Convenient Access to Bicyclic and Tricyclic Diazenes

Douglass F. Taber and Pengfei Guo

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716
taberdf@udel.edu

Supporting Information

Contents

General experimental S2
Experimental procedures S3 - S26
X-ray of Diazene 2a S26
References S27
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S28 - S64

General:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded, as solutions in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise indicated, at 400 MHz and 100 MHz , respectively. ${ }^{13} \mathrm{C}$ multiplicities were determined with the aid of a JVERT pulse sequence, differentiating the signals for methyl and methine carbons as " d " from methylene and quaternary carbons as " u ". The infrared (IR) spectra were determined as neat oils. Rf values indicated refer to thin layer chromatography (TLC) on $2.5 \times 10 \mathrm{~cm}, 250 \mu \mathrm{~m}$ analytical plates coated with silica gel GF, unless otherwise noted, and developed in the solvent system indicated. All glassware was oven dried and rinsed with dry solvent before use. THF and diethyl ether were distilled from sodium metal/benzophenone ketyl under dry nitrogen. MTBE is methyl tert-butyl ether and PE is petroleum ether. All reactions were conducted under N_{2} and stirred magnetically.

1-(4-Methoxyphenyl)oct-7-en-3-ol (7). To a stirred solution of p-methoxy benzyl chloride ($3.28 \mathrm{~g}, 20.9 \mathrm{mmol}$) in dry THF (20 mL), was dropwise added allylmagnesium chloride (40 mmol) in THF over 5 min at $0^{\circ} \mathrm{C}$. After stirring for 5 h at $60^{\circ} \mathrm{C}$, the reaction mixture was quenched with methanol (3 mL). The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give crude alkene (3.45 g).

To a stirred solution of the above crude alkene in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added mCPBA $(6.27 \mathrm{~g}, 27.9 \mathrm{mmol})$ at rt . After stirring overnight at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with saturated aqueous NaHSO_{3} and then with 1 M NaOH . The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to afford crude epoxide (3.41 g).

To a stirred solution of 4-butenyl magnesium bromide \{freshly prepared with $\mathrm{Mg}(2.1 \mathrm{~g}$, $87.5 \mathrm{mmol})$, 4-bromo-1-butene $(7.15 \mathrm{~g}, 53.0 \mathrm{mmol})$ and I_{2} in dry THF $\left.(30 \mathrm{~mL})\right\}$ in dry THF was added $\mathrm{CuI}(672 \mathrm{mg}, 3.53 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. It was stirred for 5 min at $0^{\circ} \mathrm{C}$ and then the solution of the above crude epoxide in THF (5 mL) was added. After stirring overnight at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$
mL) and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alcohol $7(3.31 \mathrm{~g}, 67 \%$ yield from p-methoxy benzyl chloride) as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.33 ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3380,2929,1510,1240$, $1034 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.75-5.85(\mathrm{~m} \mathrm{1H})$, 4.90-5.05 (q, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H})$, $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.60(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 157.8, 134.2, 114.7, 39.4, 37.0, 33.7, 31.2, 24.9; d 138.7, 129.3, 113.9, 71.2, 55.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$234.1620, obsd 234.1618.

1-(4-Methoxyphenyl)oct-7-en-3-one (1b). To a stirred solution of the alcohol 7 (360
$\mathrm{mg}, 1.54 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, was added Dess-Martin periodinane reagent (748 $\mathrm{mg}, 1.69 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then concentrated. The residue was chromatographed to yield ketone 1b ($286 \mathrm{mg}, 80 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.53 ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 1707,1510,1245 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{q}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ u 210.2, 157.9, 133.2, 115.2, 44.6, 42.2, 33.1, 28.9, 22.7; d 138.0, 129.3, 113.9, 55.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$233.1541, obsd 233.1551.

6a-(4-Methoxyphenethyl)-3,3a,4,5,6,6a-hexahydrocyclopenta[c]pyrazole (2b). Ketone

1b ($263 \mathrm{mg}, 1.13 \mathrm{mmol}$) and tosylhydrazine (1.05 equiv, $223 \mathrm{mg}, 1.20 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(4 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in toluene (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $950 \mathrm{mg}, 6.9$ mmol) was added and the reaction mixture was heated in a sealed vial at $120^{\circ} \mathrm{C}$ (oil bath) for 16 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield $\mathbf{2 b}$ ($211 \mathrm{mg}, 76 \%$ yield) as a pale yellow oil: TLC $R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.40$; IR $\left(\mathrm{cm}^{-1}\right) 2939,1609,1506,1241$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=9.2,18.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{dd}, J=3.2,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ u 157.9, 133.8, 104.7, 85.8, 39.4, 36.3, 34.5, 30.4, 23.6; d 129.7, 113.9, 55.3, 37.8; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$245.1654, obsd 245.1663.

1-(4-Methoxyphenethyl)bicyclo[3.1.0]hexane (3b). A solution of diazene 2b (40 mg,
$0.16 \mathrm{mmol})$ in dry toluene (6 mL) was photolyzed for 16 h at rt in a Rayonet apparatus (350 nm). The reaction mixture was concentrated and chromatographed to yield cyclopropane 3b ($26 \mathrm{mg}, 72 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.80$; $\mathrm{IR}\left(\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right) 2919,1609,1510,1240 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.90(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 0.95$ $(\mathrm{m}, 1 \mathrm{H}), 0.30(\mathrm{~m}, 1 \mathrm{H}), 0.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{u} 157.6,135.2,38.6,33.6,31.3,27.7$, 24.2, 21.4, 12.2; d 129.2, 113.6, 55.3, 23.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right)$216.1514, obsd 216.1518.

6-(4-Methoxyphenethyl)-tetrahydro-2H-pyran-2-ol (8). Ozone was passed through a stirred solution of alkene $7(1.67 \mathrm{~g}, 7.13 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(15$ mL) at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 10 min , the color of the reaction mixture changed to pale blue. N_{2} was then passed through to remove the excess ozone. $\mathrm{PPh}_{3}(3.2 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(3.2 \mathrm{~g})$ were added at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for an additional hour. Then the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield lactol $\mathbf{8}(1.52 \mathrm{~g}, 91 \%$ yield, a 3:2 mixture of two isomers) as a white solid: $\mathrm{mp} 85^{\circ} \mathrm{C}$; $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.59$; IR $\left(\mathrm{cm}^{-1}\right) 3400,2929,1609,1506 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$2 \mathrm{H}), 5.60(\mathrm{~m}, 0.4 \mathrm{H}), 4.70(\mathrm{~m}, 0.6 \mathrm{H}), 3.95(\mathrm{~m}, 0.4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~m}, 0.6 \mathrm{H}), 3.00$ (d, $J=6.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 0.4 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.70(\mathrm{~m}, 4 \mathrm{H}), 1.15-1.35(\mathrm{~m}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR δ u 157.7, 134.3, 38.1, 37.8, 32.9, 31.2, 30.8, $30.4,29.8,22.1,17.4 ;$ d 129.3, 113.8, $96.5,91.2,75.4,68.0,55.3$.

(Z)-1-(4-Methoxyphenyl)non-7-en-3-ol (9). To the mixture of ethyl
triphenylphosphonium bromide ($757 \mathrm{mg}, 2.04 \mathrm{mmol}$) and KH ($125 \mathrm{mg}, 50 \%$ in paraffin, 1.56 mmol) was added dry THF (5 mL) at rt . After stirring at rt for 5 min , a solution of lactol $\mathbf{8}(241 \mathrm{mg}, 1.02 \mathrm{mmol})$ in dry THF $(1 \mathrm{ml})$ was added and the reaction mixture was stirred for another 30 min at $\mathrm{rt} .{ }^{3}$ The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alcohol 9 (240 $\mathrm{mg}, 95 \%$ yield, a $\sim 5: 1 \mathrm{Z} / E$ mixture) as a colorless oil: TLC $R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.24$; IR $\left(\mathrm{cm}^{-1}\right) 3371,2929,1609,1510 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.30-5.50(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{bs}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 1.30-1.50(m, 5H); ${ }^{13} \mathrm{C}$ NMR (major isomer) δ u 157.8, 134.2, 39.3, 37.1, $31.1,26.8,25.5 ; \mathrm{d} 129.3,128.5,124.2,113.9,71.3,55.3,12.8$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right)$248.1776, obsd 248.1775.

(Z)-1-(4-Methoxyphenyl)non-7-en-3-one (1c). To a solution of the alcohol 9 (203.8 mg, 0.82 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, was added Dess-Martin periodinane reagent (398 mg , 0.90 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then concentrated. The residue was chromatographed to yield ketone $\mathbf{1 c}(169 \mathrm{mg}, 84 \%$ yield, a $\sim 5: 1 \mathrm{Z} / E$ mixture $)$ as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.59$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2929$, $1708,1609,1510 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~m}$, $1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{q}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (major isomer) δ u $210.3,157.9,133.2,44.6,42.3,28.9,26.1,23.5 ;$ d 129.6, 129.3, 124.8, 113.9, 55.2, 12.8; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$246.1620, obsd 246.1618.

6a-(4-Methoxyphenethyl)-3-methyl-3,3a,4,5,6,6a-hexahydrocyclopenta[c]pyrazole

(2c). Ketone $\mathbf{1 c}(78.5 \mathrm{mg}, 0.32 \mathrm{mmol})$ and tosylhydrazine (1.05 equiv, $63 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in toluene (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $263 \mathrm{mg}, 1.9 \mathrm{mmol}$) was added and the reaction mixture was heated in a sealed vial
at $120^{\circ} \mathrm{C}$ (oil bath) for 16 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield diazene $2 \mathbf{c}$ ($58 \mathrm{mg}, 70 \%$ yield, a $\sim 5: 1$ mixture of diastereomers) as a pale yellow oil: TLC $R_{f}(5 \%$ MTBE/PE $)=0.41 ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2939,1609,1510,1240 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (major isomer) δ u 157.9, 134.0, $105.7,40.7,36.5,30.4,27.8,23.7$; d 129.1, 113.9, 86.2, 55.3, 41.7, 13.8; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$259.1810, obsd 259.1814.

1-(4-Methoxyphenethyl)-6-methylbicyclo[3.1.0]hexane (3c). A solution of diazene 2c ($45 \mathrm{mg}, 0.17 \mathrm{mmol}$) in dry toluene (6 mL) was photolyzed for 24 h at rt in a Rayonet apparatus (350 nm). The reaction mixture was concentrated and chromatographed to yield cyclopropane 3c ($29 \mathrm{mg}, 71 \%$ yield, a 1:1 mixture of diastereomers) as a colorless oil: $\operatorname{TLC} R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.75$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2918,1643,1510,1245 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.45-2.00(\mathrm{~m}, 7 \mathrm{H}), 1.10-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.80-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u $157.6,135.4,135.2,40.7,33.9,33.7$, $33.6,33.5,32.7,32.1,29.1,28.0,26.9,25.0,22.0$; d 129.2, 113.7, 113.6, 55.3, 31.1, 28.2,
21.2, 16.8, 13.2, 8.1; HRMS calcd for C16H23O (MH^{+}) 231.1749, obsd 231.1750.

1-(4-Methoxyphenyl)-8-methylnon-7-en-3-ol (10). To the mixture of isopropyl triphenylphosphonium iodide ($846 \mathrm{mg}, 1.96 \mathrm{mmol}$) and KH (121 mg, 50% in paraffin, 1.51 mmol) was added dry THF (5 mL) at rt . After stirring at rt for 5 min , a solution of lactol $\mathbf{8}(220 \mathrm{mg}, 0.93 \mathrm{mmol})$ in dry THF $(1 \mathrm{ml})$ was added and the reaction mixture was stirred at reflux for 2 h . Then the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (5 mL) and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alcohol $10(177 \mathrm{mg}, 72 \%$ yield $)$ as a colorless oil: $\operatorname{TLC} R_{f}(5 \%$ MTBE/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.52$; IR $\left(\mathrm{cm}^{-1}\right) 3351,2918,1609,1506,1240 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{bs}, 1 \mathrm{H}), 2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.50$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR δ u 157.7 134.3, 131.7, 39.3, 37.2, 31.2, 28.0, 25.9; d 128.3, 124.4, 113.8, 71.3, 55.3, 25.8, 17.7; HRMS calcd for $\mathrm{C}_{17} \mathrm{C}_{26} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$262.1933, obsd 262.1925.

1-(4-Methoxyphenyl)-8-methylnon-7-en-3-one (1d). To a solution of the alcohol 10
($162 \mathrm{mg}, 0.62 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, was added Dess-Martin periodinane reagent $(302 \mathrm{mg}, 0.68 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then concentrated. The residue was chromatographed to yield ketone $\mathbf{1 d}$ ($136 \mathrm{mg}, 85 \%$ yield) as a colorless oil: TLC $R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.40$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2929,1708,1511,1447,1245 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{t}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.80$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{q}, 2 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{u} 210.5,157.9,133.2,132.4,44.6,42.4$, 28.9, 27.4, 23.9; d 129.3, 123.8, 113.9, 55.2, 25.7, 17.7; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$ 260.1776, obsd 260.1771.

6a-(4-Methoxyphenethyl)-3,3-dimethyl-3,3a,4,5,6,6a-

hexahydrocyclopenta[c]pyrazole (2d). Ketone $\mathbf{1 d}$ ($75 \mathrm{mg}, 0.29 \mathrm{mmol}$) and tosylhydrazine (1.05 equiv, $58 \mathrm{mg}, 0.31 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in toluene (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $245 \mathrm{mg}, 1.77 \mathrm{mmol}$) was added and the reaction mixture was heated in a sealed vial at $120^{\circ} \mathrm{C}$ (oil bath) for 16 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and, sequentially, water $(10 \mathrm{~mL})$ and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield diazene $\mathbf{2 d}$ ($53 \mathrm{mg}, 68 \%$ yield) as a pale
yellow oil: TLC $R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.40$; $\operatorname{IR}\left(\mathrm{cm}^{-1}\right) 2939,1511,1457,1241 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{u} 157.9,134.1,105.9,91.1,41.2$, 35.9, 31.0, 29.6, 24.7; d 129.1, 113.9, 55.3, 48.4, 29.2, 21.9; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ $\left(\mathrm{MH}^{+}\right)$273.1967, obsd 273.1968.

1-(4-Methoxyphenethyl)-6,6-dimethylbicyclo[3.1.0]hexane (3d). A solution of diazene 2d $(43 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dry toluene $(6 \mathrm{~mL})$ was photolyzed for 24 h at rt in a Rayonet apparatus (350 nm). The reaction mixture was concentrated and chromatographed to yield cyclopropane 3d $(29 \mathrm{mg}, 74 \%$ yield $)$ as a colorless oil: $\mathrm{TLC} R_{f}(2 \% \mathrm{MTBE} / \mathrm{PE})=$ 0.47; IR (cm^{-1}) 2929, 1732, 1511, 1246; ${ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.40$ $(\mathrm{m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{u} 157.6,135.4$, $38.3,36.2,34.3,31.6,27.6,25.9,23.4 ;$ d 129.2, 113.7, 55.3, 36.1, 23.9, 16.6; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}\left(\mathrm{MH}^{+}\right) 245.1905$, obsd 245.1905.

2-(2-(Phenylthio)ethyl)oxirane (11). To a stirred solution of DABCO ($1.22 \mathrm{~g}, 10.9$
$\mathrm{mmol})$ and thioanisole ($13.2 \mathrm{~g}, 106 \mathrm{mmol}$) in dry THF (100 mL) was added n -BuLi (106 mmol, $43 \mathrm{~mL}, 2.46 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) at $0^{\circ} \mathrm{C} .{ }^{4}$ After stirring at room temperature for 2 h , the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$. Then epichlorohydrin ($19.6 \mathrm{~g}, 212 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was slowly warmed to rt in 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield the epoxide $11(11.3 \mathrm{~g}, 59 \%$ yield $)$ as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.57 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ 2989, 2923, 1581, 1479; ${ }^{1} \mathrm{H}$ NMR $\delta 7.10-7.40(\mathrm{~m}, 5 \mathrm{H}), 3.05(\mathrm{~m}, 3 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.50$ $(\mathrm{m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ u 136.0, 47.2, 32.3, 30.2; d 129.4, 129.0, 126.2, 51.1; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{OS}\left(\mathrm{M}^{+}\right) 180.0609$, obsd 180.0607 .

1-(Phenylthio)hept-6-en-3-ol (12). To a solution of epoxide $\mathbf{1 1}(9.1 \mathrm{~g}, 50.3 \mathrm{mmol})$ in dry THF (50 mL) was added allyl magnesium chloride ($100 \mathrm{mmol}, 50 \mathrm{~mL}, 2 \mathrm{M}$ in THF) at $0^{\circ} \mathrm{C} .{ }^{5}$ The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for another 3 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield the alcohol $12(11.2 \mathrm{~g}, 98 \%$ yield $)$ as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=$
0.32; IR $\left(\mathrm{cm}^{-1}\right) 3417,2930,2360,1641 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.00$ $(\mathrm{q}, 2 \mathrm{H}), 3.75(\mathrm{bs}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ u 136.4, 115.0, 36.5, 36.4, 30.1, 30.0; d 138.3, 129.1, 129.0, 126.0, 70.4; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{OS}\left(\mathrm{M}^{+}\right)$222.1078, obsd 222.1072.

(3-Iodohept-6-enyl)(phenyl)sulfane (13). To a stirred solution of alcohol $\mathbf{1 2}$ (11.0 g, 50 $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were sequentially added $\mathrm{Et}_{3} \mathrm{~N}(10.5 \mathrm{~g}, 103 \mathrm{mmol})$ and mesyl chloride $(8.7 \mathrm{~g}, 76 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude mesylate.

To a stirred solution of the above crude mesylate in acetone $(100 \mathrm{~mL})$ was added NaI $(22.3 \mathrm{~g}, 149 \mathrm{mmol})$ at rt . The reaction mixture was stirred at reflux overnight. After cooling to rt , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield the iodide $13(14.3 \mathrm{~g}, 85 \%$ yield $)$ as a colorless oil: TLC R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.82 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3072,2923,1581,1437 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.05-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.65$ $(\mathrm{m}, 1 \mathrm{H}), 4.95(\mathrm{q}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}$,
$2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{u} 134.7,114.9,38.5,38.4,32.7,32.4 ; \mathrm{d}$ $135.5,128.8,127.9,125.2,35.4$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{SI}(\mathrm{M}+) 332.0096$, obsd 332.0081 .

13
14
2-(2-(Phenylthio)ethyl)hex-5-enenitrile (14). To a solution of iodide $\mathbf{1 3}$ ($2.4 \mathrm{~g}, 7.1$
$\mathrm{mmol})$ in DMSO $(30 \mathrm{~mL})$ was added $\mathrm{NaCN}(3.6 \mathrm{~g}, 73.5 \mathrm{mmol})$ at $\mathrm{rt} .{ }^{6}$ After stirring at rt overnight, the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield nitrile 14 ($1.2 \mathrm{~g}, 71 \%$ yield) as a colorless oil: TLC $R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.55 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3074,2931,2238,1641 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.20-7.50(\mathrm{~m}$, $5 \mathrm{H}), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.45(\mathrm{~m}$, $2 \mathrm{H}), 1.55-2.00(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 134.6, 121.0, 116.2, 31.2, 30.9, 30.7, 29.4; d 135.8, 129.6, 128.8, 126.3, 27.7.

2-(2-(Phenylthio)ethyl)hex-5-enal (1e). To a stirred solution of nitrile $\mathbf{1 4}$ (1.0 g, 4.3 $\mathrm{mmol})$ in dry toluene $(25 \mathrm{~mL})$ was added DIBAL-H ($13 \mathrm{mmol}, 13 \mathrm{~mL}, 1 \mathrm{M}$ in pentane $)$ at $-78^{\circ} \mathrm{C}^{7}$ After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water
and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to give aldehyde $\mathbf{1 e}(817 \mathrm{mg}, 81 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.62 ; \operatorname{IR}\left(\mathrm{cm}^{-1}\right) 3580,2090,1642 ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.45$ $(\mathrm{m}, 5 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{q}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 135.4, 115.4, 30.8, 30.6, 27.8, 27.6; d 203.6, 137.0, 129.5, 120.0, 125.8, 49.7; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}\left(\mathrm{M}^{+}\right)$234.1078, obsd 234.1078.

6-(2-(Phenylthio)ethyl)-3,3a,4,5,6,6a-hexahydrocyclopenta[c]pyrazole (2e). Aldehyde

 $\mathbf{1 e}(110 \mathrm{mg}, 0.47 \mathrm{mmol})$ and tosylhydrazine (1.07 equiv, $95 \mathrm{mg}, 0.51 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(3 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in toluene (3 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $395 \mathrm{mg}, 2.9 \mathrm{mmol}$) was added and the reaction mixture was heated in a sealed vial at $120^{\circ} \mathrm{C}$ (oil bath) for 13 h. After cooling to room temperature, the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield diazene $\mathbf{2 e}$ (105 $\mathrm{mg}, 91 \%$ yield, $6: 1$ mixture of two isomers based on ${ }^{1} \mathrm{H}$ NMR) as a pale yellow oil: TLC $R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.41 ;$ IR $\left(\mathrm{cm}^{-1}\right) 3056,2947,2863,1582,1478 ;{ }^{1} \mathrm{H}$ NMR δ 7.10-7.50 (m, 5H), 4.20-5.00 (m, 3H), 3.05-3.40(m, 2H), $2.40(\mathrm{~m}, 2 \mathrm{H}), 1.60-2.05(\mathrm{~m}$, $3 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR(major isomer) $\delta \mathrm{u} 136.5,83.7$,$33.9,32.3,32.2,30.2 ; \mathrm{d} 129.3,129.0,126.0,100.2,42.8,34.0$; HRMS calcd for
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{~S}\left(\mathrm{MH}^{+}\right) 247.1269$, obsd 247.1269.

2-(2,6-Dimethylhept-5-enyl)oxirane (15). To a stirred solution of aldehyde ($6.18 \mathrm{~g}, 40$ $\mathrm{mmol})$ and diiodomethane $(17.7 \mathrm{~g}, 66 \mathrm{mmol})$ in $\mathrm{THF}(150 \mathrm{~mL})$ was added dropwise methyl lithium (80 mmol) over 30 min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for 3 h . Then resulting mixture was quenched with ice water and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield epoxide $\mathbf{1 5}$ $(3.22 \mathrm{~g}, 48 \%$ yield $)$ as a colorless oil: $\operatorname{TLC} R_{f}(10 \% \mathrm{MTBE} / \mathrm{PE})=0.60 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2957$, 2091, 1643, 1457; ${ }^{1} \mathrm{H}$ NMR $\delta 5.05(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.90-1.05(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 131.3, 50.5, 47.5, 46.9, 39.8, 37.3, 36.9, 25.5, 25.4; d 124.5, 51.1, 51.0, 31.1, 30.6, $25.8,20.1,19.5,17.8$.

1-(4-Methoxyphenyl)-4,8-dimethylnon-7-en-2-ol (16). To a stirred solution of (p methoxyphenyl)magnesium bromide \{freshly prepared with $\operatorname{Mg}(2.42 \mathrm{~g}, 101 \mathrm{mmol}), p$ bromo anisole ($10.7 \mathrm{~g}, 57.5 \mathrm{mmol}$) and I_{2} in dry THF $\left.(30 \mathrm{~mL})\right\}$ in dry THF was added
$\mathrm{CuI}(730 \mathrm{mg}, 3.83 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$ and then the solution of epoxide $\mathbf{1 5}(3.2 \mathrm{~g}, 19 \mathrm{mmol})$ in dry THF $(5 \mathrm{~mL})$ was added dropwise over 5 \min. After stirring overnight at rt , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alkene $16(2.84 \mathrm{~g}, 54 \%$ yield, a 1:1 mixture of diastereomers) as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.42$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3417,2920$, 1512, 1247; ${ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 2.50-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.90$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 158.3, 131.3, 131.2, 130.6, 130.5, 44.3, 44.2, 43.9, $43.4,37.9,36.7,25.5,25.4 ;$ d 130.6, 130.4, 124.8,114.0, 70.8, 70.4, 55.3, 29.4, 29.0, 25.7, 20.3, 19.1, 17.8; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$276.2089, obsd 276.2084.

1-(4-Methoxyphenyl)-4-methyloct-7-en-2-ol (17). Ozone was passed through a stirred solution of alkene $\mathbf{1 6}(1.90 \mathrm{~g}, 6.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{MeOH}(15 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 8 min , the color of the reaction mixture changed to pale blue. N_{2} was then passed through to remove the excess ozone. $\mathrm{PPh}_{3}(3.8 \mathrm{~g})$ and NaHCO_{3} $(3.8 \mathrm{~g})$ were added at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for an additional hour. Then the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially,
water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield aldehyde ($1.58 \mathrm{~g}, 92 \%$ yield) as a colorless oil.

To the mixture of methyl triphenylphosphonium bromide ($4.3 \mathrm{~g}, 12 \mathrm{mmol}$) and $\mathrm{KO} t \mathrm{Bu}$ ($1.0 \mathrm{~g}, 8.9 \mathrm{mmol}$) was added dry THF $(15 \mathrm{~mL})$ at rt . After stirring at rt for 30 min , a solution of aldehyde ($758 \mathrm{mg}, 3.03 \mathrm{mmol}$) in dry THF (2 ml) was added and the reaction mixture was stirred for another 3 h at rt . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alkene 17 ($525 \mathrm{mg}, 70 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.44 ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2924,1640,1512,1460 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{q}, 2 \mathrm{H}), 3.85(\mathrm{bs}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 H), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.10-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u $158.3,130.5,130.4,114.3,114.2$, $44.3,44.1,43.9,43.4,37.0,35.7,31.3,31.2$; d 139.2, 139.1, 130.4, 114.0, 70.7, 70.4, 55.3, 29.2, 28.9, 20.2, 19.1; HRMS calcd for C16H24O2 (M+) 248.1776, obsd 248.1775.

1-(4-Methoxyphenyl)-4-methyloct-7-en-2-one (1f). PCC (1.32 g, 6.12 mmol) and $\mathrm{NaOAc}(1.31 \mathrm{~g})$ were suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt . After stirring for 5 min at
room temperature, alcohol $\mathbf{1 7}(505 \mathrm{mg}, 2.04 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at rt for $6 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added and the mixture was stirred vigorously for 1 h at rt . The mixture was filtered with celite, the filtrate was concentrated and the residue was chromatographed to yield ketone $\mathbf{1 f}(409 \mathrm{mg}, 82 \%$ yield) as a colorless oil: TLC $R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.46$; IR $\left(\mathrm{cm}^{-1}\right) 2927,1709,1609,1512 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{q}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~m} \mathrm{1H}), 1.20$ (m, 1H), $0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 208.5, 158.6, 126.3, 114.1, 49.7, 49.1, 35.9, 31.2; d 138.7, 130.5, 113.7, 55.2, 28.6, 19.6; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}(\mathrm{M}+)$ 246.1620, obsd 246.1623.

7a-(4-Methoxybenzyl)-6-methyl-3a,4,5,6,7,7a-hexahydro-3H-indazole (2f). Ketone $\mathbf{1 f}$ $(98 \mathrm{mg}, 0.40 \mathrm{mmol})$ and tosylhydrazine (1.02 equiv, $77 \mathrm{mg}, 0.41 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in dry toluene (2 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $345 \mathrm{mg}, 2.5$ mmol) was added and the reaction mixture was heated in a sealed vial at $120^{\circ} \mathrm{C}$ (oil bath) for 24 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield the diastereomeric mixture of
diazenes $\mathbf{2 f}\left(74 \mathrm{mg}, 72 \%\right.$ yield) as a pale yellow oil: TLC $R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.41$; IR $\left(\mathrm{cm}^{-1}\right)$ 2923, 2862, 1611, 1511, 1455; ${ }^{1} \mathrm{H}$ NMR $\delta 6.95-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~m}, 2 \mathrm{H})$, 4.25-4.40 (m, 1H), 3.50-3.80 (m, 4H), 2.50-3.00 (m, 2H), 1.20-2.00 (m, 6H), $0.90(\mathrm{~m}$, $3 \mathrm{H}), 0.45-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 158.4, 158.3, 129.4, 128.5, 92.4, 89.6, 82.8, 78.0, $43.3,41.1,40.0,38.9,30.3,29.1,28.7,22.0 ;$ d 131.4, 131.3, 113.7, 113.6, 55.2, 33.5, 33.4, 27.2, 27.0, 22.6, 22.4; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$259.1810, obsd 259.1804.

1-(4-Methoxybenzyl)-3-methylbicyclo[4.1.0]heptane (3f). A solution of diazenes $\mathbf{2 f}$ (53 $\mathrm{mg}, 0.21 \mathrm{mmol}$) in toluene was photolyzed for 24 h at rt in a Rayonet apparatus (350 nm). The reaction mixture was concentrated and chromatographed to yield the diastereomeric mixture of cyclopropanes $\mathbf{3 f}\left(38 \mathrm{mg}, 80 \%\right.$ yield) as a colorless oil: TLC $R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=$ 0.75; IR $\left(\mathrm{cm}^{-1}\right)$ 2913, 2849, 1611,1512, 1457; ${ }^{1} \mathrm{H}$ NMR $\delta 7.05-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 2.40-3.30 (m, 2H), 0.50-2.20(m, 12H), $0.25(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR δ u 157.8, 133.0, 132.7, $46.3,46.1,38.3,37.1,31.7,28.2,24.5,24.2,17.3,16.6$ d $130.1,130.0,129.8,129.3$, 113.6, 113.5.113.4, 55.3, 55.2, 29.5, 29.3, 27.0, 26.7, 22.5, 22.4, 21.8, 18.4, 16.5; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$230.1671, obsd 230.1673.

Ethyl 1-(but-3-enyl)-2-oxocyclohexanecarboxylate (18). The β-ketoester (5.16 g, 30.3 $\mathrm{mmol})$ was added, over a period of 10 min , to a stirred solution of t - $\mathrm{BuOK}(3.04 \mathrm{~g}, 30.5$ mmol) in dry DMSO $(100 \mathrm{~mL}) .{ }^{8}$ After $1.5 \mathrm{~h}, 4$-bromo-1-butene (1.5 equiv, $6.03 \mathrm{~g}, 44.5$ mmol) was added over a period of 5 min . After 20 h at rt , the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alkene 18 ($3.12 \mathrm{~g}, 46 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.56$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.75(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{q}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.55(\mathrm{~m}, 3 \mathrm{H}), 1.85-2.05(\mathrm{~m}$, $4 \mathrm{H}), 1.55-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 207.7, $171.8,114.6,61.1,60.5,41.0,36.1,33.8,28.5,27.6,22.5 ;$ d 138.0, 14.1.

Ethyl 2-(but-3-enyl)-1,7-dioxospiro[5, 4]decan-2-carboxylate (19). A solution of
ketone 18 ($3.12 \mathrm{~g}, 13.9 \mathrm{mmol}$), ethylene glycol ($4.45 \mathrm{~g}, 71.8 \mathrm{mmol}$), and ptoluenesulfonic acid ($173 \mathrm{mg}, 1.1 \mathrm{mmol}$) in benzene $(150 \mathrm{~mL})$ was heated under reflux for 12 h , using a Dean-Stark trap. Most of the solvent was then distilled off and the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and, sequentially, $\mathrm{NaHCO}_{3}(100$ $\mathrm{mL})$ and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated.

The residue was chromatographed to yield ketal 19 ($2.91 \mathrm{~g}, 78 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.61 ;$ IR $\left(\mathrm{cm}^{-1}\right) 1722,1451,1201,1093 ;{ }^{1} \mathrm{H}$ NMR $\delta 5.70$ $(\mathrm{m}, 1 \mathrm{H}), 4.85(\mathrm{q}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR δ u 173.9, 114.4, 111.1, 64.8, 64.6, 60.3, 54.2, 32.1, 30.4, 29.6, 28.9, 23.1, 20.7; d 138.5, 14.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$291.1572, obsd 291.1570.

2-(Hydroxymethyl)-2-(but-3-enyl)-1,7-dioxospiro[5, 4]decane (20). LiAlH_{4} (2.0 equiv, $422.6 \mathrm{mg}, 11.1 \mathrm{mmol}$) was added in five portions, over a period of 5 min , to a solution of ester $19(1.52 \mathrm{~g}, 5.65 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 0.5 h and at rt for 7 h . Excess LiAlH_{4} was destroyed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield alcohol 20 ($1.02 \mathrm{~g}, 80 \%$ yield) as a colorless oil: $\operatorname{TLC} R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.46$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 3538,1702,1451,1083$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{q}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $10 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{bs}, 1 \mathrm{H}), 1.85-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 4 \mathrm{H})$, 1.30-1.45 (m, 3H); ${ }^{13} \mathrm{C}$ NMR δ u 114.1,114.0, 65.0, 64.5, 64.1, 44.1, 30.1, 29.4, 28.7, 27.3, 23.2, 20.2; d 139.5; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$227.1647, obsd 227.1650.

2-(Benzyloxymethyl)-2-(but-3-enyl)-1,7-dioxospiro[5, 4]decane (21). To a suspension of $\mathrm{NaH}(60 \%, 185 \mathrm{mg}, 4.62 \mathrm{mmol})$ and TBAI ($136 \mathrm{mg}, 0.37 \mathrm{mmol}$) in THF $(8 \mathrm{~mL})$ was added a solution of alcohol $\mathbf{2 0}(805 \mathrm{mg}, 3.56 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. To this reaction mixture was added a solution of benzyl bromide ($715 \mathrm{mg}, 4.18 \mathrm{mmol}$) in DMF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at rt for 12 h . The reaction was quenched with $\mathrm{MeOH}(0.1 \mathrm{~mL})$. Then the reaction mixture was partitioned between EtOAc (90 mL) and, sequentially, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield benzyl ether 21 ($806 \mathrm{mg}, 72 \%$ yield) as a colorless oil: TLC R_{f} $(20 \% \mathrm{MTBE} / \mathrm{PE})=0.63 ;$ IR $\left(\mathrm{cm}^{-1}\right) 1717,1638,1451,1088 ;{ }^{1} \mathrm{H}$ NMR $\delta 7.10-7.35(\mathrm{~m}$, $5 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{q}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.65(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 138.9, 113.5, 112.3, 73.4, 71.8, 64.5, 44.9, 31.3, 31.2, 30.7, 28.6, 23.4, 20.4; d 140.3, 128.3, 127.8, 127.6; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$339.1936, obsd 339.1932.

2-(Benzyloxymethyl)-2-(but-3-enyl)cyclohexanone (1g). A solution of ketal 21 (1.42 g, $4.49 \mathrm{mmol})$ and p-toluenesulfonic acid ($74 \mathrm{mg}, 0.47 \mathrm{mmol}$) in acetone $/ \mathrm{H}_{2} \mathrm{O} 2: 1(15 \mathrm{~mL})$
was heated under reflux for 4 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield ketone $\mathbf{1 g}$ $(908 \mathrm{mg}, 74 \%$ yield $)$ as a colorless oil: $\operatorname{TLC} R_{f}(20 \% \mathrm{MTBE} / \mathrm{PE})=0.57$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 1702$, 1447, 1098; ${ }^{1} \mathrm{H}$ NMR $\delta 7.10-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{q}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 2 \mathrm{H}), 3.50$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.95(\mathrm{~m}$, $3 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 214.2, 138.4, 114.6, 73.3, 72.7, 52.6, 39.5, 35.2, 32.4, 28.1, 27.1, 20.8; d 138.5, 128.3, 127.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{MNa}^{+}\right)$ 327.1572, obsd 327.1586.

5a-(Benzyloxymethyl)-3a,4,5,5a,6,7,8,9-octahydro-3H-indeno[1-c]pyrazole (2g).

Ketone $\mathbf{1 g}(73 \mathrm{mg}, 0.27 \mathrm{mmol})$ and tosylhydrazine (1.03 equiv, $55 \mathrm{mg}, 0.29 \mathrm{mmol}$) were stirred in $\mathrm{MeOH}(2 \mathrm{~mL})$ at rt overnight. The MeOH was removed under reduced pressure, the crude hydrazone was redissolved in toluene $(2 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (6 equiv, $232 \mathrm{mg}, 1.68$ mmol) was added and the reaction mixture was heated in a sealed vial at $120^{\circ} \mathrm{C}$ (oil bath) for 24 h . After cooling to rt , the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and, sequentially, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to yield ($52 \mathrm{mg}, 68 \%$ yield) as a pale yellow oil: $\operatorname{TLC} R_{f}\left(5 \% \mathrm{MTBE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=0.50$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right) 2935,2859,1642,1452 ;{ }^{1} \mathrm{H}$

NMR $\delta 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 4.45-4.65(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{dd}, J=7.5,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J$ $=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~m}, 2 \mathrm{H})$, $0.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ u 139.1, 105.6, 84.5, 73.7, 73.4, 48.1, 36.3, 30.9, 29.2, 26.8, 23.5, 21.4; d 128.3, 127.3, 127.0, 37.0; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$285.1967, obsd 285.1957.

X-ray of 2a

References

1. List, B.; Lerner, R.A.; Barbas III, C.F. Org. Lett. 1999, 1, 59
2. Exner, K.; Heizmann, M.; Yang, F.; Kegel, M.; Keller, M.; Knothe, L.; Heinze, J.; Prinzbach, H. Eur. J. Org. Chem. 2005, 1311
3. Taber, D.F.; Nelson, C.G. J. Org. Chem. 2006, 71, 8973
4. Hanessian, S; Cooke, N.G.; DeHoff, B.; Sakito, Y. J. Am. Chem. Soc. 1990, 112, 5276
5. Cheng, W.; Kurth, M.J. J. Org. Chem. 2002, 13, 4387
6. Boyer, F.; Hanna, I. Eur. J. Org. Chem. 2006, 471
7. Ooi, T.; Ohmatsu, K.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 2410
8. Belotti, D.; Cossy, J.; Pete, J.P.; Portella, C. J. Org. Chem. 1986, 51, 4196

