Supporting Information

Monodictyochrome A and B, Dimeric Xanthone Derivatives from the Marine Algicolous Fungus *Monodictys putredinis*

Alexander Pontius,[†] Anja Krick,[†] Ronak Mesry,[†] Stefan Kehraus,[†] Silke E. Foegen,[‡] Michael Müller,[‡] Karin Klimo,[§] Clarissa Gerhäuser,[§] and Gabriele M. König^{*,†} *Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany, Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany, and Department of Toxicology and Cancer Risk Factors, DKFZ-German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany*

Table of contents:

Figure S1. Important 1H-1H COSY and 1H-13C long range (HMBC) of	correlations of
compound 1 and 2.	2
Figure S2. Proposed biosynthesis for compound 1 and 2.	3
Figure S3. 1D and 2D NMR spectra of compound 1.	4-5
Figure S4. 1D and 2D NMR spectra of compound 2.	6-7
Figure S5. Structures of fungal metabolites related to 1 and 2.	8-10
Figure S6. Dose-dependent inhibition of aromatase activity by compounds 1 an	nd 2 . 11

Figure S1. Important ¹H-¹H COSY and ¹H-¹³C long range (HMBC) correlations of compound **1** and **2**.

Figure S2. Proposed biosynthesis for compound 1 and 2.

Figure S3. 1D and 2D NMR spectra of compound 1.

¹H NMR spectrum (500 MHz in acetone- d_6) of the new compound **1**.

¹³C NMR spectrum (300 MHz in acetone- d_6) of the new compound **1**.

¹H,¹H-COSY spectrum (300 MHz in acetone- d_6) of the new compound **1**.

¹H, ¹³C-HMBC spectrum (300 MHz in acetone- d_6) of the new compound **1**.

Figure S4. 1D and 2D NMR spectra of compound 2.

¹H NMR spectrum (500 MHz in acetone- d_6) of the new compound **2**.

¹³C NMR spectrum (300 MHz in acetone- d_6) of the new compound **2**.

¹H, ¹H-COSY spectrum (300 MHz in acetone- d_6) of the new compound **2**.

¹H, ¹³C-HMBC spectrum (300 MHz in acetone- d_6) of the new compound **2**.

Figure S5. Structures of fungal metabolites related to 1 and 2.

ergochrome F unit ¹⁵:

ergoxanthin¹⁵:

xanthoquinodin A3¹⁶:

xanthoquinodin B3¹⁶:

chaetomanone¹⁷:

lachnone 3, 4 and 5 18 :

3: $R_1 = R_2 = H$ 4: $R_1 = OH$; $R_2 = H$ 5: $R_1 = -CH_2COCH_3$; $R_2 = OH$

Figure S6. Dose-dependent inhibition of aromatase activity by compounds **1** and **2**. Ketokonazole was used as a positive control substance with an IC₅₀ value of $0.8 \pm 0.3 \mu$ M. Aromatase activity was measured using human recombinant aromatase (human CYP 19 + P450 reductase supersomes) and *O*-benzylfluorescein benzyl ester as a substrate.

