,-3.1153584285,0.4427476413 C,0,-4.0931295368,-1.3804704058,-2.2038333129 H.0,-4.444113742,-2.2895619449,-2.7363834985 H,0,-4.9604063051,-0.9569455842,-1.6696445915 H,0,-3.7766968879,-0.6550484065,-2.9784767238 C,0,-1.8120715473,-2.4011321896,-2.1317603673 H,0,-0.9877511126,-2.7780018359,-1.4992907999 H,0,-2.2458234974,-3.2515728171,-2.700480474 H,0,-1.3919120303,-1.6860784346,-2.8675170505 N,0,0.0079671272,0.508546016,1.9469522019 C,0,0.0138286169,0.9754627895,3.0322616726 C.0.0396478499.1.4972263596.4.3953996932 H,0,0.0552361209,2.6054793919,4.3926134442 H,0,-0.8547901932,1.1639290082,4.9592517857 H,0,0.9407475597,1.1367469095,4.9324082692

SCF Done: E(RPBE-PBE) = -2355.33657024 A.U. after 1 cycles

Sum of electronic and zero-point Energies=	-2354.677387
Sum of electronic and thermal Energies=	-2354.636683
Sum of electronic and thermal Enthalpies=	-2354.635739
Sum of electronic and thermal Free Energies=	-2354.744630

acetonitrile

Charge = 0 Multiplicity = 1 C,0,0.,0.,0.276666693 N,0,0.,0.,1.4556633582 C,0,0.,0.,-1.1900641343 H,0,1.0389861803,0.,-1.5697529533 H,0,-0.5194930902,-0.8997884264,-1.5697529533 H,0,-0.5194930902,0.8997884264,-1.5697529533

SCF Done: E(RPBE-PBE) = -132.588967303 A.U. after 1 cycles

Sum of electronic and zero-point Energies=	-132.544964
Sum of electronic and thermal Energies=	-132.541300
Sum of electronic and thermal Enthalpies=	-132.540356
Sum of electronic and thermal Free Energies=	-132.568015

VII. Optimized geometries and absolute energies (a.u.) for (^{tBu}PNP)Fe(CO)₂, **3-SQP** and **3-TBP**, and the TS for their interconversion.
Electronic transition energies for **3-SQP** and **3-TBP**.

(^{tBu}PNP)Fe(CO)₂, square planar, 3-SQP

Charge = 0 Multiplicity = 1Fe.0.-0.0053603688.-0.2809316565.-0.4410325224 N,0,-0.0362882246,1.6811942212,0.0676130001 P.0.2.1612409284,-0.1978649518,0.1650913464 P,0,-2.1964410719,-0.1231666589,-0.0215066964 C,0,2.2282752982,1.496200026,0.9751358161 C.0.2.8783856185,-1.3200958675,1.5805207565 C,0,3.4617092066,-0.0682713514,-1.2702204511 C,0,-2.4150233741,1.6714457546,-0.5318826793 C,0,-3.5091914868,-1.0430200475,-1.1058641101 C,0,-2.7528776228,-0.1851478614,1.8429552983 C,0,1.0847349208,2.3538155661,0.5046369574 C.0.1.1361645158.3.7519393572.0.5997676416 C,0,0.000010615,4.522885016,0.2918284618 C,0,-1.1687845241,2.4354720402,-0.1581193507 C,0,-1.1743310253,3.8330961448,-0.0669598061 H,0,2.0667618465,4.2267446868,0.9411090591 H,0,0.0201958756,5.6191949217,0.3558448939 H,0,-2.1052036479,4.3751817513,-0.2853264934 H,0,2.0817544061,1.3150935106,2.0619446065 H,0,3.2051475978,2.0040100937,0.859781256 H,0,-2.5088987251,1.6386025062,-1.6388583345 H,0,-3.3223036692,2.1661028415,-0.1319314209 C.0.-0.0523765721.-1.9943515997.-0.231643495 O,0,-0.0971942919,-3.1878135443,-0.164208171 C,0,0.0207561888,-0.1053169061,-2.1863589125 O,0,0.0501732429,-0.1131261674,-3.3773753903 C,0,4.9340226904,0.014199922,-0.8208835143 H,0,5.2999999444,-0.9357587667,-0.3889625201 H,0,5.5643352426,0.2312127462,-1.7091355939 H,0,5.1114117875,0.8268163051,-0.0885839773 C,0,3.2797603464,-1.2768969878,-2.2145166678 H,0,2.2451345563,-1.3427536084,-2.5948674014 H.0.3.9558158972,-1.1593263872,-3.0873856077 H.0.3.5288994295,-2.2361913164,-1.7240891921 C,0,3.1291748089,1.2278917321,-2.0454887981 H,0,3.3954521246,2.1373780173,-1.4717968781 H.0.3.7192830003.1.2432914569.-2.9853466434 H,0,2.0607833832,1.2859616965,-2.3199582703 C,0,-2.9115916001,-1.2249558847,-2.5169784878 H,0,-2.6497802519,-0.2656038062,-3.0013780729 H,0,-2.0005995486,-1.8488491277,-2.4989301359 H,0,-3.6683101746,-1.7283237863,-3.1551008763 C,0,-4.8320309851,-0.2545968705,-1.2445142843 H,0,-5.5270416343,-0.839445529,-1.8830343845 H.0,-5.339442419,-0.077077756,-0.2807934641 H.0.-4.6824470122.0.7228635264.-1.7420950188 C,0,-3.7963861799,-2.4496686088,-0.535968116 H.0.-4.408105514.-3.0112380466.-1.2725409559

H,0,-2.8663805893,-3.025686231,-0.3680805571 H.0.-4.3703326178.-2.419033147.0.4087790119 C,0,-4.2471969063,0.1034868453,2.0838659942 H.0,-4.9021972232,-0.701246559,1.701850529 H.0.-4.4271414746.0.1779815755.3.1773874679 H,0,-4.5715297927,1.0634079678,1.6344536451 C,0,-2.3739278603,-1.5604146068,2.4325099836 H.0.-1.3004432648,-1.7717470405,2.2706614088 H,0,-2.5614114903,-1.5487824381,3.5268281522 H,0,-2.9548243307,-2.3945414698,2.0018872172 C,0,-1.9200713725,0.8787686237,2.5927998476 H,0,-0.8385309534,0.7302759532,2.4094457708 H.0,-2.1868737251,1.9136439047,2.3039857133 H.0.-2.1066299672.0.7745822707.3.6822365637 C,0,3.2520118707,-2.7052034278,1.0093486254 H.0,4.1420653738,-2.6607542898,0.3536993478 H,0,3.4954390355,-3.3904055808,1.8483277163 H,0,2.4178287741,-3.1579489109,0.4415747365 C,0,4.0973674854,-0.7157349985,2.3152008031 H,0,4.3719159348,-1.3892839737,3.1544737201 H,0,4.9887706695,-0.6140916415,1.6741861252 H.0.3.8769652781.0.2745325108.2.7597375452 C,0,1.7545029207,-1.5105452314,2.6230485905 H,0,0.8674108947,-1.9940817422,2.1795659472 H.0,2.1348043255,-2.1536515151,3.4445982003 H,0,1.4272884932,-0.5520848689,3.0749698689

SCF Done: E(RPBE-PBE) = -1988.62264938 A.U. after 9 cycles

Sum of electronic and zero-point Energies=	-1988.002607
Sum of electronic and thermal Energies=	-1987.963934
Sum of electronic and thermal Enthalpies=	-1987.962990
Sum of electronic and thermal Free Energies=	-1988.067295

Excitation energies and oscillator strengths:

Excited State 131 ->132 131 ->135	1:	Singlet-A 0.56012 0.34176	1.8920 eV	655.29 nm	f=0.0557
Excited State 131 ->132 131 ->135 131 ->141	2:	Singlet-A -0.35428 0.52556 -0.12218	2.2730 eV	545.47 nm	f=0.0423
Excited State 131 ->133 131 ->137	3:	Singlet-A -0.67927 0.11622	2.4695 eV	502.07 nm	f=0.0010

(^{tBu}PNP)Fe(CO)₂, trigonal-bipyramidal symmetry, 3-TBP

Charge = 0 Multiplicity = 1 Fe,0,0.,0.,0.4475034659 N,0,0.,0.,-1.5962165017 P,0,0.7766758096,-2.0910958556,0.1316805923 P,0,-0.7766758096,2.0910958556,0.1316805923 C,0,1.6573112583,-1.7816407548,-1.4968252042 C.0.2.1372905397.-2.8325813718.1.2879929881 C,0,-0.5429204651,-3.4584302515,-0.2978614945 C.0,-1.6573112583,1.7816407548,-1.4968252042 C.0.-2.1372905397.2.8325813718.1.2879929881 C,0,0.5429204651,3.4584302515,-0.2978614945 C,0,0.7866773075,-0.8718969629,-2.3192782349 C,0,0.8081421579,-0.8928157145,-3.7208803301 C,0,0.,0.,-4.4504554338 C,0,-0.7866773075,0.8718969629,-2.3192782349 C,0,-0.8081421579,0.8928157145,-3.7208803301 H,0,1.4693795786,-1.6056257187,-4.233021071 H.0.0.,0.,-5.548927099 H.0.-1.4693795786.1.6056257187.-4.233021071 H,0,2.5725177682,-1.2214216664,-1.2112716569 H.0,1.9666859435,-2.683941866,-2.0576230253 H,0,-2.5725177682,1.2214216664,-1.2112716569 H,0,-1.9666859435,2.683941866,-2.0576230253 C,0,1.2927185216,0.5156458488,1.4839991104 C,0,-1.2927185216,-0.5156458488,1.4839991104 O,0,2.0559559987,0.8670053844,2.3373932714 O.0.-2.0559559987.-0.8670053844.2.3373932714 C,0,-2.4828488091,4.3122484224,1.0173877392 H,0,-3.3275132255,4.599095486,1.6784007476 H.0,-1.6466800257,4.9978160873,1.2439567344 H,0,-2.8109768103,4.4841951913,-0.0264059663 C,0,-3.444486629,2.0239766081,1.110978094 H.0,-3.948505139,2.2574963423,0.1523174061 H,0,-3.2909081388,0.9336867462,1.179542334 H,0,-4.1414075876,2.3115366288,1.925339208 C,0,-1.645679287,2.6773493952,2.7467035503 H,0,-0.7021703156,3.2220911609,2.9346711281 H,0,-2.416263262,3.0904748367,3.4309239275 H,0,-1.4862533492,1.6173678536,3.0110274958 C.0.0.,4.5978722023,-1.1899742123 H.0.-0.818730873.5.1742980545.-0.7284339173 H,0,0.8290599216,5.3083276013,-1.3935390296 H,0,-0.3465730398,4.2222078658,-2.1722305071 C,0,1.1299475472,4.0389966861,1.0085172788 H,0,1.9850099282,4.6995963628,0.7531015284 H,0,0.4017615007,4.6528842775,1.571029859 H,0,1.5125462977,3.2452833653,1.6767430276 C,0,1.692718891,2.778806782,-1.0779213087 H,0,2.095579317,1.9070284341,-0.5323735449 H,0,1.3706780592,2.4423329046,-2.0815731179 H.0,2.5082158073,3.5193325124,-1.2169219207 C.0.3.444486629.-2.0239766081.1.110978094 H,0,3.2909081388,-0.9336867462,1.179542334 H.0,4.1414075876,-2.3115366288,1.925339208 H.0.3.948505139.-2.2574963423.0.1523174061 C,0,2.4828488091,-4.3122484224,1.0173877392 H,0,3.3275132255,-4.599095486,1.6784007476 H,0,1.6466800257,-4.9978160873,1.2439567344 H,0,2.8109768103,-4.4841951913,-0.0264059663 C,0,1.645679287,-2.6773493952,2.7467035503 H,0,0.7021703156,-3.2220911609,2.9346711281

H,0,2.416263262,-3.0904748367,3.4309239275
H,0,1.4862533492,-1.6173678536,3.0110274958
C,0,0.,-4.5978722023,-1.1899742123
H,0,0.818730873,-5.1742980545,-0.7284339173
H,0,-0.8290599216,-5.3083276013,-1.3935390296
H,0,0.3465730398,-4.2222078658,-2.1722305071
C,0,-1.1299475472,-4.0389966861,1.0085172788
H,0,-1.9850099282,-4.6995963628,0.7531015284
H,0,-0.4017615007,-4.6528842775,1.571029859
H,0,-1.5125462977,-3.2452833653,1.6767430276
C,0,-1.692718891,-2.778806782,-1.0779213087
H,0,-2.095579317,-1.9070284341,-0.5323735449
H,0,-1.3706780592,-2.4423329046,-2.0815731179
H,0,-2.5082158073,-3.5193325124,-1.2169219207

SCF Done: E(RPBE-PBE) = -1988.62423932 A.U. after 9 cycles

Sum of electronic and zero-point Energies=	-1988.002949
Sum of electronic and thermal Energies=	-1987.964596
Sum of electronic and thermal Enthalpies=	-1987.963652
Sum of electronic and thermal Free Energies=	-1988.066308

Excitation energies and oscillator strengths:

Excited State 131 ->132	1: Singlet-A 0.66034	2.2008 eV 563.37 nm f=0.1158
Excited State 131 ->134 131 ->135 131 ->137	2: Singlet-B -0.21700 -0.60630 -0.11160	2.3277 eV 532.64 nm f=0.0007
Excited State 131 ->133	3: Singlet-B -0.69357	2.7178 eV 456.19 nm f=0.0014

(^{tBu}PNP)Fe(CO)₂, TS SQP<->TBP

Charge = 0 Multiplicity = 1Fe,0,-0.014513805,-0.4117402199,-0.2236502336 N,0,-0.0029335051,1.6387673127,-0.1014640323 P,0,-2.2280972939,-0.0829015608,-0.0988725479 P,0,2.2141497785,-0.1881739174,0.1462622691 C,0,-2.2938470225,1.5816410346,-0.9532704502 C,0,-3.4691623445,-1.1913522193,-1.0879906324 C,0,-2.9231931418,0.2504578396,1.6932851248 C,0,2.2436762841,1.5466585787,0.8651415527 C,0,3.1075018691,-1.200640027,1.5420026348 C,0,3.3608153519,-0.0079294743,-1.4196414217 C,0,-1.1014437796,2.3774605713,-0.495549084 C,0,-1.1153515165,3.7784849209,-0.5077677049 C,0,0.0236224635,4.4981905055,-0.1001215507 C,0,1.0948018982,2.3527086867,0.3247608218 C.0.1.1394439457.3.755497726.0.3254114052 H,0,-2.0224684914,4.2976032467,-0.8474233606 H,0,0.036709819,5.5966338798,-0.1045254867 H,0,2.049854373,4.2572511696,0.6822914416

H,0,-2.1636841289,1.3420147995,-2.0293417361 H.0.-3.2392532511.2.1446166643.-0.8345367626 H,0,2.0884945456,1.417732251,1.9562932855 H.0.3.2066120628.2.0757465083.0.7286879329 C.0.0.017594679.-1.0095341051.-1.8632468959 0,0,0.035770739,-1.6145834315,-2.8944402417 C,0,-0.1507970851,-1.8184926156,0.7664510567 O.0.-0.2734827872,-2.8679489575,1.3317584722 C,0,4.5361259391,-0.7100846761,1.8715679962 H,0,4.8617305444,-1.1902331557,2.8181380217 H.0,5.2728937664,-0.9883174957,1.0986311434 H,0,4.5881081122,0.3855353006,2.0271271005 C.0.2.2749442209,-1.0675268903,2.8413004244 H.0.2.406656744.-0.0764301951.3.3196561301 H,0,1.1972647025,-1.2362621774,2.6789027389 H.0.2.6358019856,-1.8264605369,3.5658994809 C,0,3.1642306292,-2.6886714615,1.1303428935 H,0,3.8118894189,-2.8489091155,0.2487553993 H,0,3.5937367037,-3.2782478715,1.9672374931 H,0,2.1637195257,-3.1003882215,0.909310322 C,0,4.7979051708,0.4862011569,-1.1438316148 H.0,5.4500642865,-0.308128927,-0.7405100705 H,0,5.2467798678,0.8156636837,-2.1044175865 H,0,4.838029489,1.351633292,-0.454150108 C.0.3.430114258,-1.3512848333,-2.1776166981 H,0,3.9239816095,-1.1874503615,-3.1584125936 H,0,4.0276279522,-2.1054652565,-1.6316591116 H,0,2.4293286766,-1.773275917,-2.3748935268 C,0,2.672012839,1.0465705534,-2.3194623063 H,0,1.6057910963,0.8132428178,-2.4914966749 H,0,2.7419025636,2.065659706,-1.8909540437 H,0,3.1852571523,1.0625641657,-3.3033890905 C,0,-3.3035200759,-0.9195984323,-2.6024096322 H,0,-2.256736194,-0.9870959186,-2.9416845021 H.0,-3.879577515,-1.6914490113,-3.1542804177 H.0.-3.7182687585.0.0648205071.-2.8957693363 C,0,-4.9572472895,-0.9525250285,-0.7523742488 H,0,-5.5701654744,-1.5846525342,-1.4286425286 H.0.-5.2224932463.-1.2336224561.0.282446686 H,0,-5.2621431205,0.0986412872,-0.9234930078 C,0,-3.0992263631,-2.6670921597,-0.8130423059 H,0,-3.170874771,-2.9345122356,0.2570639437 H,0,-3.7985703131,-3.3215202622,-1.3743057623 H,0,-2.0711317243,-2.892146917,-1.1499797916 C,0,-4.1711370601,1.1588503079,1.7263970003 H.0,-5.0452725619,0.7307418199,1.2072786385 H.0,-4.4630302025,1.3189841732,2.7857947465 H,0,-3.9634995783,2.1585029741,1.2974265484 C.0,-3.2207889924,-1.0977942354,2.3872196076 H.0.-3.4814672937.-0.9025586279.3.4485954622 H,0,-4.0738010107,-1.6378920675,1.9361937874 H.0.-2.3405379752,-1.7673061227,2.3779886873 C,0,-1.8080097782,0.9559362659,2.4985550456 H,0,-0.8528985971,0.4023031484,2.4241998145 H,0,-1.6358828635,1.9922192599,2.1508042467 H,0,-2.1160659405,1.0036886066,3.5642389777

SCF Done: E(RPBE-PBE) = -1988.62118299 A.U. after 4 cycles

Sum of electronic and zero-point Energies=	-1988.001238
Sum of electronic and thermal Energies=	-1987.963246
Sum of electronic and thermal Enthalpies=	-1987.962302
Sum of electronic and thermal Free Energies=	-1988.064707

VIII. Optimized geometry and absolute energies (a.u.) for (^{iPr}PNP)Fe(CO)₂, **4**. Electronic transition energies for **4**.

Charge =	0 Mul	tiplicity = 1
26	0	0. 0. 0.4355
7	0	0. 01.60096
15	0	0. 2.19439 0.18329
15	0	02.19439 0.18329
6	0	-0.83021 2.29544 -1.50124
6	0	-1.12606 3.28974 1.23609
6	0	1.59788 3.18167 -0.08791
6	0	0.83021 -2.29544 -1.50124
6	0	1.12606 -3.28974 1.23609
6	0	-1.59788 -3.18167 -0.08791
6	0	-0.38798 1.10973 -2.31961
6	0	-0.39752 1.13693 -3.72204
6	0	0. 04.4498
6	Ő	0 38798 -1 10973 -2 31961
6	Ő	0 39752 -1 13693 -3 72204
1	Ő	-0.72788 2.05056 -4.23569
1	Ő	0 0 -5 54848
1	0	0.72788 -2.05056 -4.23569
1	0	-1 91722 2 20073 -1 28367
1	0	0.66006 3.24004 2.04178
1	0	-0.00000 5.24004 -2.04178 1 01722 2 20073 1 28267
1	0	1.91/22 - 2.200/3 - 1.2830/ 0.66006 3.24004 2.04178
1	0	1 46786 0 05075 1 27004
6	0	-1.40/80 0.039/3 1.3/094
0	0	1.46/86 -0.059/5 1.3/094
8	0	-2.412/4 0.07/16 2.10365
8	0	2.412/4 -0.0//16 2.10365
6	0	1.17853 -4.75962 0.78227
1	0	1.94938 -5.30384 1.36498
1	0	0.21373 -5.2767 0.95282
l	0	1.4382 -4.8623 -0.28982
6	0	0.84329 -3.15955 2.74535
1	0	-0.08247 -3.68802 3.04178
1	0	1.68061 -3.60723 3.31779
1	0	0.75102 -2.10095 3.04876
6	0	-2.37756 -3.42986 1.21745
1	0	-3.32868 -3.95083 0.98419
1	0	-1.81721 -4.06422 1.92876
1	0	-2.63073 -2.48014 1.72496
6	0	-2.48897 -2.47094 -1.12432
1	0	-2.74305 -1.44848 -0.78409
1	0	-2.00503 -2.39104 -2.11645
1	0	-3.43397 -3.03731 -1.25232
6	0	-1.17853 4.75962 0.78227
1	0	-1.94938 5.30384 1.36498
1	0	-0.21373 5.2767 0.95282
1	0	-1.4382 4.8623 -0.28982
6	0	-0.84329 3.15955 2.74535
1	0	0.08247 3.68802 3.04178
1	0	-1.68061 3.60723 3.31779
1	0	-0.75102 2.10095 3.04876
6	0	2.37756 3.42986 1.21745

1	0	3.32868	3.95083	0.98419		
1	0	1.81721	4.06422	1.92876		
1	0	2.63073	2.48014	1.72496		
6	0	2.48897	2.47094	-1.12432		
1	0	2.74305	1.44848	-0.78409		
1	0	2.00503	2.39104	-2.11645		
1	0	3.43397	3.03731	-1.25232		
1	0	2.11767	-2.8237	1.05066		
1	0	-1.27483	-4.15982	-0.50583		
1	0	-2.11767	2.8237	1.05066		
1	0	1.27483	4.15982	-0.50583		
SCF Done:	E(RI	PBE-PBE)	= -1831.	63169332	A.U. after	6 cycles
						-

Sum of electronic and zero-point Energies=	-1831.120758
Sum of electronic and thermal Energies=	-1831.087111
Sum of electronic and thermal Enthalpies=	-1831.086166
Sum of electronic and thermal Free Energies=	-1831.182072

Excitation energies and oscillator strengths:

Excited State 115 ->116	1: Singlet-A 0.66590	2.4501 eV 506.03 nm f	f=0.1249
Excited State 115 ->117 115 ->119 115 ->121	2: Singlet-B -0.10085 0.62338 -0.17656	2.6679 eV 464.73 nm f	f=0.0031
Excited State 115 ->117 115 ->121	3: Singlet-B 0.68141 -0.11922	2.9080 eV 426.35 nm f	f=0.0007

IX. Calculation of magnetic moment of $(^{tBu}PNP)FeCl_2(1)$.

The plot of magnetic susceptibility of (^{tBu}PNP)FeCl₂ versus temperature remained linear at high temperature in accord with the Curie Law (Figure S-3). The value of μ_{eff} was calculated according to $\mu_{eff} = (8C)^{1/2}$, where C is equal to the reciprocal of the slope (1/0.3024 = 3.31), and was found to be 5.143 BM. This value is similar to the value of 5.22 BM measured for (^{Ph}PNP)FeCl₂ and 5.38 BM for (^{tBu}PNP)FeCl₂ (references 11 and 14). The value is also in good agreement with the calculated magnetic moment of 4.899 BM for a complex with four unpaired electrons.

Figure S-3. Magnetic Susceptibility of (^{tBu}PNP)FeCl₂ (1)

X. Complete Reference 64.

Gaussian 03, Revision B.03: Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Jr,; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M..C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; and Pople, J.A. Gaussian, Inc., Pittsburgh, PA, 2003.