Construction of the Plukenetione-type Adamantane Core of Polycyclic Polyprenylated Acylphloroglucinols

Ryukichi Takagi,* Yuta Inoue, and Katsuo Ohkata
Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Table of Contents

General Methods S2
Characterization Data of $\gamma-3,11,12$, and 14-16 S2-S4
NMR Spectra of 6, 3, $\gamma-3,7-9,11-17,2$, and 1 S5-S60
X-Ray Crystal Structure Determination S61
ORTEP Drawings of $\mathbf{8}$ and $\mathbf{1 2}$ S62-S63

General Method

All reactions involving air- and moisture-sensitive reagents were carried out under $\mathrm{N}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, dimethyl sulfoxide (DMSO) and N, N-dimethylformamide (DMF) were distilled over CaH_{2} before use. Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled after refluxing over Nabenzophenone before use. Silica gel F_{254} TLC aluminum sheets were used for routine monitoring of reactions. Column chromatography was performed on silica gel (70-230 mesh, ASTM).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 and 125 MHz respectively. Internal references for ${ }^{1} \mathrm{H}$ NMR spectra were $0.0 \mathrm{ppm}\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ for $\mathrm{CDCl}_{3}, 3.30 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD}$, and 7.16 ppm for $\mathrm{C}_{6} \mathrm{D}_{6}$. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra were referenced to CDCl_{3} (77.0 ppm), $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm}$), and $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.0 ppm). MS were recorded under electron ionization (EI; 70eV).

4-Ethoxy-7-ethoxycarbonyl-1,3,6-trimethylbicyclo[3.3.1]non-3-en-2-one (γ-3). a diastereomer of $\gamma-3:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.86(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.60-$ 2.56 (m, 1 H), 2.45 (dt, $J=13.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25-2.18 (m, 2 H), 2.04 (ddd, $J=12.3,3.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.62 (dd, $J=12.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{dd}, J=13.9,6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; a diastereomer of $\gamma-3:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.20-4.12 (m, 1 H), 4.11-4.00 (m, 2 H), 3.97-3.90 (m, 1 H), $2.86(\mathrm{qd}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.59(\mathrm{~m}$, 1 H), 2.32 (d, $J=19.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (bs, 1 H), 1.85 (dd, $J=12.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.80 (dt, $J=12.8,2.4$ Hz, 1 H), 1.60-1.56 (m, 1 H), 1.55 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.27 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.20$ (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (s, 3 H); LR-EIMS m/z (\%): 57 (100), 69 (45), 83 (55), 97 (37), 154 (55), 194 (43), $297(27)\left[\mathrm{M}^{+}\right]$.

11

4-Ethoxy-9-hydroxy-7-(1'-methylethylidene)-1,5,6exo-trimethylbicyclo[3.3.1]non-3-en-2-one

(11). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{D}$) $\delta 3.91$ (dq, $J=10.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (dq, $J=10.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.61(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.27 (s, 3 H), 1.17 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.11 (s, 3 H); LR-EIMS m/z (\%): 77 (5), 83 (9), 107 (15), 121 (100), 205 (1), 232 (1), 233 (0.5) [$\left.\mathrm{M}^{+}-\mathrm{OEt}\right]$.

12
9-Hydroxy-1,5,6exo,10,10-pentamethyltricyclo[3.3.1.1 ${ }^{3.7}$]deca-2,4-dione (12). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.94(\mathrm{bs}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=2.5,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{qt}, J=7.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (dddt, $J=13.9,3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56-1.52 (m, 1 H), 1.34 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.11 (s, 3 H), 1.02 (s, 3 H), $1.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 210.3,209.7,79.4,75.5,54.8,52.0$, 48.5, 46.0, 40.1, 29.8, 26.5, 26.1, 18.6, 16.7, 16.4; LR-EIMS m/z (\%): 69 (36), 83 (100), 108 (46), 121 (17), 136 (46), 149 (23), 177 (17), 192 (24), 248 (34), 250 (0.5) [$\left.\mathrm{M}^{+}\right]$.

2-Benzoyloxy-4-ethoxy-1,5,6exo,10,10-pentamethyl-11-oxabicyclo[3.3.1.2 ${ }^{7.4}$]undec-2-en-9-one
(14). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.62-6.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~s}$, 1 H), 3.83 (dq, $J=9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dq, $J=9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (qt, $J=7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (dt, $J=13.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (dd, $J=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (bs, 1 H), 1.42 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 (s, 3 H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 211.2,165.8,157.7,134.5,131.8,130.6,129.7,107.6,101.9,78.4,64.6,53.4,52.4,47.2$,
44.7, 36.8, 32.5, 26.9, 18.4, 18.0, 15.6, 14.5; LR-EIMS m/z (\%): 77 (30), 105 (100), 122 (8), 136 (8), 149 (4), 177 (3), 192 (4), 221 (2), 248 (6), 312 (4), 398 (0.2) [$\left.\mathrm{M}^{+}\right]$.

3-Benzoyl-4-ethoxy-1,5,6exo,10,10-pentamethyl-11-oxabicyclo[3.3.1.2 ${ }^{7.4}$]undeca-2,9-dione (15). major isomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 8.08-8.03 (m, 2 H), 7.70-7.64 (m, 1 H), 7.56-7.49 (m, 2 H), 5.95 (s, 1 H), 3.75 (dq, $J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (dq, $J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dt, $J=14.8,1.8$ Hz, 1 H), 2.42 (qt, $J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (dd, $J=14.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.68-1.65 (m, 1 H), 1.52 (s, 3 H), 1.32 (s, 3 H), 1.14 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.12 (s, 3 H), 1.09 (s, 3 H), 0.91 (d, J = $7.4 \mathrm{~Hz}, 3 \mathrm{H}$); detectable signals: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 211.3, 169.6, 165.9, 151.3, 135.3, 135.2, 131.1, $130.9,130.4,130.0,128.9,119.6,77.0,64.9,59.5,57.4,54.8,50.2,44.9,41.3,38.8,32.2,30.8,27.3$, 17.2, 16.0, 14.9, 14.8; HR-EIMS m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+]$ 398.2093, found 398.2099.

16
4-Ethoxy-1,5,6exo,10,10-pentamethyl-11-oxabicyclo[3.3.1.2 ${ }^{7.4}$]undeca-2,9-dione (16). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.73$ (bq, $J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55(\mathrm{bq}, J=9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (d, $J=14.6$ Hz, 1 H), 2.77 (qt, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (ddd, $J=15.0,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1$ H), 1.86 (dd, $J=15.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.55 (ddd, $J=5.9,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (s, 3 H), 1.18 (s, 3 H), 1.16 (s, 3 H), 1.13 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (s, 3 H), 0.87 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 213.5,207.4,100.0,76.4,61.3,58.7$ (x2), 51.9, 44.5, 40.7, 38.5, 29.0, 28.1, 18.3, 15.7, 15.4, 15.1; LR-EIMS m/z (\%): 69 (100), 83 (87), 153 (67), 182 (64), 219 (40), 248 (31), 276 (17), 294 (10) $\left[\mathrm{M}^{+}\right]$.

(
(

969
으 $\quad \infty-$ 199

20

7TOG
T

T

$81 \div 01$

781

(

$61961-$
18.261
$99 \angle Z 1$
86.6 Z
81. OCl
96 tEL
87^{68}
$85^{\circ} 081$
-

$\left(\mathrm{CD}_{3} \mathrm{OD}\right.$

$218 Z=$
$2 L E Z=$
$28^{\circ} 1 \downarrow$
10.6 t
90.6 t
2895
80.99
90.69

99 1.8

3
10.821
78.871
8

86281
96 tcl
\qquad -
—

∞

X-ray Crystal Structure Determination. A crystal suitable for X-ray structure determination was mount on a imaging plate equipped with graphitemonochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Unit-cell parameters were determined by autoindexing several images in each data set separately with the DENZO program. ${ }^{1}$ For each data set, rotation images were collected in 3° increments with a total rotation of 180° about ϕ (60 frames). Data were processed by using the SCALEPACK program. ${ }^{1}$ The structure were solved by a direct method and refined by full-matrix least-squares methods with the TeXsan (Rigaku) program. ${ }^{2}$ Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Center; 8: CCDC-693403; 12: CCDC-693404.

REFERENCES:

(1) DENZO and SCALEPACK: Processing of X-ray Diffraction Data Collected in Oscillation Mode; Z. Otwinowsky and W. Minor, Methods Enzymol., 1997, 276. The program is available from Mac Science Co.
(2) TeXsan: Single-Crystal Analysis Software, version 1.9, Molecular Structure Corporation, TheWoodlands, Texas 77381, USA, 1998. The program is available from Mac Science Co.

X-Ray Structure Report for 8

ORETP drawing of $\mathbf{8}$ showing the thermal ellipsoids at the 30% probability level.

Crystal data: Crystal data: monoclinic system, space group C2/c (\#15), $a=27.9040(6) \AA, b=$ $8.0610(2) \AA, c=15.3390(4) \AA, V=3348.5(1) \AA^{3}, Z=8, \rho_{\text {calc }}=1.120 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1248, R=0.133$ ($R_{\mathrm{w}}=0.324$) for 3571 reflections out of 4079 collected (181 parameters) with $I>3$ (I). Goodness of fit $=1.43$.

X-Ray Structure Report for 12

ORETP drawing of $\mathbf{1 2}$ showing the thermal ellipsoids at the 30% probability level.

Crystal data: Crystal data: triclinic system, space group $\mathrm{P} \overline{1}$ (\#2), $a=8.3450(4) \AA, b=13.1120(5) \AA, c$ $=14.2230(6) \AA, V=1359.1(1) \AA^{3}, Z=4, \rho_{\text {calc }}=1.223 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=544, R=0.183\left(R_{\mathrm{w}}=0.416\right)$ for 5275 reflections out of 5569 collected (325 parameters) with $I>3(I)$. Goodness of fit $=1.88$.

