The Role of Attractive van der Waals Forces in the Catalysis of Michael Addition by a Phenyl Decorated Uranyl Salophen Complex. Antonella Dalla Cort, Luigi Mandolini, ${ }^{*}$ and Luca Schiaffino

Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione, Università La Sapienza, Box 34 Roma 62, 00185 Roma, Italy. e-mail: luigi.mandolini@uniroma1.it

Supporting Information

INDEX

Figure 1S. Kinetic profiles for addition of 2-carboethohy-cyclopentanone to MVK. p. S2
Figure 2S. Spectrophotometric titration of compound 2b with compound 3. p. S3
Figure 3S. Spectrophotometric titration of compound $\mathbf{2 b}$ with compound $\mathbf{4}$. p. S4
Figure $4 \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR spectra of mixtures of $\mathbf{2 b}, \mathbf{3}$, and $\mathrm{Et}_{3} \mathrm{~N}$ in CDCl_{3}. p. 55
Figure 5 S . ${ }^{1} \mathrm{H}$ NMR spectra of mixtures of $\mathbf{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in CDCl_{3}. p. S6
Figure 6 S. ${ }^{1}$ H NMR spectrum of compound 4 . p. S7

Figure 1S. Time-concentration profiles for Michael addition of 2-carboethohy-cyclopentanone to MVK in CDCl_{3}, at $25{ }^{\circ} \mathrm{C}$. [MVK] $=0.10 \mathrm{M}$, [2-carboethohy-cyclopentanone] $=0.20 \mathrm{M}$, and $\left[\mathrm{Et}_{3} \mathrm{~N}\right]=5.0 \cdot 10^{-3} \mathrm{M}$. ($)[\mathbf{2 b}]=2.0 \cdot 10^{-3} \mathrm{M}$; (O) no metal catalyst. The points are experimental and the curves are drawn for clarity purposes only.

Figure 2S. Spectrophotometric titration of compound $\mathbf{2 b}$ with compound $\mathbf{3}$.

Figure 3S. Spectrophotometric titration of compound $\mathbf{2 b}$ with compound 4.
d) \qquad M -

a)

Figure 4S. Portions of ${ }^{1} \mathrm{H}$ NMR spectral regions of CDCl_{3} solutions of a) compound $\mathbf{2 b}$; b) $\mathbf{2 b}$ and 3; c) 2b, 3, and $E t_{3} \mathrm{~N}$; d) 2b and $E t_{3} \mathrm{~N}$. Concentration of $\mathbf{2 b}$ is always 5 mM ; concentrations of $\mathbf{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ are always 10 mM . The signals at 9.5-9.3 p.p.m. correspond to the resonances of protons on the imine carbon of $\mathbf{2 b},-\mathrm{C}(\mathrm{H})=\mathrm{N}-$; the signals at $4.4-4.1$ p.p.m. correspond to the resonances of protons of the first methylene groups of the alkoxy chains of $\mathbf{2 b},-\mathrm{O}-\mathrm{C}(\mathrm{H})_{2}-$. It is clearly seen that no changes are produced on the spectrum of $\mathbf{2 b}$ nor upon addition of methyl 1-oxoindane-2-carboxylate 3, neither upon addition of $\mathrm{Et}_{3} \mathrm{~N}$. Evident changes are instead observed when both the β-ketoester 3 and $\mathrm{Et}_{3} \mathrm{~N}$ are simultaneously present, suggesting that a complex is formed between uranyl-salophen catalyst $\mathbf{2 b}$ and the enolate of $\mathbf{3}$.
b)
a)

Figure 5S. Portions of ${ }^{1} \mathrm{H}$ NMR spectral regions of CDCl_{3} solutions of a) 0.011 M compound $\mathbf{3}$; b) 0.010 M compound $\mathbf{3}$ and $0.010 \mathrm{M} \mathrm{Et}_{3} \mathrm{~N}$. The two double doublets at $3.7-3.3$ p.p.m. correspond to the resonances of the protons of the methylene group of methyl 1-oxoindane-2-carboxylate $\mathbf{3}$, $\operatorname{Ar}-\mathrm{C}(\mathrm{H})_{2}-\mathrm{CH}$. Line broadening in spectrum (b) is due to faster racemisation of the neighbouring chiral carbon atom in the presence of the tertiary base. It is apparent that the β-ketoester is not deprotonated by $\mathrm{Et}_{3} \mathrm{~N}$, indicating that spectral changes in the spectrum (c) of Figure 4 S are due to the increased acidity of $\mathbf{3}$ upon complexation with the uranyl-salophen compound $\mathbf{2 b}$.

Figure 6S. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 at 200 MHz in CDCl_{3}). δ (p.p.m): 7.76 (d, 1H), 7.63 $(\mathrm{t}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{~d}, 1 \mathrm{H}), 2.68-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H})$, 2.12 (s, 3H).

