Supporting Information

Stereoselective Monofluoromethylation of *N-tert*-Butylsulfinyl Ketimines Using Pregenerated Fluoro(phenylsulfonyl)methyl Anion

Jun Liu, Laijun Zhang, and Jinbo Hu*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

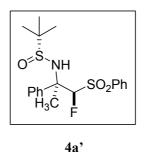
General Remarks:

The *N-tert*-butylsulfinyl ketimines¹ were prepared from the corresponding ketones according to the known condensation procedure in one step. Fluoromethyl phenyl sulfone 1^2 was prepared according to the known procedures. Unless otherwise mentioned, all chemicals were purchased from commercial sources. THF was freshly distilled over sodium. Silica gel (300-400 mesh) was used for column chromatography, and in most cases petroleum ether/ethyl acetate combination was used as the eluent.

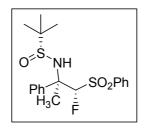
All the melting points were uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on 400 MHz or 300 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of a residual protonated solvent: CDCl₃ δ 7.26. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.0. Chemical shifts are reported in ppm. Mass spectra were obtained on a mass spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI, ESI or MALDI mode.

Typical procedure for stereoselective nucleophilic monofluoromethylation of *N-tert*-butylsulfinyl ketimines using fluoromethyl phenyl sulfone:

Condition A (*n***BuLi as a base):** Under N₂ atmosphere, *n*-butyllithium in hexane (1.3 mmol) was added dropwise into the THF (8 mL) solution of fluoromethyl phenyl sulfone (209 mg, 1.2 mmol) at -78 °C, and after 30 min at that temperature, *N-tert*-butylsulfinyl ketimine (1.0 mmol) in 2mL THF was added slowly into the solution. The reaction mixture was then stirred vigorously at -78 °C for 1 h , followed by adding a saturated NaCl water solution (10 mL). The solution mixture was extracted with Et₂O (10 mL×3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents under vacuum, the crude product was further purified by silica gel column chromatography to give product **4'** and **4''**.


Condition B (KHMDS as a base): Under N₂ atmosphere, KHMDS in toluene (1.1 mmol) was added dropwise into the THF (4 mL) solution of fluoromethyl phenyl sulfone (174 mg, 1.0 mmol) at -78 °C, and after 30 min at that temperature, *N-tert*-butylsulfinyl ketimine (0.5 mmol) in 1 mL of THF was added slowly into the solution. The reaction mixture was then stirred vigorously at -78 °C for 2 h , followed by adding a saturated NaCl water solution (10 mL). The solution mixture was

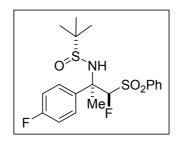
extracted with Et_2O (10 mL×3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents under vacuum, the crude product was further purified by silica gel column chromatography to give product **4**' and **4**''.


Sulfinamide 4a'+4a":

Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4a'** (198 mg) and **4a''** (158 mg) respectively, overall yield 90%.

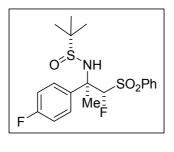
Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4a'** (97mg) and **4a''** (30 mg) respectively, overall yield 64%.

White solid. mp 161–163 °C. $[\alpha]_D^{25} = -72.06$ (c = 0.98, CHCl₃); ¹H NMR: δ 7.81 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.53–7.58 (m, 2H), 7.49 (t, J = 7.8 Hz, 2H), 7.31–7.37 (m, 3H), 5.81 (d, J = 45.0 Hz, 1H), 5.73 (brs, 1H), 1.97 (d, J = 2.4 Hz, 3H), 1.41 (s, 9H); ¹⁹F NMR: δ –174.4 (d, J = 44.9 Hz, 1F); ¹³C NMR: δ 139.7, 137.4, 134.3, 129.2, 129.0, 128.4, 128.3, 126.56, 126.52, 105.4 (d, J = 236.6 Hz), 62.4 (d, J = 16.7 Hz), 56.7, 25.4 (d, J = 4.8 Hz), 23.1; IR (KBr): 3293 2982 1497, 1447, 1329, 1164, 1050, 569 cm⁻¹; Anal. Calcd. for C₁₉H₂₄FNO₃S₂: C, 57.41; H, 6.09; N, 3.52; Found C, 57.46; H, 6.10; N, 3.55; MS (ESI, m/z) 398.1 (M⁺+1).


4a"

White solid. mp 155 –156 °C. $[\alpha]_D^{25} = -85.68$ (c = 0.94, CHCl₃); ¹H NMR: δ 7.94 (d, J = 7.8 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.8 Hz, 2H), 7.46–7.51 (m, 2H), 7.33–7.41 (m, 3H), 5.35 (brs, 1H), 5.18 (d, J = 44.1 Hz, 1H), 2.15 (s, 3H), 1.30 (s, 9H); ¹⁹F NMR: δ –178.2 (d, J = 45.7 Hz, 1F); ¹³C NMR: δ 138.9, 137.2, 134.9, 129.5, 129.1, 128.7, 128.6, 127.8, 104.4 (d, J = 228.2 Hz), 63.5 (d, J = 21.9 Hz), 56.8, 22.9, 22.8; IR (KBr): 3271, 2938, 1585, 1475, 1450, 1327, 1150, 1057, 797, 686, 601 cm⁻¹; Anal. Calcd. for C₁₉H₂₄FNO₃S₂: C, 57.41; H, 6.09; N, 3.52; Found C, 57.42; H, 6.24; N, 3.32; MS (ESI, *m/z*) 398.1 (M⁺+1).

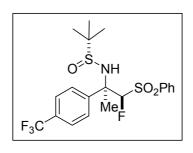
Sulfinamide 4b'+4b":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4b**' (185 mg) and **4b**" (151 mg) respectively, overall yield 81%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4b**' (83 mg) and **4b**'' (52 mg) respectively, overall yield 65%.

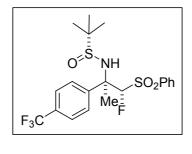
4b'

White solid. mp 178 –180°C. $[\alpha]_D^{25} = -70.96$ (c = 0.98, CHCl₃); ¹H NMR: δ 7.81 (d, J = 7.5 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.48–7.56 (m, 4H), 7.02 (t, J = 8.7 Hz, 2H), 5.80 (d, J = 45.9 Hz, 1H), 5.71 (brs, 1H), 1.95 (d, J = 2.7 Hz, 3H), 1.41 (s, 9H); ¹⁹F NMR: δ –114.4 – –114.3 (m, 1F), – 174.7 (d, J = 46.0 Hz, 1F); ¹³C NMR: δ 162.6 (d, J = 248.2 Hz), 137.4, 135.7, 134.4, 129.3, 128.9, 128.4 (dd, J = 8.4, 3.0 Hz), 115.1 (d, J = 21.4 Hz), 105.3 (d, J = 237.1 Hz), 62.2 (d, J = 16.7 Hz), 56.7, 25.6 (d, J = 5.1 Hz), 23.0; IR (KBr): 3286, 2987, 1602, 1510, 1451, 1408, 1329, 1168, 1054, 836, 689, 620, 554 cm⁻¹ Anal. Calcd. for C₁₉H₂₃F₂NO₃S₂: C, 54.92; H, 5.58; N, 3.37; Found C, 54.97; H, 5.72; N, 3.22; MS (ESI, *m/z*) 416.0 (M⁺+1).



White solid. mp 162 –163°C. $[\alpha]_D^{25} = -82.86$ (c = 1.03, CHCl₃); ¹H NMR: δ 7.94 (d, J = 8.1 Hz, 2H), 7.72 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 7.8 Hz, 2H), 7.43–7.49 (m, 2H), 7.06 (t, J = 8.4 Hz, 2H), 5.33 (brs, 1H), 5.13 (d, J = 44.7 Hz, 1H), 2.14 (s, 3H), 1.29 (s, 9H); ¹⁹F NMR: δ –113.3 – –113.2 (m, 1F), –178.7 (d, J = 44.3 Hz, 1F); ¹³C NMR: δ 162.7 (d, J = 249.1 Hz), 137.2, 134.9, 134.7, 129.7 (d, J = 8.4 Hz), 129.5, 129.1, 115.5 (d, J = 22.1 Hz), 104.3 (d, J = 229.4 Hz), 63.1 (d, J = 22.0 Hz), 56.8, 22.9, 22.8; IR (KBr): 3276, 2956, 1739, 1604, 1513, 1450, 1325, 1311, 1148, 1056, 848, 729, 686, 595, 545 cm⁻¹ Anal. Calcd. for C₁₉H₂₃F₂NO₃S₂: C, 54.92; H, 5.58; N, 3.37; Found C, 54.99; H, 5.54; N, 3.13; MS (ESI, *m/z*) 416.0 (M⁺+1).

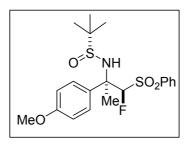
Sulfinamide 4c'+4c":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4c'** (218 mg) and **4c''** (182 mg) respectively, overall yield 86%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4c'** (46 mg) and **4c''** (94 mg) respectively, overall yield 60%.

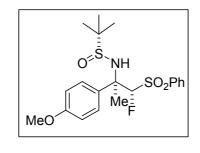
4c'

White solid. mp 142 –144°C. $[\alpha]_D^{25} = -53.63$ (c = 0.98, CHCl₃); ¹H NMR: δ 7.78 (d, J = 7.2 Hz, 2H), 7.54–7.70 (m, 5H), 7.49 (t, J = 7.5 Hz, 2H), 5.89 (d, J = 45.6 Hz, 1H), 5.81 (brs, 1H), 1.96 (d, J = 3.3 Hz, 3H), 1.42 (s, 9H); ¹⁹F NMR: δ –63.1 (s, 3F), –174.6 (d, J = 47.1 Hz, 1F); ¹³C NMR: δ 144.1, 137.1, 134.6, 130.4 (q, J = 31.3 Hz), 129.3, 128.9, 126.95, 126.91, 125.2 (q, J = 4.9 Hz), 105.3 (d, J = 237.3 Hz), 62.4 (d, J = 16.7 Hz), 56.8, 25.5 (d, J = 5.3 Hz), 23.0; IR (KBr): 3287, 2974, 1622, 1450, 1328, 1164, 1121, 1054, 847, 687, 601, 519 cm⁻¹ Anal. Calcd. for C₂₀H₂₃F₄NO₃S₂: C, 51.60; H, 4.98; N, 3.01; Found C, 51.70; H, 5.02; N, 2.83; MS (ESI, m/z) 466.0 (M⁺+1).


4c"

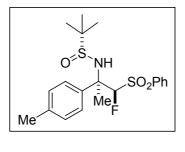
White solid. mp 180 –182°C. $[\alpha]_D^{25} = -71.17$ (c = 0.93, CHCl₃); ¹H NMR: δ 7.93 (d, J = 8.1 Hz, 2H), 7.72 (t, J = 7.5 Hz, 1H), 7.55–7.64 (m, 6H), 5.39 (brs, 1H), 5.16 (d, J = 44.7 Hz, 1H), 2.18 (s, 3H), 1.31 (s, 9H); ¹⁹F NMR: δ –63.2 (s, 3F), –178.8 (d, J = 44.6 Hz, 1F); ¹³C NMR: δ 143.1, 136.9, 135.1, 130.8 (d, J = 33.5Hz), 129.5, 129.2, 128.3, 125.5 (d, J = 4.6 Hz), 122.0, 104.0 (d, J = 229.9 Hz), 63.4 (d, J = 22.0 Hz), 57.1, 22.9, 22.8; IR (KBr): 3292, 2945, 1620, 1417, 1328, 1152, 1134, 1056, 850, 613, 572, 536 cm⁻¹ Anal. Calcd. for C₂₀H₂₃F₄NO₃S₂: C, 51.60; H, 4.98; N, 3.01; Found C, 51.44; H, 4.97; N, 2.80; MS (ESI, m/z) 466.1 (M⁺+1).

Sulfinamide 4d'+4d":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4d'** (188mg) and **4d''** (175mg) respectively, overall yield 85%.

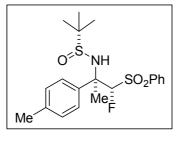
Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4d'** (96 mg) and **4d''** (38 mg), respectively; overall yield 62%.

White solid. mp 100 -102° C. $[\alpha]_{D}^{25} = -54.44$ (c = 1.05, CHCl₃); ¹H NMR: δ 7.81 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.42–7.53 (m, 4H), 6.85 (d, J = 9.0 Hz, 2H), 5.74 (d, J = 45.3 Hz, 1H), 5.63 (brs, 1H), 3.81 (s, 3H), 1.96 (d, J = 2.4 Hz, 3H), 1.39 (s, 9H); ¹⁹F NMR: δ –175.0 (d, J = 44.0 Hz, 1F); ¹³C NMR: δ 159.5, 137.5, 134.3, 131.6, 129.2, 129.0, 127.8 (d, J = 2.3 Hz), 113.6, 105.6 (d, J = 235.4 Hz), 62.2 (d, J = 16.4 Hz), 56.6, 55.2, 25.3 (d, J = 3.1 Hz), 23.1; IR (KBr): 3452, 3286, 2977, 1614, 1516, 1323, 1256, 1186, 1141, 1055, 834, 689, 564, 515 cm⁻¹ Anal. Calcd. for C₂₀H₂₆FNO₄S₂: C, 56.18; H, 6.13; N, 3.28; Found C, 56.07; H, 6.22; N, 2.97; MS (ESI, *m/z*) 428.1 (M⁺+1).



White solid. mp 171 –172°C. $[\alpha]_D^{26} = -82.73$ (c = 0.95, CHCl₃); ¹H NMR: δ 7.94 (d, J = 8.1 Hz, 2H), 7.71 (t, J = 7.2 Hz, 1H), 7.58 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 5.29 (brs, 1H), 5.13 (d, J = 44.7 Hz, 1H), 3.80 (s, 3H), 2.12 (s, 3H), 1.29 (s, 9H); ¹⁹F NMR: δ –178.5 (d, J = 43.7 Hz, 1F); ¹³C NMR: δ 159.7, 137.3, 134.8, 130.7, 129.4, 129.1, 113.9, 104.5 (d, J = 228.5 Hz), 63.1 (d, J = 21.7 Hz), 56.7, 55.3, 22.9, 22.8; IR (KBr): 3295, 2953, 1612, 1517, 1309, 1259, 1151, 1058, 842, 728, 597 cm⁻¹ Anal. Calcd. for C₂₀H₂₆FNO₄S₂: C, 56.18; H, 6.13; N, 3.28; Found C, 56.16; H, 6.09; N, 3.10; MS (ESI, m/z) 428.2 (M⁺+1).

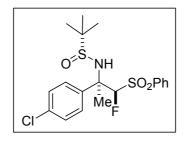
Sulfinamide 4e'+4e":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4e'** (218 mg) and **4e''** (163 mg) respectively, overall yield 93%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4e'** (85mg) and **4e''** (55mg) respectively, overall yield 68%.

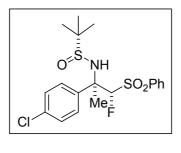
White solid. mp 145 –147 °C. $[\alpha]_D^{26} = -58.86$ (c = 0.91, CHCl₃); ¹H NMR: δ 7.80 (d, J = 7.8 Hz, 2H), 7.62 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 5.77 (d, J = 45.3 Hz, 1H), 5.66 (brs, 1H), 2.34 (s, 3H), 1.96 (d, J = 2.7 Hz, 3H), 1.39 (s, 9H); ¹⁹F NMR: δ –175.0 (d, J = 47.1 Hz, 1F); ¹³C NMR: δ 138.1, 137.5, 136.7, 134.2, 129.2, 129.0, 128.9, 126.4 (d, J = 3.2 Hz), 105.6 (d, J = 236.9 Hz), 62.3 (d, J = 17.9 Hz), 56.7, 25.3 (d, J = 4.9 Hz), 23.1, 21.1; IR (KBr): 3456, 3291, 2978, 1517, 1450, 1324, 1163, 1140, 1056, 818, 688, 532 cm⁻¹ Anal. Calcd. for C₂₀H₂₆FNO₃S₂: C, 58.37; H, 6.37; N, 3.40; Found C, 58.40; H, 6.57; N, 3.20; MS (ESI, m/z) 412.1 (M⁺+1).

4e"


White solid. mp 175 –176 °C. $[\alpha]_D^{26} = -82.79$ (c = 0.99, CHCl₃); ¹H NMR: δ 7.93 (d, J = 8.1 Hz, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.5 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 5.32 (brs, 1H), 5.16 (d, J = 44.7 Hz, 1H), 2.34 (s, 3H), 2.12 (s, 3H), 1.29 (s, 9H); ¹⁹F NMR: δ

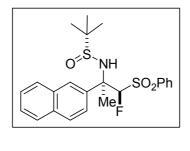
-178.5 (d, J = 46.3 Hz, 1F); ¹³C NMR: δ 138.7, 137.3, 135.9 (d, J = 2.6 Hz), 134.8, 129.4, 129.3, 129.1, 127.7, 104.5 (d, J = 228.7 Hz), 63.3 (d, J = 22.3 Hz), 56.8, 22.9, 22.8, 21.1; IR (KBr): 3290, 2945, 1449, 1310, 1150, 1056, 827, 729, 595 cm⁻¹ Anal. Calcd. for C₂₀H₂₆FNO₃S₂: C, 58.37; H, 6.37; N, 3.40; Found C, 58.47; H, 6.36; N, 3.19; MS (ESI, *m/z*) 412.1 (M⁺+1).

Sulfinamide 4f'+4f":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4f**' (180 mg) and **4f**'' (152 mg), respectively; overall yield 77%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4f'** (58 mg) and **4f''** (90 mg), respectively; overall yield 69%.

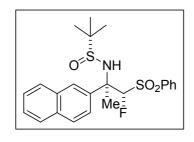
White solid. mp 163 –164 °C. $[\alpha]_D^{23} = -41.14$ (c = 1.02, CHCl₃); ¹H NMR: δ 7.80 (d, J = 7.8 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.46–7.55 (m, 4H), 7.26-7.31 (m, 2H), 5.82 (d, J = 45.3 Hz, 1H), 5.72 (brs, 1H), 1.94 (d, J = 2.4 Hz, 3H), 1.41 (s, 9H); ¹⁹F NMR: δ –174.6 (d, J = 45.5 Hz, 1F); ¹³C NMR: δ 138.5, 137.2, 134.4, 134.3, 129.3, 128.9, 128.4, 127.97, 127.91, 105.3 (d, J = 236.5 Hz), 62.2 (d, J = 17.9 Hz), 56.7, 25.4 (d, J = 4.8 Hz), 23.1; IR (KBr): 3285, 2985, 1496, 1451, 1404, 1326, 1164, 1054, 1014, 830, 687, 616, 528 cm⁻¹ Anal. Calcd. for C₁₉H₂₃ClFNO₃S₂: C, 52.83; H, 5.37; N, 3.24; Found C, 52.83; H, 5.42; N, 3.08; MS (ESI, m/z) 432.1 (M⁺+1).



White solid. mp 167 –168 °C. $[\alpha]_D^{24} = -79.14$ (c = 1.01, CHCl₃); ¹H NMR: δ 7.94 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 7.2 Hz, 1H), 7.59 (t, J = 8.1 Hz, 2H), 7.42 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 5.33 (brs, 1H), 5.12 (d, J = 44.7 Hz, 1H), 2.13 (s, 3H), 1.29 (s, 9H); ¹⁹F NMR: δ –178.3 (d, J = 46.0 Hz, 1F); ¹³C NMR: δ 137.5, 137.1, 134.9, 134.8, 129.5, 129.2, 129.1, 128.8, 104.1 (d, J = 22.3 Hz), 63.2 (d, J = 22.3 Hz), 56.9, 22.9, 22.8; IR (KBr): 3310, 3276, 2939, 1498, 1449, 1328, 1151, 1057, 1013, 840, 722, 580, 536 cm⁻¹ Anal. Calcd. for C₁₉H₂₃ClFNO₃S₂: C, 52.83; H, 5.37; N, 3.24; Found C, 52.80; H, 5.42; N, 3.13; MS (ESI, m/z) 432.1 (M⁺+1).

Sulfinamide 4g'+4g":

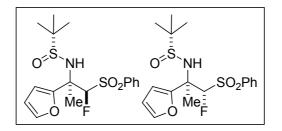
Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4g'** (170 mg) and **4g''** (148 mg) respectively, overall yield 72%.


Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4g**' (51 mg) and **4g**'' (101 mg) respectively, overall yield 68%.

4g'

White solid. mp 156 –157 °C. $[\alpha]_D^{26} = -34.82$ (c = 0.99, CHCl₃); ¹H NMR: δ 7.98 (s, 1H), 7.71–7.84 (m, 5H), 7.45–7.64 (m, 4H), 7.36(t, J = 7.5 Hz, 2H), 5.87 (d, J = 45.6 Hz, 1H), 5.78 (brs, 1H), 2.07 (d, J = 2.7 Hz, 3H), 1.45 (s, 9H); ¹⁹F NMR: δ –174.7 (d, J = 44.6 Hz, 1F); ¹³C NMR: δ

137.2, 137.1, 134.3, 133.0, 132.8, 129.1, 129.0, 128.6, 127.8, 127.5, 126.6, 126.3, 125.9, 124.5, 105.8 (d, J = 237.1 Hz), 62.7 (d, J = 16.6 Hz), 56.8, 25.4 (d, J = 2.6 Hz), 23.1; IR (KBr): 3291, 3063, 1448, 1330, 1161, 1069, 754, 687, 595, 534 cm⁻¹ Anal. Calcd. for C₂₃H₂₆FNO₃S₂: C, 61.72; H, 5.86; N, 3.13; Found C, 61.69; H, 6.05; N, 2.96; MS (ESI, m/z) 448.1 (M⁺+1).

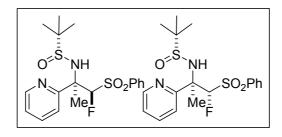

4g"

White solid. mp 170 -171 °C. $[\alpha]_D^{26} = -116.64$ (c = 1.09, CHCl₃); ¹H NMR: δ 7.93-7.97 (m, 3H), 7.79-7.86 (m, 3H), 7.69 (t, J = 7.8 Hz, 1H), 7.49-7.60 (m, 5H), 5.41 (brs, 1H), 5.30 (d, J = 45.0 Hz, 1H), 2.28 (s, 3H), 1.30 (s, 9H); ¹⁹F NMR: δ -178.2 (d, J = 44.3 Hz, 1F); ¹³C NMR: δ 137.2 136.0 134.9 133.0 132.9 129.5 129.1 128.6 128.4 128.2 127.5 127.1 126.6 124.5 104.1 (d, J = 230.9 Hz), 63.7 (d, J = 22.5 Hz), 56.9, 22.9, 22.8; IR (KBr): 3293, 2942, 1450, 1320, 1189, 1150, 1056, 823, 755, 684, 593, 543 cm⁻¹ Anal. Calcd. for C₂₃H₂₆FNO₃S₂: C, 61.72; H, 5.86; N, 3.13; Found C, 61.80; H, 5.96; N, 2.97; MS (ESI, *m/z*) 448.1 (M⁺+1).

Sulfinamide 4h'+4h":

Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford a mixture of two diastereoisomers **4h'** and **4h''** in the ratio 1:1 (determined by ¹⁹F NMR of the crude reaction mixture), overall yield 81%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford a mixture of two diastereoisomers **4h'** and **4h''** in the ratio 4:1 (determined by ¹⁹F NMR of the crude reaction mixture), overall yield 77%.

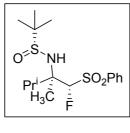

4h'+4h"

¹H NMR: δ 7.88–7.97 (m, 2H), 7.52–7.76 (m, 3H), 7.43–7.46 (m, 0.4H), 7.39–7.41 (m, 0.6H), 6.55 (d, J = 3.6 Hz, 0.6H), 6.47 (d, J = 3.6 Hz, 0.4H), 6.40–6.43 (m, 0.4H), 6.36–6.39 (m, 0.6H), 5.62 (d, J = 45.6 Hz, 0.4H), 5.43 (d, J = 44.7 Hz, 0.6H), 5.15 (brs, 0.4H), 5.01 (brs, 0.6H), 2.06 (s, 1.8H), 1.98 (d, J = 2.4 Hz, 1.2H), 1.29 (s, 3.6H), 1.26 (s, 5.4H); ¹⁹F NMR: δ –178.2 (d, J = 45.7 Hz, 0.6F) –179.3 (d, J = 45.1 Hz, 0.4F); IR (KBr): 3295, 2959, 1585, 1449, 1327, 1162, 1063, 1021, 726, 574, 537 cm⁻¹; MS (ESI, m/z) 388.0 (M⁺+1); HRMS analysis (MALDI) m/z: Calcd. For C₁₇H₂₂NO₄FS₂Na (M⁺+Na): 410.0857; Found 410.0866.

Sulfinamide 4i'+4i'':

Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford a mixture of two diastereoisomers **4i**' and **4i**'' in the ratio 1.3:1 (determined by ¹⁹F NMR of the crude reaction mixture), overall yield 81%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford a mixture of two diastereoisomers **4i**' and **4i**'' in the ratio 1.2:1 (determined by ¹⁹F NMR of the crude reaction mixture), overall yield 74%.

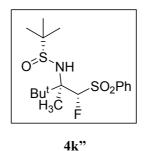

4i' + 4i"

¹H NMR: δ 8.62 (d, J = 4.8 Hz, 0.56H), 8.58 (d, J = 4.5 Hz, 0.44H), 7.47–7.92 (m, 7H), 7.24–7.34 (m, 1H), 5.88 (d, J = 45.0 Hz, 0.44H), 5.81 (d, J = 45.9 Hz, 0.56H), 5.64 (brs, 0.44H), 5.62 (brs, 0.56H), 2.11 (d, J = 1.2 Hz, 1.32H), 1.98 (d, J = 2.1 Hz, 1.68H), 1.30 (s, 3.96H), 1.26 (s, 5.04H); ¹⁹F NMR: δ –179.0 (d, J = 44.6 Hz, 0.56F) –180.8 (d, J = 45.1 Hz, 0.44F); IR (KBr): 3469, 3290, 2960, 1589, 1469, 1449, 1330, 1155, 1067, 751, 720, 688, 564, 537 cm⁻¹; MS (ESI, *m/z*) 399.1 (M⁺+1); HRMS analysis (MALDI) *m/z*: Calcd. For C₁₈H₂₃N₂O₃FS₂Na (M⁺+Na): 421.1024; Found 421.1026.

Sulfinamide 4j'+4j":

Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford only a diastereoisomer 4j" (the other diastereoisomer 4j" was mixed with unreacted fluoromethyl phenyl sulfone 1, the ratio of 4j" and 4j" 1:1.6), overall yield (determined by ¹⁹F NMR of the crude reaction mixture) 81%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford only a diastereoisomer 4j" (the other diastereoisomer 4j" was mixed with unreacted fluoromethyl phenyl sulfone 1, the ratio of 4j" and 4j" is 1:1.6), overall yield 73% (determined by ¹⁹F NMR of the crude reaction mixture).

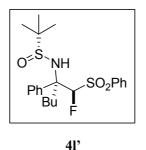


White solid. mp 125 –126°C. $[\alpha]_D^{24} = -89.71$ (c = 0.90, CHCl₃); ¹H NMR: δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 2H), 5.19 (d, *J* = 45.6 Hz, 1H), 4.47 (brs, 1H), 2.52-2.62 (m, 1H), 1.64 (s, 3H), 1.26 (s, 9H), 1.11 (dd, *J* = 6.9, 2.4 Hz, 3H), 1.04 (d, *J* = 6.0 Hz, 3H); ¹⁹F NMR: δ –175.7 (d, *J* = 43.7 Hz, 1F); ¹³C NMR: δ 137.3, 134.6, 129.3, 105.4 (d, *J* = 226.9 Hz), 63.0 (d, *J* = 16.4 Hz), 56.5, 34.8, 22.8, 20.4 (d, *J* = 3.8 Hz), 17.9, 17.7 (d, *J* = 5.7 Hz); IR (KBr): 3307, 2946, 1451, 1319, 1273, 1150, 1073, 897, 838, 687, 593, 557 cm⁻¹ Anal. Calcd. for C₁₆H₂₆FNO₃S₂: C, 52.87; H, 7.21; N, 3.85; Found C, 52.88; H, 7.28; N, 3.68; MS (ESI, *m/z*) 364.1 (M⁺+1).

Sulfinamide 4k'+4k":

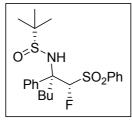
Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford only a diastereoisomer 4k" (the other diastereoisomer 4k was mixed with unreacted fluoromethyl phenyl sulfone 1, the ratio of 4k' and 4k" 1:1.8), overall yield 77% (determined by ¹⁹F NMR of the crude reaction mixture).

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford only a diastereoisomer 4k'' (the other diastereoisomer 4k' was mixed with unreacted fluoromethyl phenyl sulfone 1, the ratio of 4k' and 4k'' is 1:2.9), overall yield 47% (determined by ¹⁹F NMR of the crude reaction mixture).



White solid. mp 142 –143 °C. $[\alpha]_D^{24} = -117.72$ (c = 1.03, CHCl₃); ¹H NMR: δ 8.00 (d, J = 7.5 Hz, 2H), 7.68 (t, J = 7.8 Hz, 1H), 7.57 (t, J = 7.5 Hz, 2H), 5.26 (d, J = 43.8 Hz, 1H), 4.76 (brs, 1H), 1.65 (d, J = 2.7 Hz, 3H), 1.28 (s, 9H), 1.16 (s, 9H); ¹⁹F NMR: δ –173.4 (d, J = 57.9 Hz, 1F); ¹³C NMR: δ 137.8, 134.5, 129.4, 129.3, 104.9 (d, J = 225.7 Hz), 67.3 (d, J = 16.6 Hz), 56.8, 39.2, 26.5, 23.0, 17.5 (d, J = 6.9 Hz); IR (KBr): 3317, 2955, 1585, 1450, 1324, 1273, 1162, 1084, 1071, 903, 688, 589 cm⁻¹; Anal. Calcd. for C₁₇H₂₈FNO₃S₂: C, 54.08; H, 7.48; N, 3.71; Found C, 54.07; H, 7.54; N, 3.51; MS (ESI, *m/z*) 378.1 (M⁺+1).

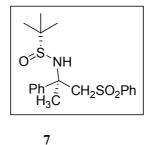
Sulfinamide 4l'+4l":


Using the typical procedure as condition A, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4l**' (127 mg) and **4l**" (263 mg), respectively; overall yield 88%.

Using the typical procedure as condition B, the crude product was purified by silica gel column chromatography to afford two diastereoisomers **4l'** (42 mg) and **4l''** (154 mg), respectively; overall yield 67%.

S-14

White solid. mp 170 –172°C. $[\alpha]_D^{24} = -60.81$ (c = 1.05, CHCl₃); ¹H NMR: δ 7.87 (d, J = 7.5 Hz, 2H), 7.64 (t, J = 7.2 Hz, 1H), 7.36–7.56 (m, 7H), 5.45 (d, J = 45.9 Hz, 1H), 5.44 (brs, 1H), 2.55–2.67 (m, 1H), 2.17–2.29 (m, 1H), 1.38 (s, 9H), 1.19–1.32 (m, 3H), 0.87–1.02(m, 1H), 0.81 (t, J = 6.6 Hz, 3H); ¹⁹F NMR: δ –172.2 (d, J = 47.1 Hz, 1F); ¹³C NMR: δ 137.0, 136.8, 134.5, 129.5, 129.2, 128.6, 128.4, 126.9, 104.5 (d, J = 236.0 Hz), 65.9 (d, J = 19.8 Hz), 57.3, 35.5, 24.8, 23.2, 22.6, 13.8; IR (KBr): 3298, 2958, 1467, 1448, 1324, 1256, 1158, 1071, 779, 687, 572, 541 cm⁻¹; Anal. Calcd. for C₂₂H₃₀FNO₃S₂: C, 60.11; H, 6.88; N, 3.19; Found C, 60.28; H, 6.85; N, 3.10; MS (ESI, m/z) 440.1 (M⁺+1).


41"

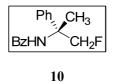
White solid. mp 162–164°C. $[\alpha]_D^{24} = -50.56$ (c = 0.99, CHCl₃); ¹H NMR: δ 7.79 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.43–7.51 (m, 4H), 7.30–7.38 (m, 3H), 6.07 (d, J = 45.6 Hz, 1H), 5.81 (brs, 1H), 2.29–2.39 (m, 2H), 1.45 (s, 9H), 1.12–1.30 (m, 3H), 0.77 (t, J = 6.9 Hz, 3H), 0.58–0.72 (m, 1H); ¹⁹F NMR: δ –175.8 (d, J = 46.9 Hz, 1F); ¹³C NMR: δ 137.8, 134.1, 129.2, 128.9, 128.2, 128.1 126.53, 126.50, 105.3 (d, J = 235.6 Hz), 64.9 (d, J = 18.6 Hz), 57.0, 34.2 (d, J = 1.9 Hz), 23.8, 23.1, 22.4, 13.9; IR (KBr): 3287, 2870, 1447, 1332, 1164, 1055, 871, 757, 702, 577, 527 cm⁻¹; Anal. Calcd. for C₂₂H₃₀FNO₃S₂: C, 60.11; H, 6.88; N, 3.19; Found C, 60.00; H, 6.81; N, 3.10; MS (ESI, m/z) 440.1 (M⁺+1).

Addition of Lithiated Methyl Sulfones to 2a:

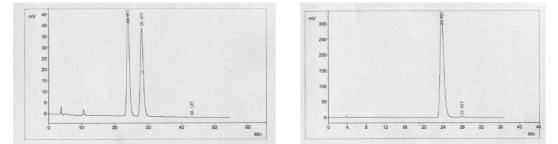
Under N₂ atmosphere, *n*-Butyllithium in hexane (1.3 mmol) was added dropwise into the THF (8 mL) solution of methyl phenyl sulfone (188 mg, 1.2 mmol) at -78 °C, and after 30 min at that temperature, *N-tert*-butanesulfinyl ketimine **2a** (224mg, 1.0 mmol) in 2 mL of THF was added slowly into the solution. The reaction mixture was then stirred vigorously at -78 °C for 3.5 h,

followed by adding a saturated NaCl water solution (10 mL) at this temperature. The solution mixture was extracted with Et_2O (10 mL×3), and the combined organic phase was dried over MgSO₄. After the removal of volatile solvents under vacuum, the crude product was further purified by silica gel column chromatography to give product 7 in 58% yield (222 mg).

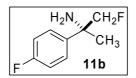
White solid. mp 104 -105° C. $[\alpha]_{D}^{23} = -61.83$ (c = 0.95, CHCl₃); ¹H NMR: δ 7.79 (d, *J* = 7.2 Hz, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.38–7.50 (m, 4H), 7.24–7.32 (m, 3H), 5.92 (s, 1H), 3.89 (d, *J* = 14.7 Hz, 1H), 3.78 (d, *J* = 14.7 Hz, 1H), 1.91 (s, 3H), 1.37 (s, 9H); ¹³C NMR: δ 142.8, 140.9, 133.6, 129.2, 128.4, 127.8, 127.6, 126.0, 66.9, 60.2, 56.4, 28.7, 23.1; IR (KBr): 3284, 2971, 2497, 1495, 1448, 1309, 1147, 1057, 773, 680, 611 cm⁻¹ Anal. Calcd. for C₁₉H₂₅NO₃S₂: C, 60.13; H, 6.64; N, 3.69; Found C, 60.00; H, 6.55; N, 3.43; MS (ESI, *m/z*) 380.2 (M⁺+1).


Procedure for magnesium-mediated reductive desulfonylation and deprotection of the *tert*-butylsulfinyl group and benzoylation of 4a:

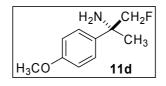
Into a 50-mL Schlenk flask containing **4a** (210 mg, 0.52 mmol) in 5 mL DMF at room temperature was added 3 mL of HOAc/NaOAc (1:1) buffer solution (8 mol/L). Magnesium turnings (183 mg, 7.5 mmol) were added in portions. The reaction mixture was stirred at room temperature for 8 h followed by adding 10 mL of water. The solution mixture was extracted with Et_2O (20 mL x 3), and the combined organic phase was washed with saturated NaHCO₃ solution and brine, then dried over MgSO₄ and the solvent was removed to give the intermediate product without further purification.

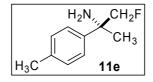

The intermediate product was dissolved in 5 mL of anhydrous methanol. Then 0.5 mL of HCl/Dioxane (4N) was added. The reaction mixture was stirred at room temperature for 30 min and was then concentrated to near dryness. Diethyl ether wad added to precipitate out the amine hydrochloride.

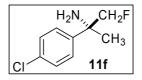
Under N2 atmosphere, a flask containing the amine hydrochloride without further purification

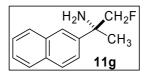

PhCOCl (1.5 mmol), Et_3N (1.5 mmol) and K_2CO_3 (0.5 mmol) in 5 mL of dioxane was stirred at 60 °C for 5 h. Then removal of the solvents under reduced pressure and flash chromatography afforded **10** (96 mg) as a white solid in total 72% yield.


HPLC: CHIRAIPAK OD hexane/2-propanol= 95:5; 0.7mL/min; UV 214 nm; (R)-, r_t= 23.9 min, (S)-, r_t= 28.0 min (98.7% ee);


White solid. mp 141–142°C. $[\alpha]_D^{23} = 21.08$ (c = 0.97, CHCl₃); ¹H NMR: δ 7.80 (d, J = 7.5 Hz, 2H), 7.25–7.55 (m, 8H), 6.61 (brs, 1H), 4.84 (dd, J = 25.2, 9.0Hz, 1H), 4.69 (dd, J = 24.6, 9.0 Hz, 1H), 1.90 (d, J = 2.1 Hz, 3H); ¹⁹F NMR: δ –221.9 (t, J = 48.0 Hz, 1F); ¹³C NMR: δ 166.9, 141.4, 134.9, 131.7, 128.7, 128.6, 127.7, 127.0, 125.5, 87.6 (d, J = 179.9 Hz), 59.3, 22.6 (d, J = 4.0 Hz); IR (KBr): 3255, 3062, 1638, 1540, 1494, 1317, 1035, 1022, 699, 607 cm⁻¹ Anal. Calcd. for C₁₆H₁₆FNO₂C, 74.69; H, 6.27; N, 5.44; Found C, 74.58; H, 6.12; N, 5.24; MS (ESI, *m/z*) 258.4 (M⁺+1).

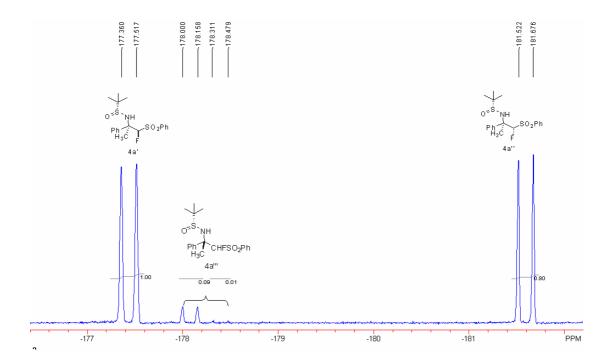

¹H NMR: δ 7.49 (dd, J = 9.0, 5.1 Hz, 2H), 7.04 (t, J = 8.7 Hz, 2H), 4.36 (d, J = 48.0 Hz, 2H), 1.67 (s, 2H), 1.50 (d, J = 1.8 Hz, 3H); ¹⁹F NMR: δ –116.0 to –116.2 (m, 1F), –220.1 (t, J = 52.7 Hz, 1F); ¹³C NMR: δ 136.1, 127.4 (d, J = 1.6 Hz), 127.3, 115.1 (d, J = 20.9 Hz), 91.0 (d, J = 177.3 Hz), 55.1, 26.6 (d, J = 3.6 Hz); IR (KBr): 2929, 1602, 1512, 1233, 1165, 1012, 836, 572 cm⁻¹; MS (EI, *m/z*, %) 42 (39.14), 138 (M–CH₂F, 100.00); HRMS analysis (EI) *m/z*: Calcd. For C₉H₁₁NF₂ (M⁺): 171.0860; Found 171.0855.


¹H NMR: δ 7.66 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 9.0 Hz, 2H), 4.49 (dd, J = 15.3, 9.0 Hz, 1H), 4.33 (dd, J = 15.0, 9.0 Hz, 1H), 1.67 (s, 2H), 1.51 (d, J = 2.4 Hz, 3H); ¹⁹F NMR: δ – 62.6 (s, 3F), – 220.7 (t, J = 42.0 Hz, 1F); ¹³C NMR: δ 148.6, 129.3 (q, J = 95.8 Hz), 126.1, 125.3 (q, J = 3.8 Hz), 90.7 (d, J = 178.4 Hz), 55.4 (d, J = 17.6 Hz), 26.5 (d, J = 2.6 Hz); IR (KBr): 3379, 2979, 1620, 1412, 1330, 1168, 1118, 1016, 842, 617 cm⁻¹; MS (EI, m/z, %) 42 (30.94), 188 (M–CH₂F, 100.00); HRMS analysis (EI) m/z: Calcd. For C₁₀H₁₁NF₄ (M⁺): 221.0828; Found 221.0828.

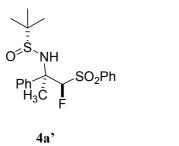

¹H NMR: δ 7.43 (d, J = 9.3 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H), 4.34 (d, J = 47.7 Hz, 2H), 3.80 (s, 3H), 1.70 (s, 2H), 1.50 (d, J = 1.8 Hz, 3H); ¹⁹F NMR: δ – 219.9 (t, J = 45.4 Hz, 1F); ¹³C NMR: δ 158.6, 136.4 (d, J = 4.3 Hz), 126.7, 113.7, 91.2 (d, J = 177.0 Hz), 55.2, 54.9 (d, J = 17.8 Hz), 26.5 (d, J = 4.2 Hz); IR (KBr): 2970, 1611, 1514, 1251, 1182, 1034, 831, 410 cm⁻¹; MS (EI, m/z, %) 42 (18.09), 150 (M–CH₂F, 100.00); HRMS analysis (EI) m/z: Calcd. For C₁₀H₁₄NOF (M⁺): 183.1059; Found 183.1060.

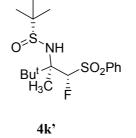
¹H NMR: δ 7.32 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 4.30 (d, J = 48.0 Hz, 2H), 2.27 (s, 2H), 1.61 (s, 3H), 1.43 (d, J = 1.5 Hz, 3H); ¹⁹F NMR: δ – 220.5 (t, J = 52.2 Hz, 1F); ¹³C NMR: δ 141.4, 136.8, 129.1, 125.4, 91.2 (d, J = 177.2 Hz), 55.1 (d, J = 17.8 Hz), 26.5 (d, J = 3.7 Hz), 20.9; IR (KBr): 3378, 2972, 1514, 1010, 817, 424, 404 cm⁻¹; MS (EI, m/z, %) 42 (27.99), 134 (M–CH₂F,

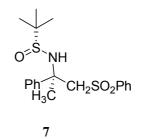
¹H NMR: δ 7.46 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 9.0 Hz, 2H), 4.44 (dd, J = 10.8, 8.4 Hz, 1H), 4.28 (dd, J =11.1, 9.3 Hz, 1H), 1.78 (s, 2H), 1.49 (d, J = 1.8 Hz, 3H); ¹⁹F NMR: δ – 220.2 (t, J = 51.3 Hz, 1F); ¹³C NMR: δ 142.9, 133.0, 128.5, 127.1, 90.8 (d, J = 178.4 Hz), 55.1 (d, J = 18.4 Hz), 26.5 (d, J = 3.8 Hz); IR (KBr): 2975, 1594, 1494, 1096, 1013, 829, 579, 410 cm⁻¹; MS (EI, m/z, %) 42 (39.00), 154 (M–CH₂F, 100.00), 156 (32.20); HRMS analysis (EI) m/z: Calcd. For C₉H₁₁NFC1 (M⁺): 187.0564; Found 187.0561.

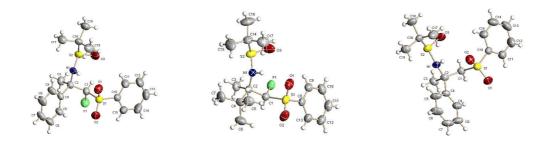


¹H NMR: δ 7.96 –7.99 (m, 1H), 7.79 –7.88 (m, 3H), 7.62 (dd, J = 8.7, 1.8 Hz, 1H), 7.44 –7.52 (m, 2H), 4.49 (d, J = 47.4 Hz, 2H), 1.84 (s, 2H), 1.60 (d, J = 2.1 Hz, 3H); ¹⁹F NMR: δ – 220.6 (t, J = 52.7 Hz, 1F); ¹³C NMR: δ 133.2, 132.4, 128.2, 128.1, 127.4, 126.2, 126.0, 124.3, 123.9, 91.0 (d, J = 177.5 Hz), 55.5 (d, J = 17.9 Hz), 26.5 (d, J = 3.6 Hz); IR (KBr): 3059, 2971, 1601, 1506, 1276, 1011, 819, 749, 479, 405 cm⁻¹; MS (EI, m/z, %) 129 (26.43), 170 (M–CH₂F, 100.00); HRMS analysis (EI) m/z: Calcd. For C₁₃H₁₄NF (M⁺): 203.1110; Found 203.1114.

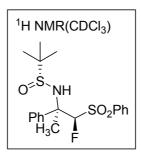

References:

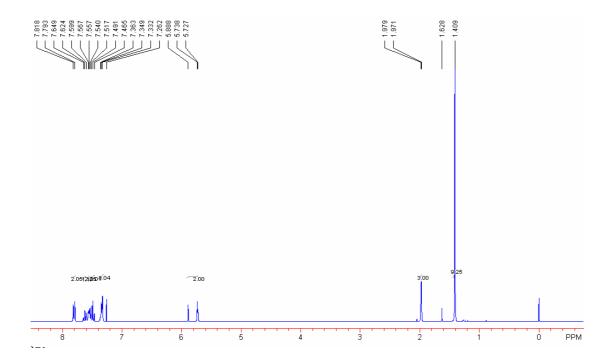

- 1. Liu, G.; Cogan, D.A.; Owens, T.D.; Tang, T.P.; Ellman, J.A. J. Org. Chem. 1999, 64, 1278.
- Encyclopedia of Reagents for Organic Synthesis, Vol. 4, pp 2558-2561, Paquette, L. A., et.al Eds;
 John Wiley & Sons: Chichester, 2002.

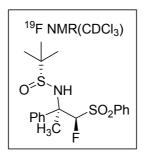

Example of determination of facial selectivity ratio of 4 (the organic phase of the reaction mixture after saturated NaCl water solution was added) by ¹⁹ F NMR:



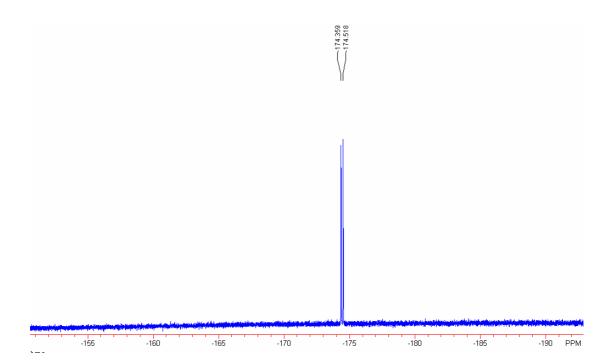
Determination of the absolute configuration of 4a', 4k'' and 7 by X-ray analysis

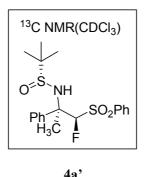


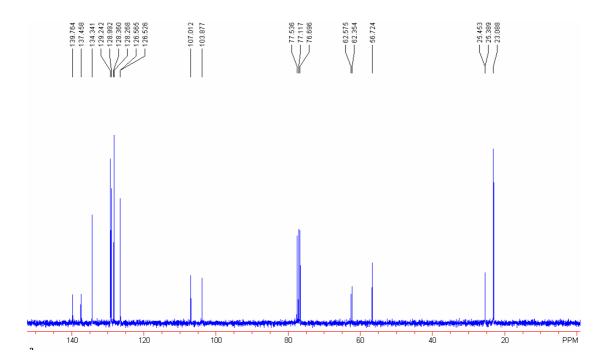


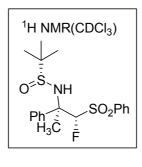


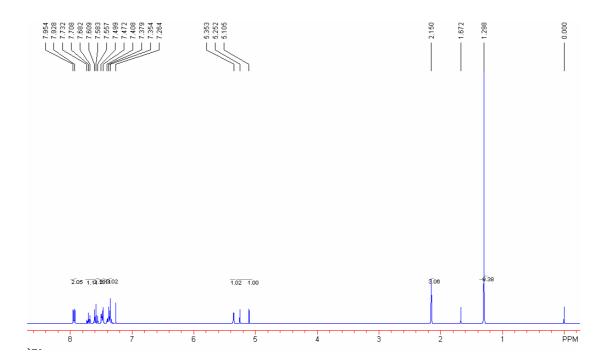
NMR spectra for all isolated products

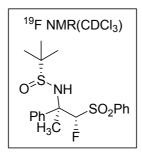


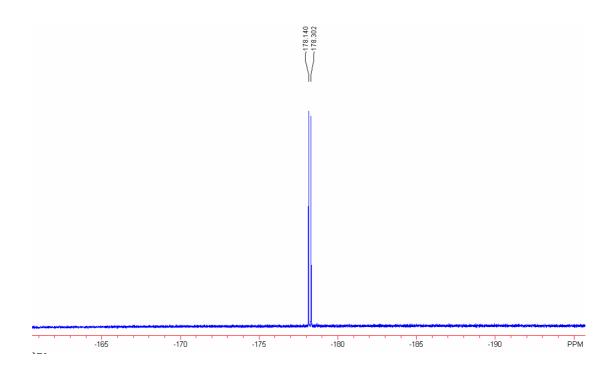


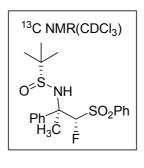


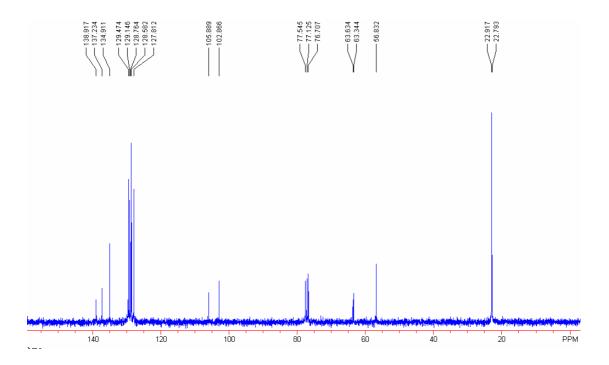


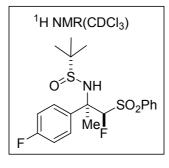


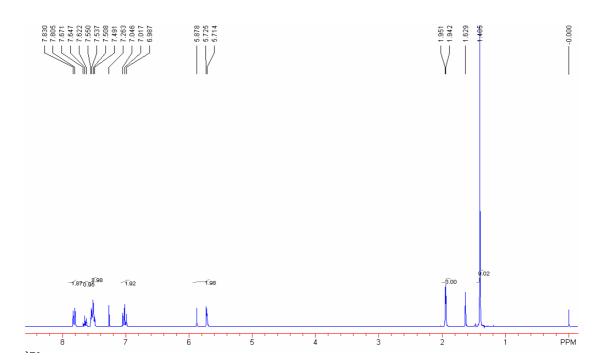


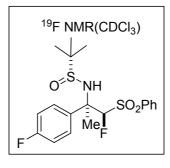


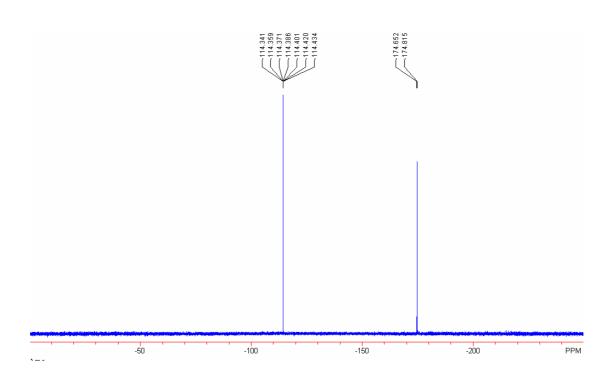


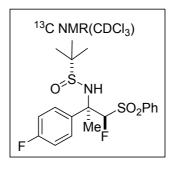


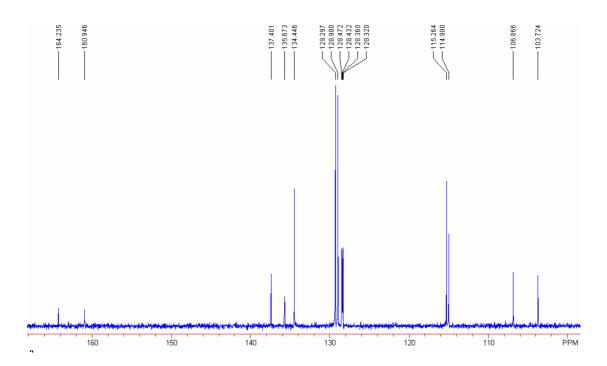


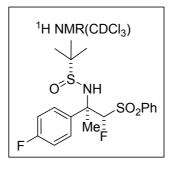


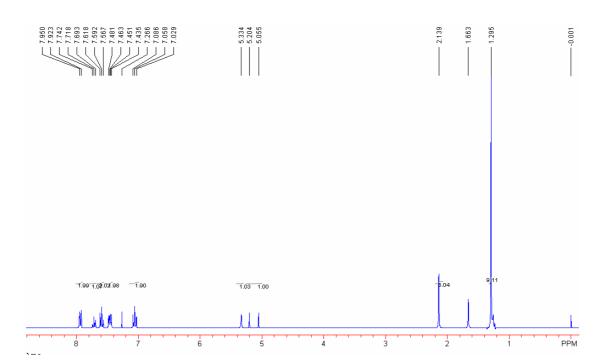


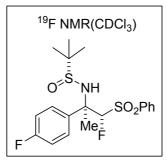


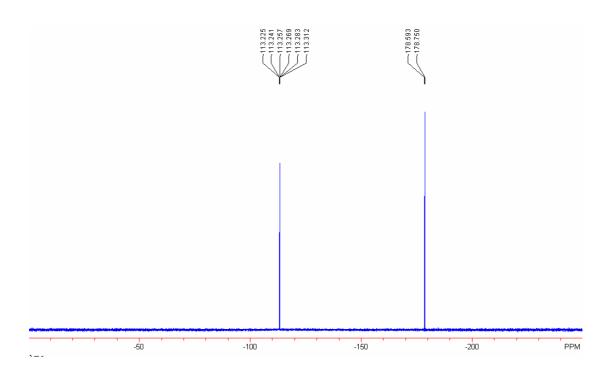

4b'

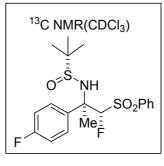


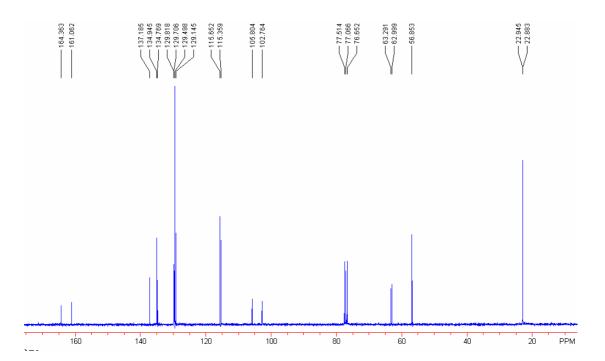

4b'

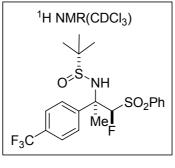


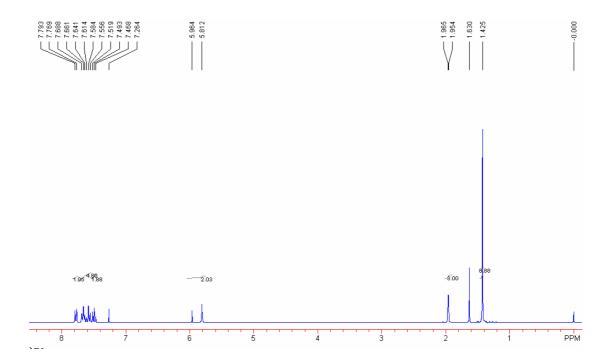

4b'

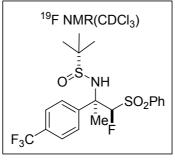


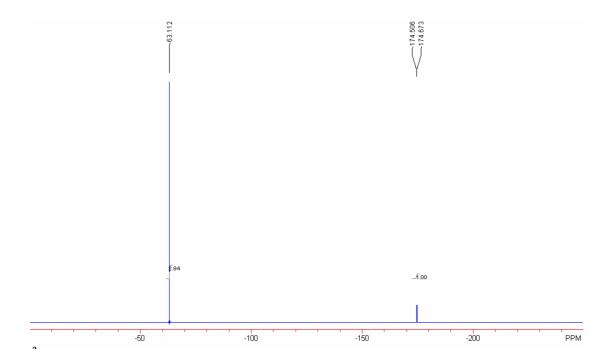

4b"

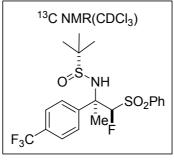


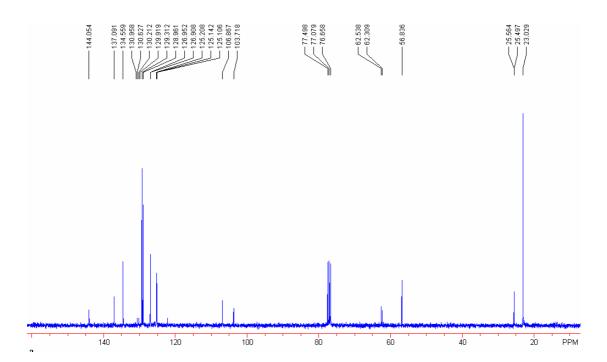

4b"

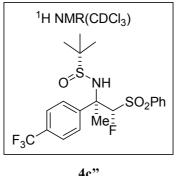


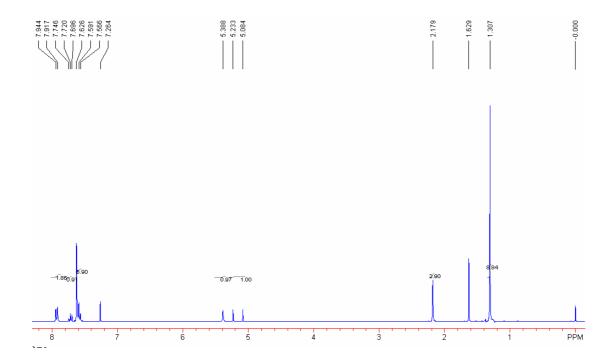


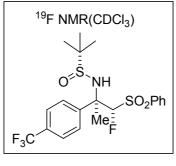


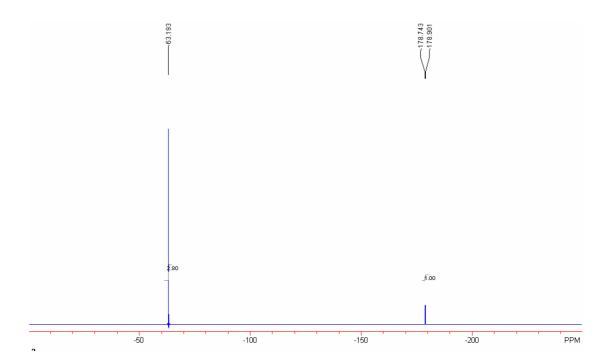

4c'

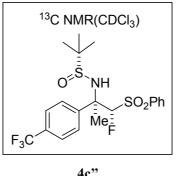


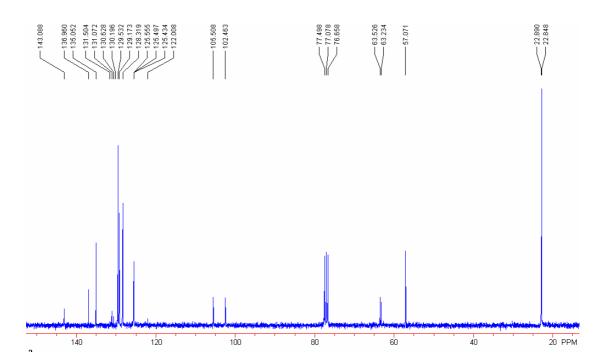

4c'

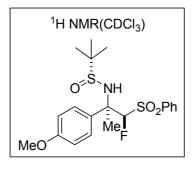




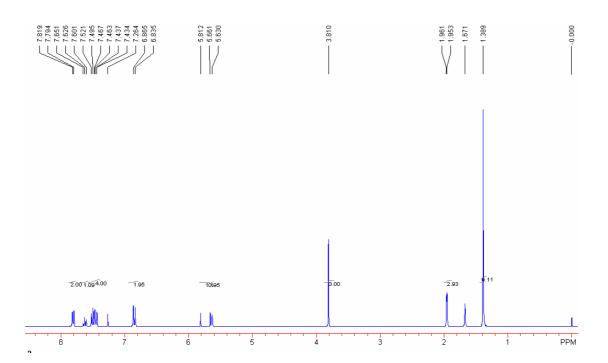


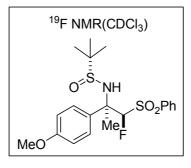


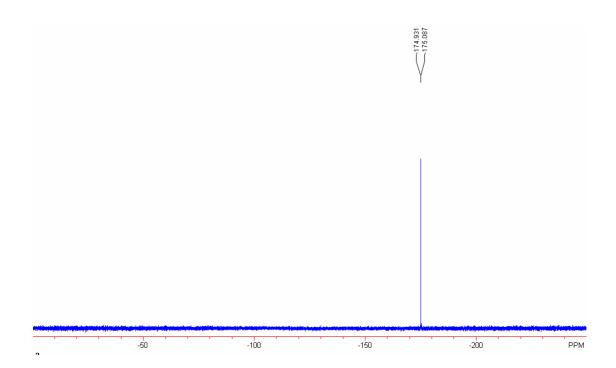


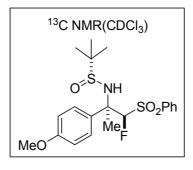


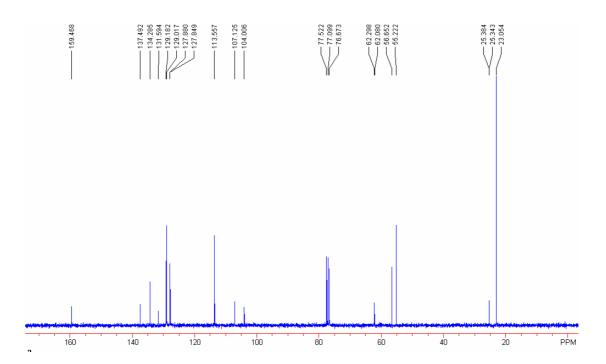
4c"

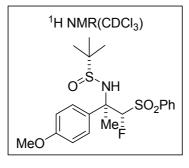


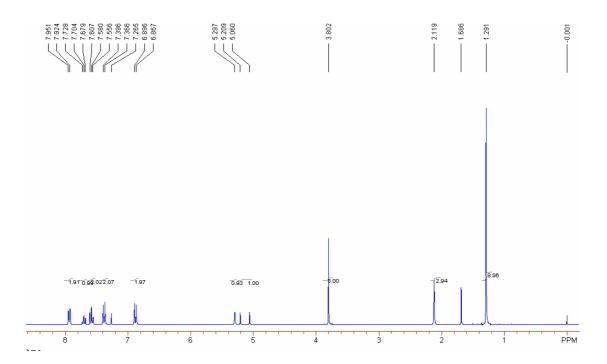


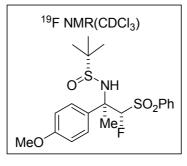


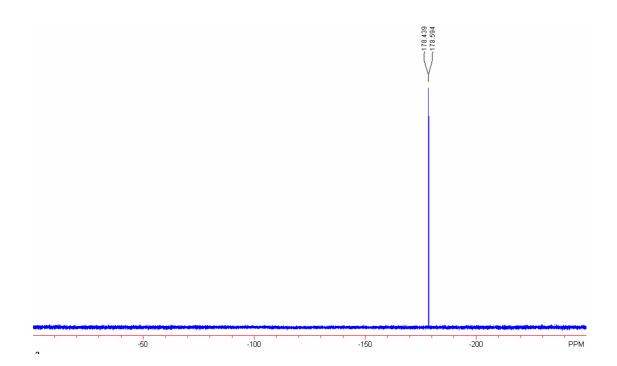

4d'

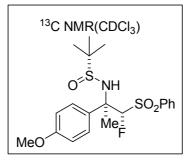


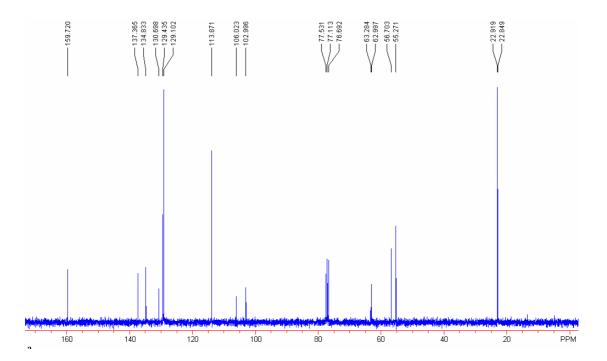

4d'

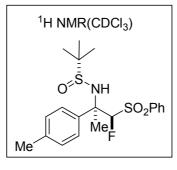


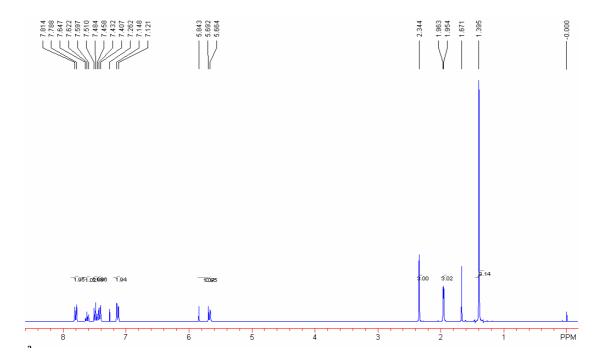


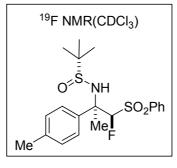


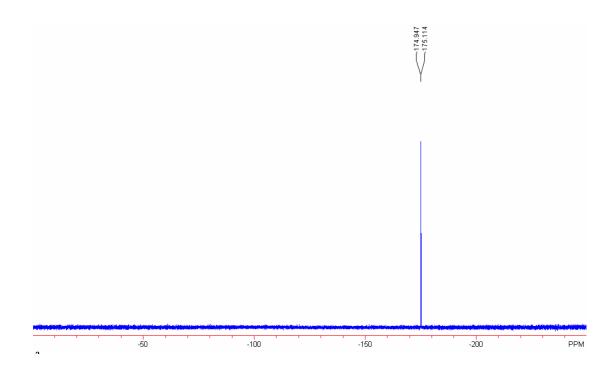


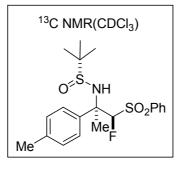


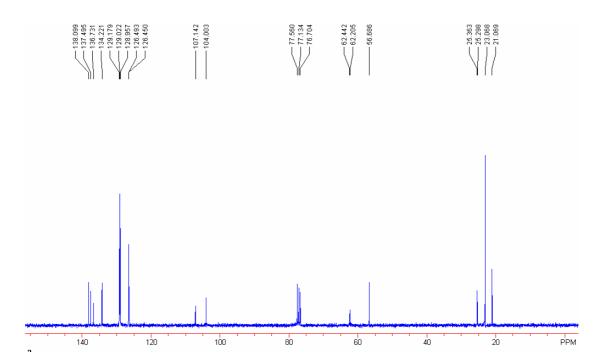

4d"

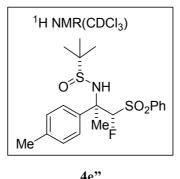


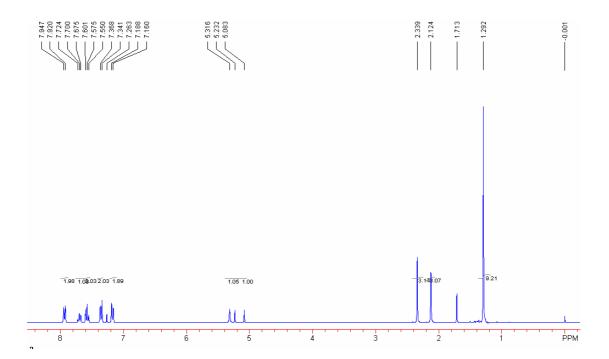


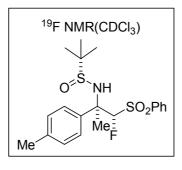


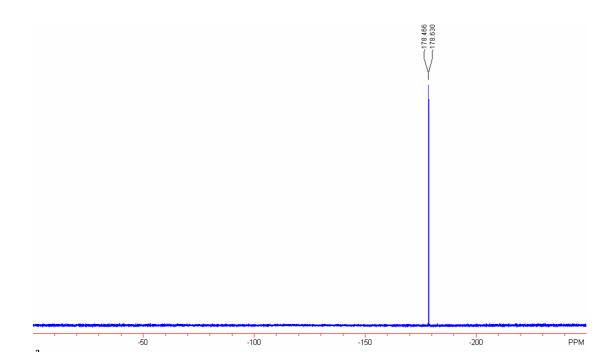

4e'

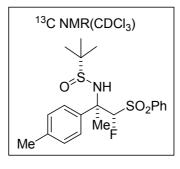


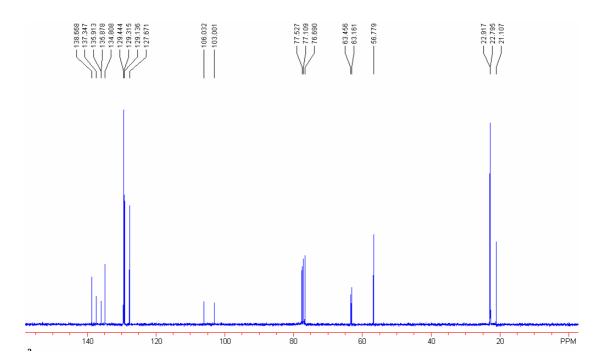

4e'

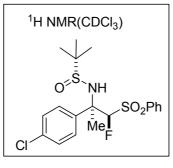


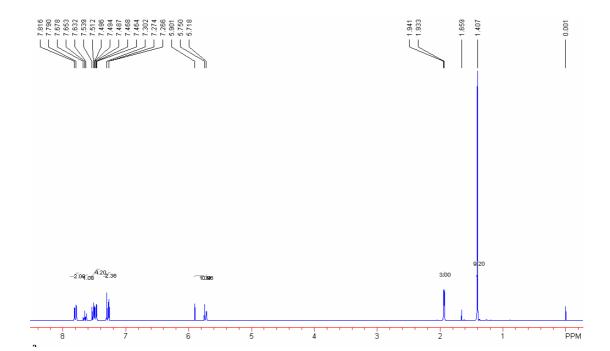


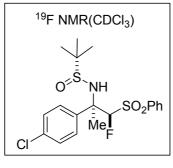


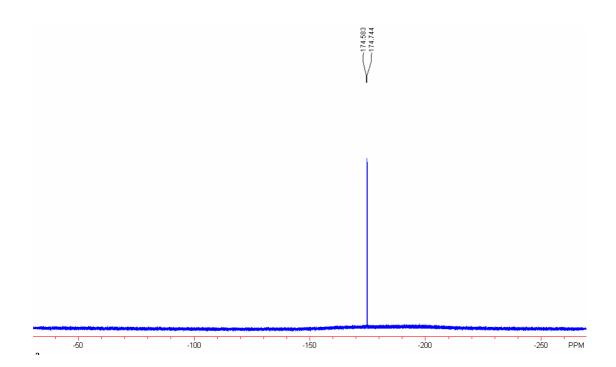


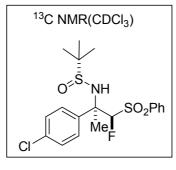


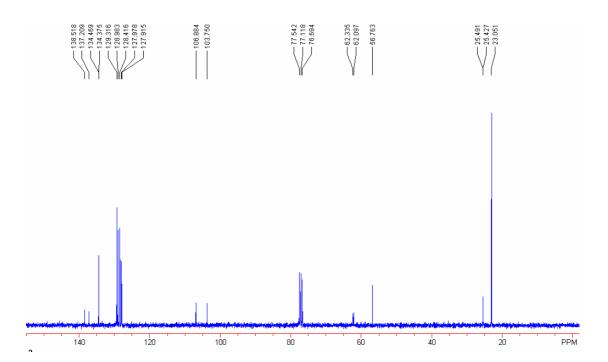

4e"

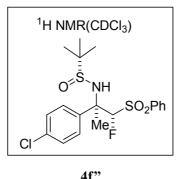


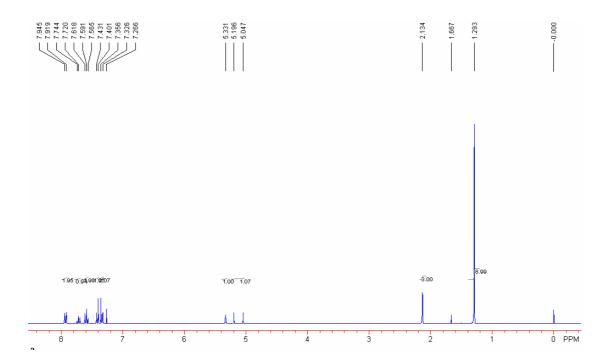


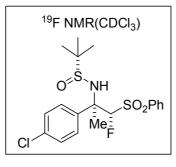


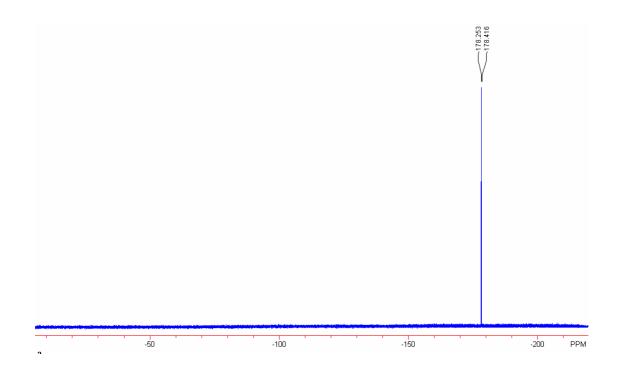


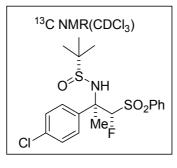


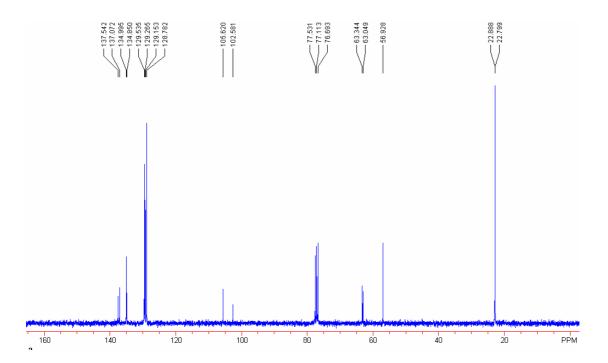

4f'

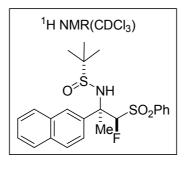


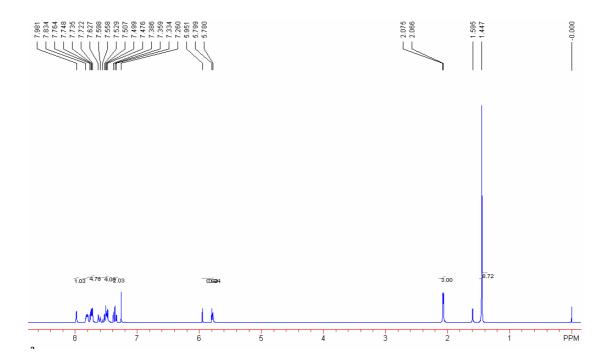


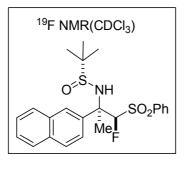


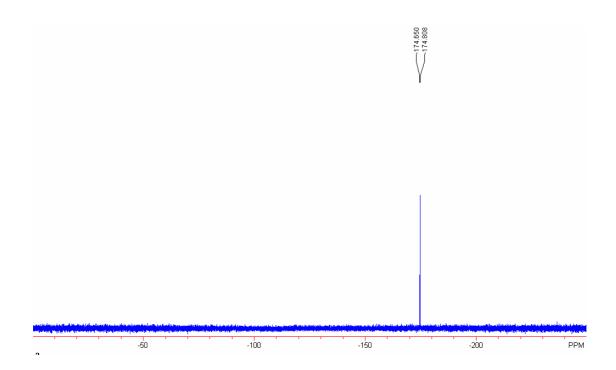


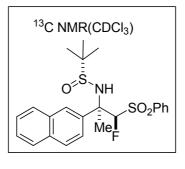


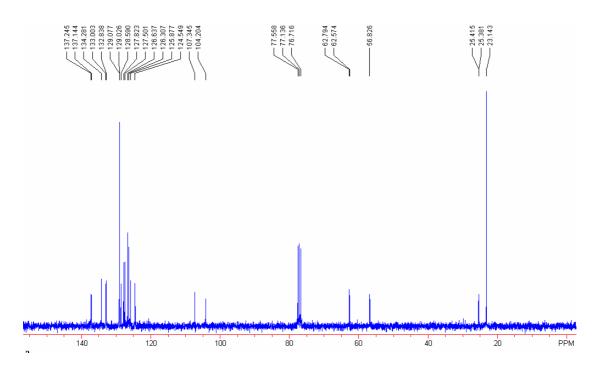

4f"

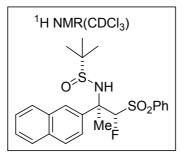


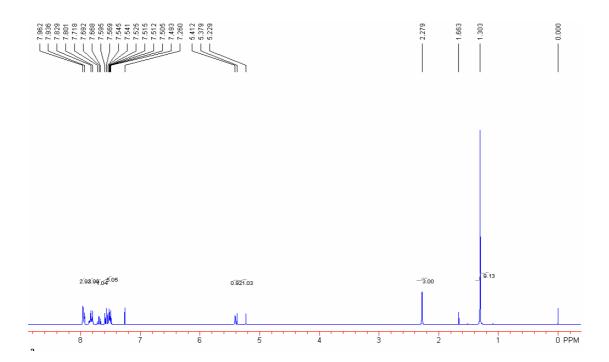


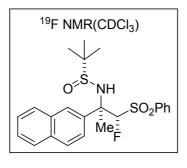


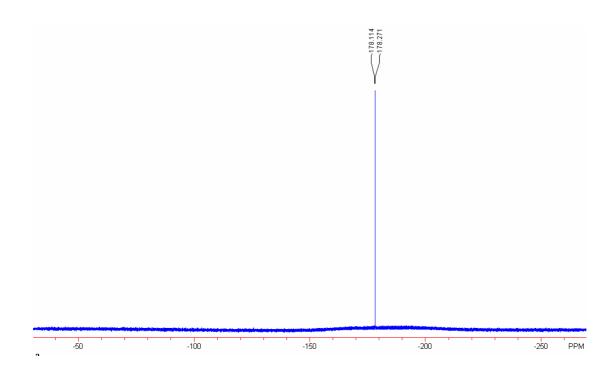

4g'

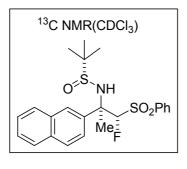


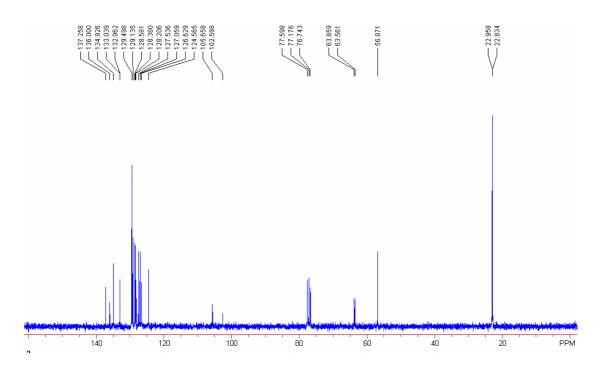

4g'

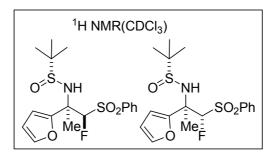


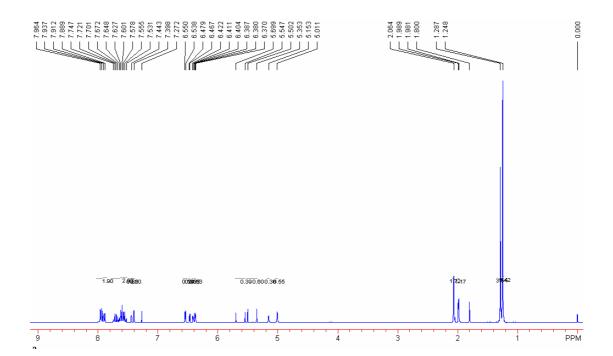


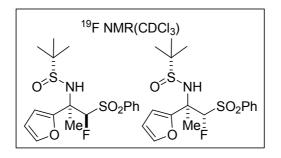


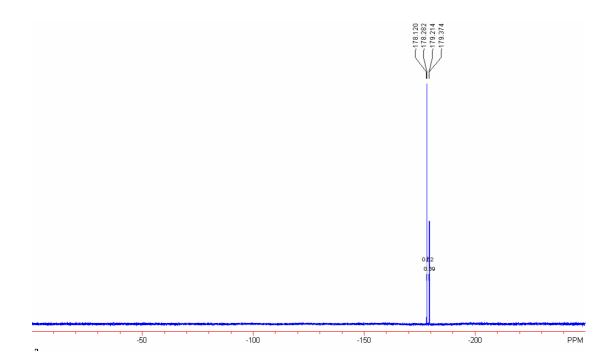


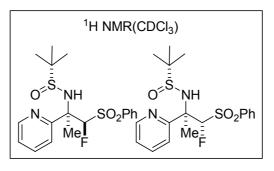


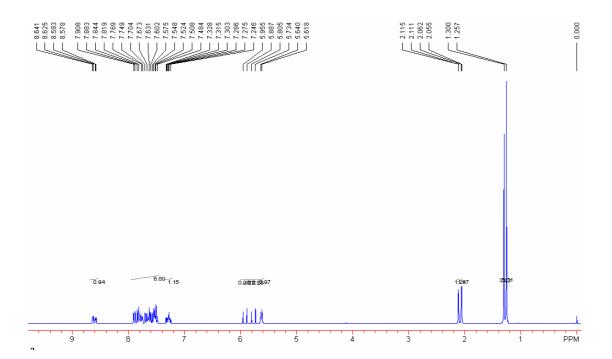

4g"

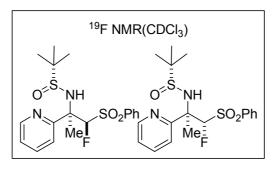


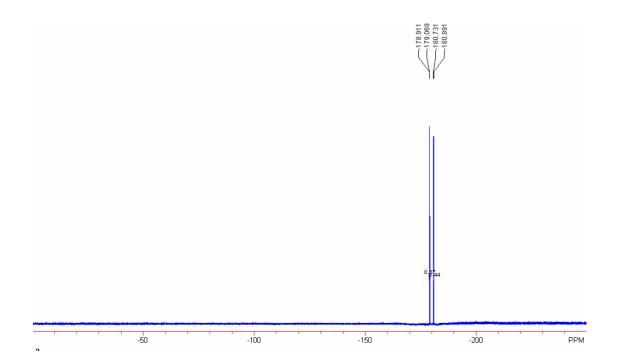


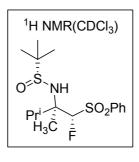


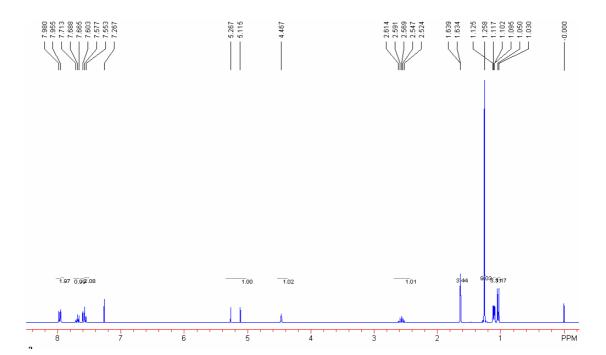

4h'+4h"

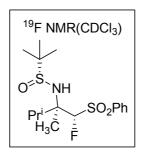


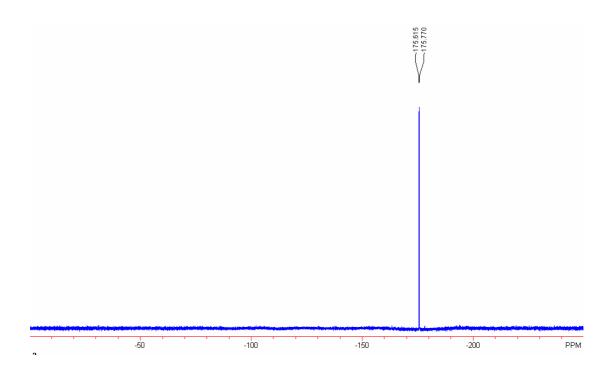

4h'+4h"

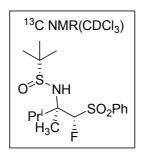


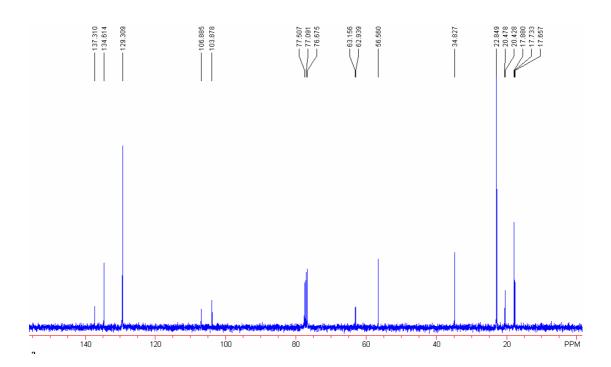

4i'+4i"

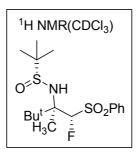


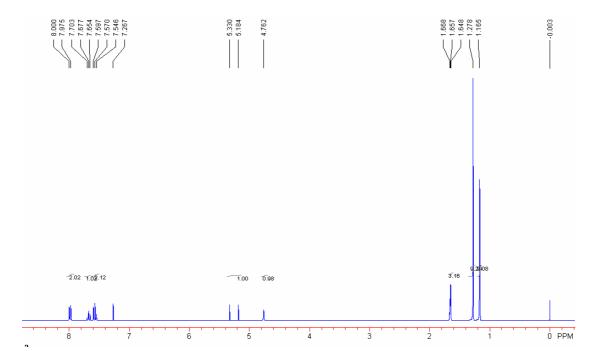

4i'+4i"

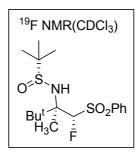


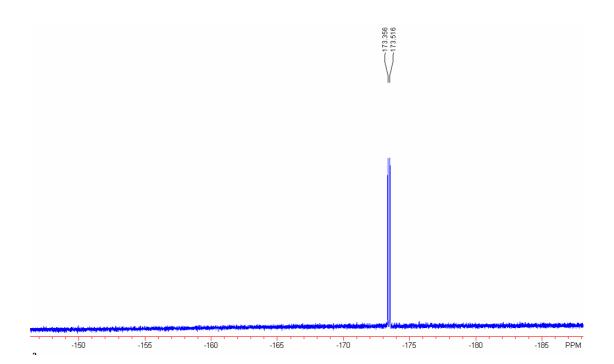


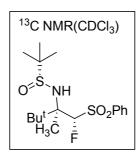


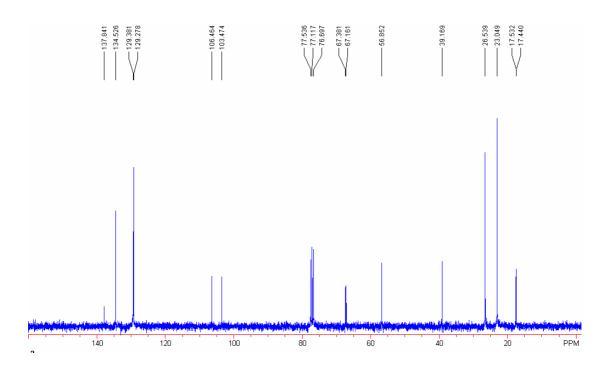


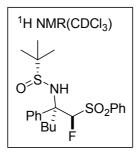


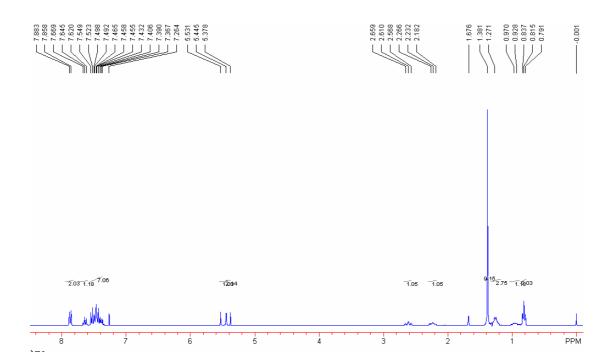


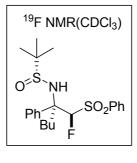


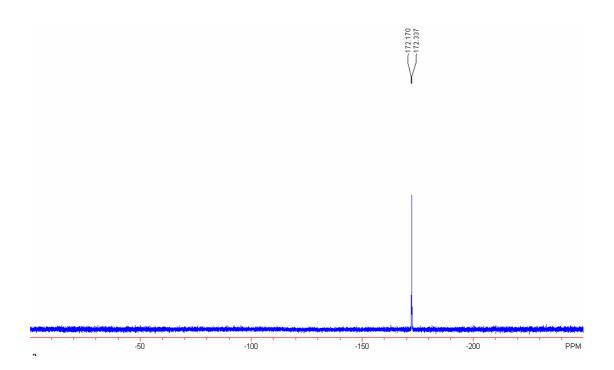


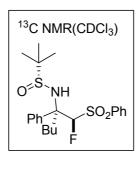


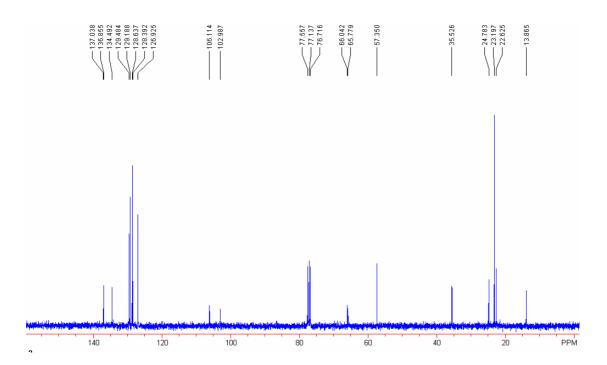


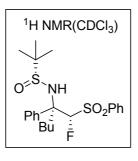


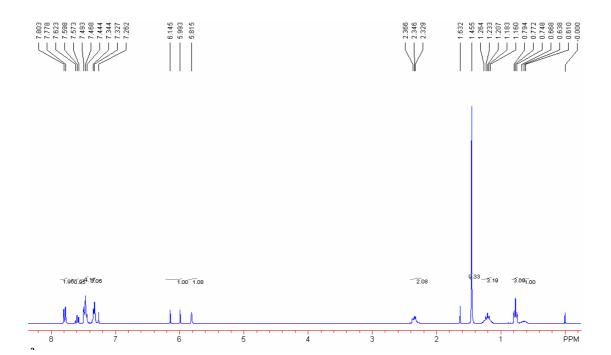


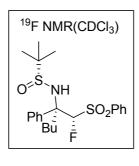


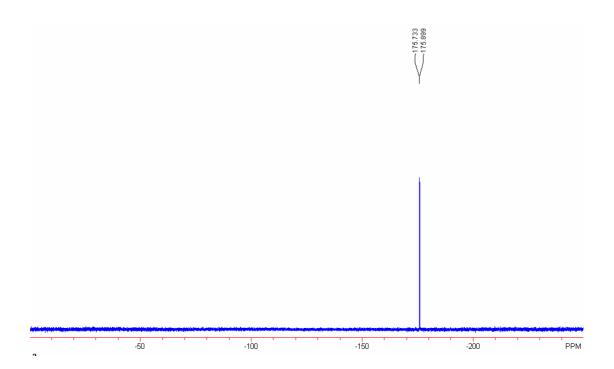


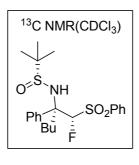


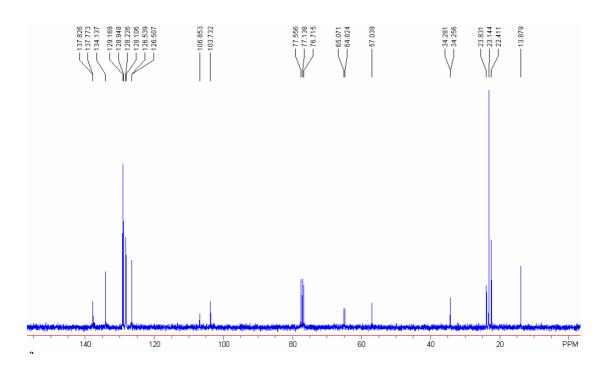


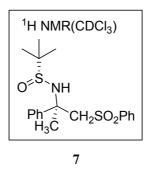


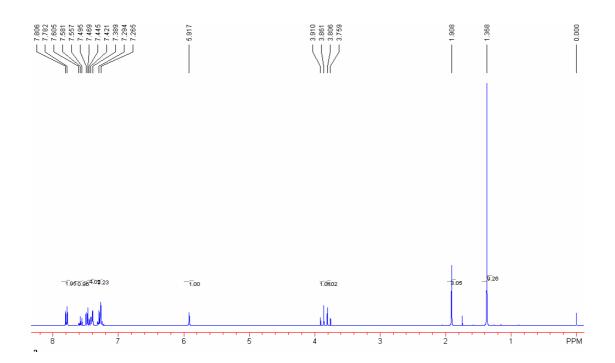


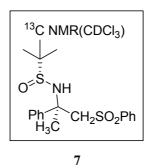


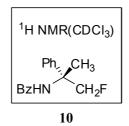


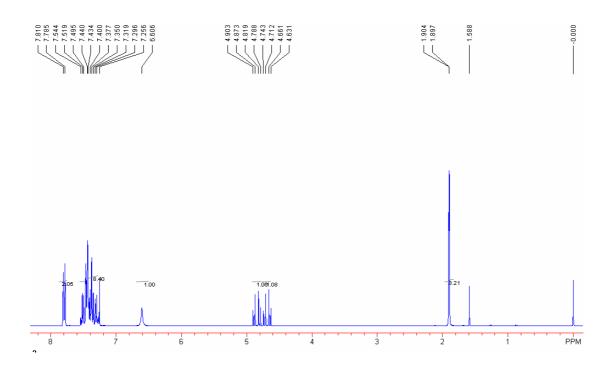


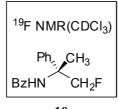


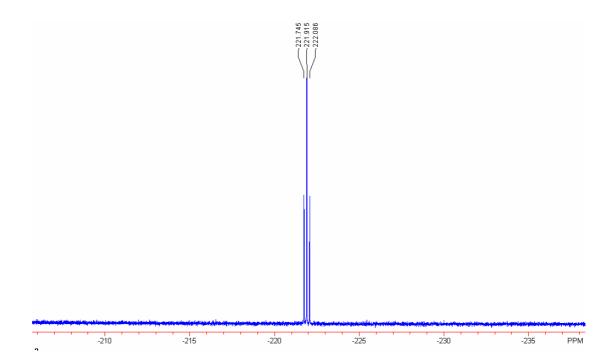


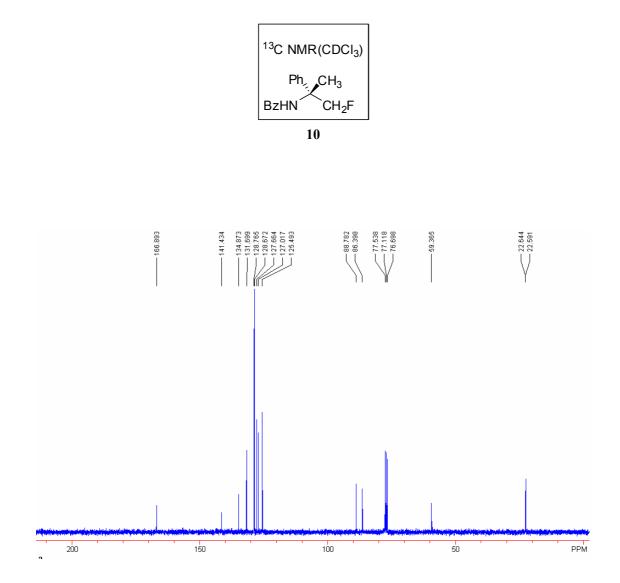


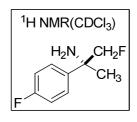


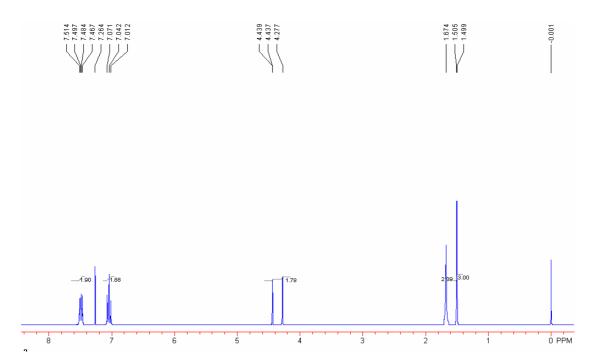


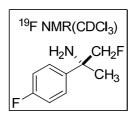


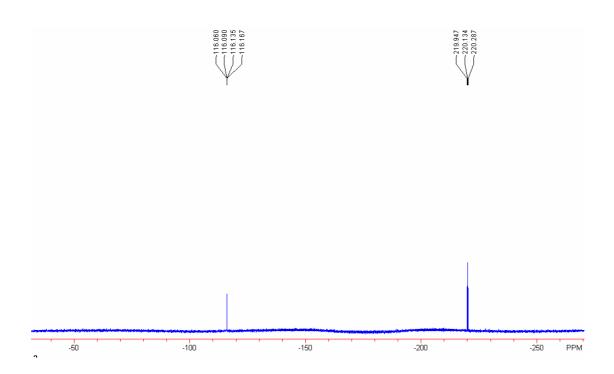


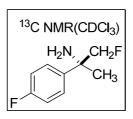


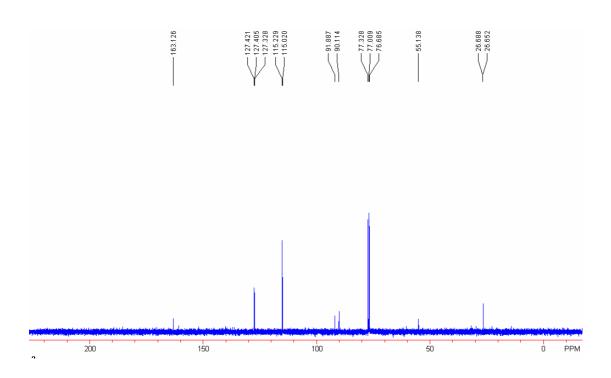


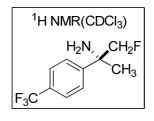


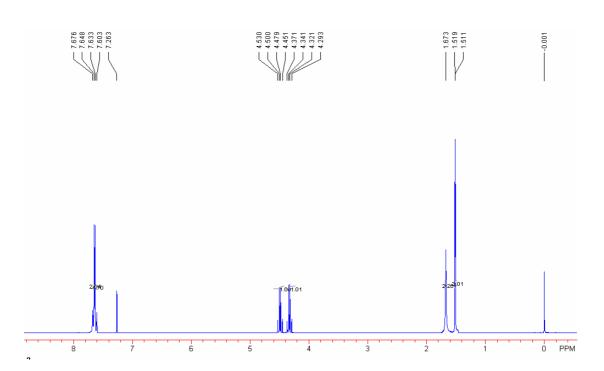


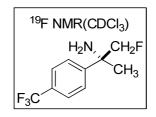


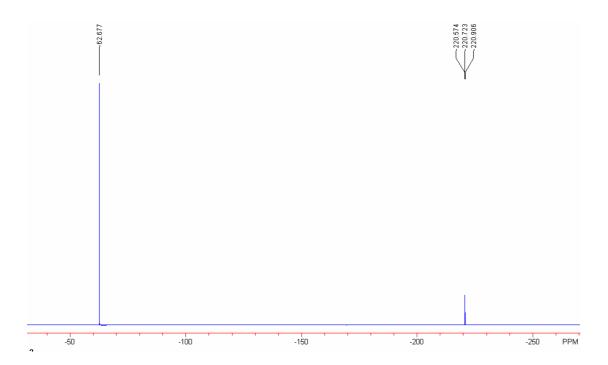

11b

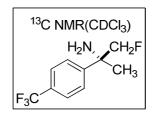


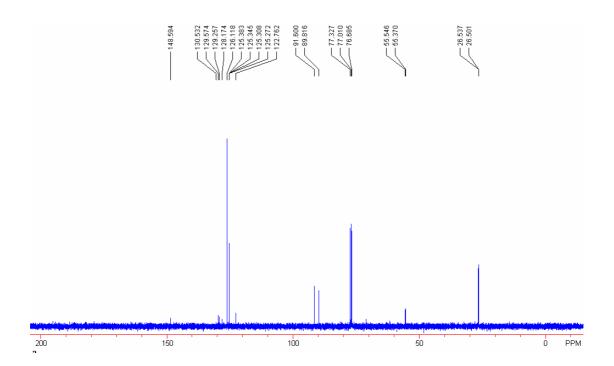

11b

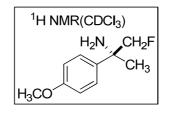


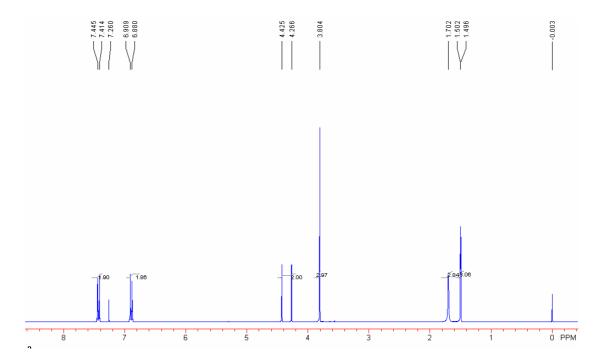

11b

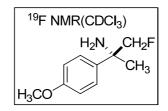


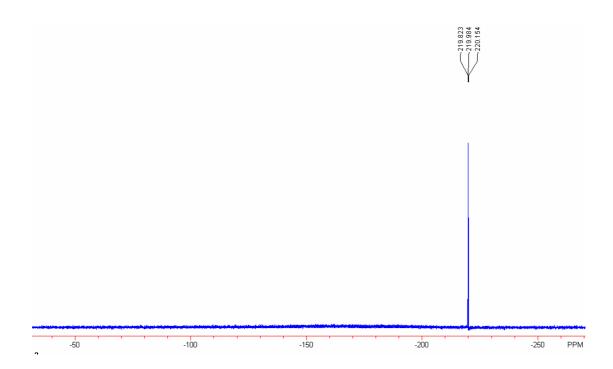

11c

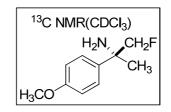


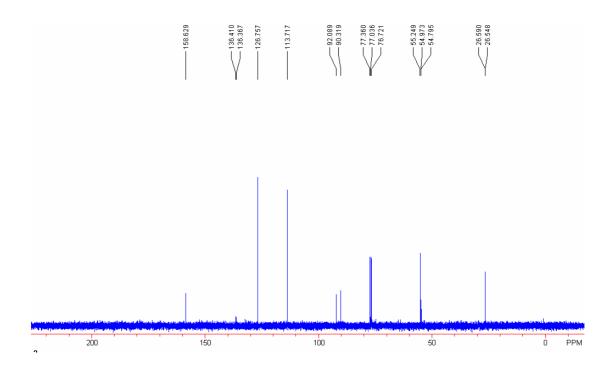

11c

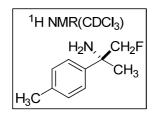


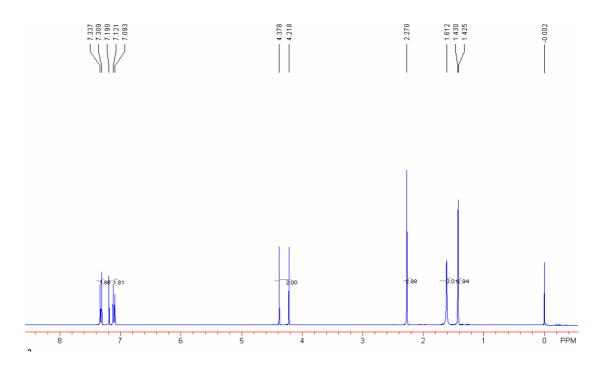

11c

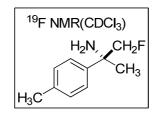


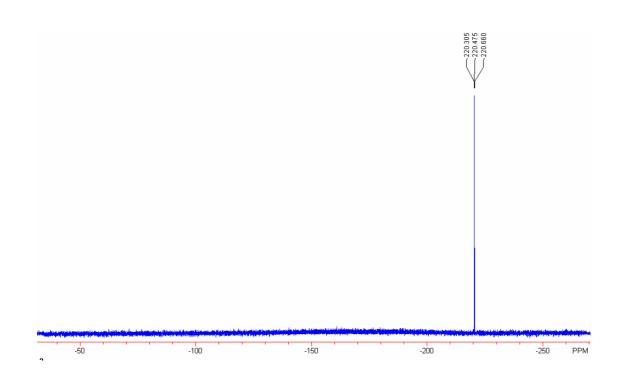


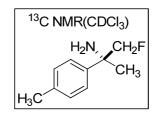


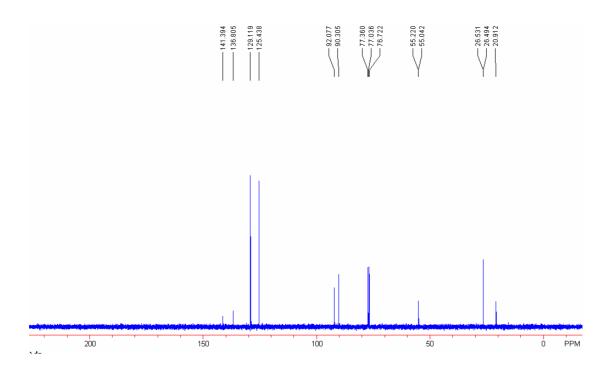

11d

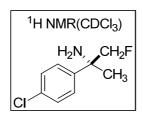


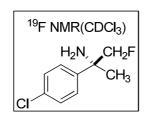

11d

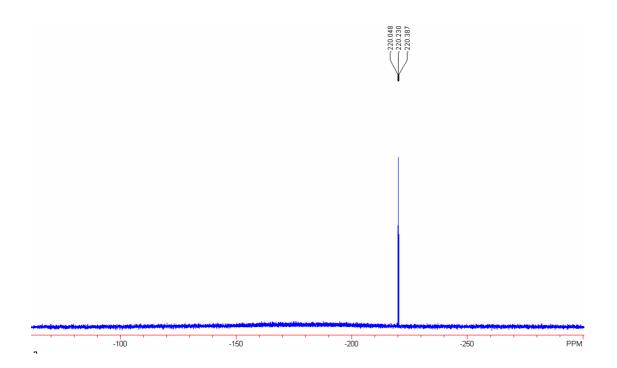


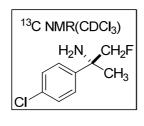


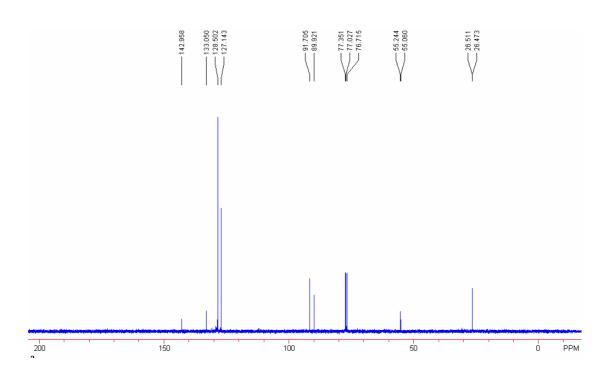


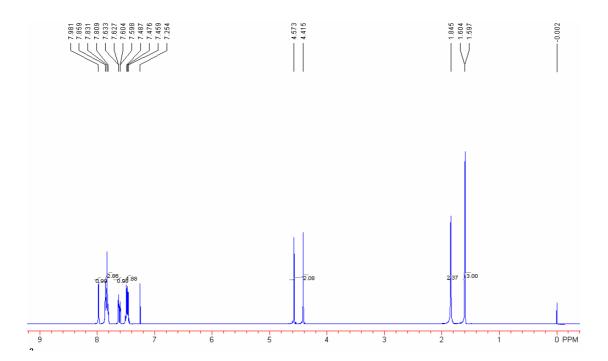


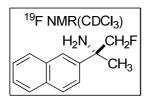

11e

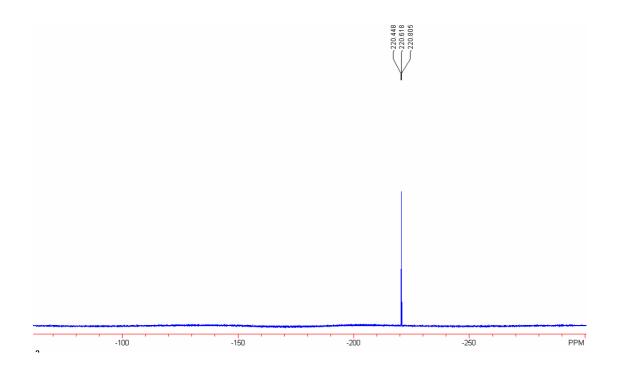


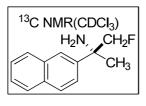


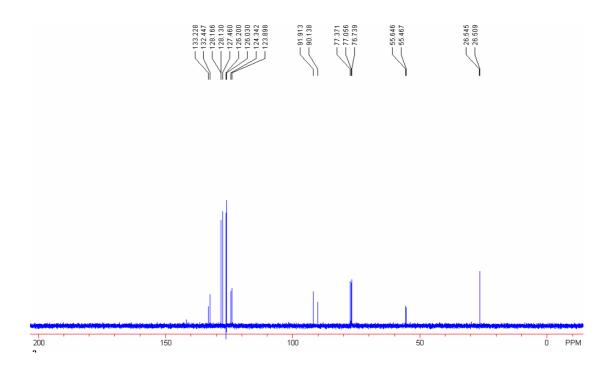









11g



11g

