Supporting Information

Ultra-Large Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-*b*-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander

Yonghui Deng, Jia Liu, Chong Liu, Dong Gu, Zhenkun Sun, Jing Wei, Junyong Zhang, Lijuan Zhang, Bo Tu and Dongyuan Zhao*

Contribution from Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, People's Republic of China. E-mail: dyzhao@fudan.edu.cn

Figure S1. SAXS patterns of (a) LP-FDU-18-25-450 and (b) LP-FDU-18-35-450 prepared by adding excessive h-PS₄₉ (25 and 35 wt%, respectively) after pyrolysis at 450 °C in N₂.

Figure S2. TEM images of LP-FDU-18-0-800 sample prepared without adding h-PS₄₉ viewed from (a) 100, (b) 110 and (c) 211 directions. The insets show the corresponding FFT diffractometers.

Figure S3. TEM images of FDU-18-20-800 sample prepared by adding 20 wt% h-PS₄₉ as pore expander after carbonization at 800 °C under N₂, indicating the existence of structure defects.

Figure S4. (A) N₂ isotherms and (B) pore size distribution of (a) LP-FDU-18-0-450, (b) LP- FDU-18-2-450, (c) LP-FDU-18-5-450, (d) LP-FDU-18-10-450 and (e) LP-FDU-18-20-450. The N₂ isotherms of b, c, d and e are offset vertically by 100, 300, 500 and 700 cm³/g, respectively. The inset shows the pore size changes of the LP-FDU-18-450 samples upon the increase of h-PS₄₉ addition amount.

Figure S5. (A) N_2 isotherms and (B) pore size distribution of (a) LP-FDU-18-25-800, (b) LP-FDU-18-35-800 prepared by adding excessive *h*-PS₄₉ (25 and 35 wt%, respectively) after carbonization at 800 °C under N_2 . The N_2 isotherms of b are offset vertically by 300 cm³/g, respectively.

Figure S6. TGA and DTG curves of (a) phenolic formaldehyde (PF), (b) as-made LP-FDU-18 without addition of *h*-PS₄₉, and (c) as-made LP-FDU-18-20 with 20 wt% addition of *h*-PS₄₉. The pyrolysis processes were conducted in N₂ with a heating rate of 5 °C /min.

Figure S7. Raman spectra of LP-FDU-18-20-800 prepared by adding 20 wt% h-PS₄₉ after carbonization at 800 °C under N₂, showing G band at 1595 cm⁻¹ and D band at 1327 cm⁻¹. It suggests that the obtained ordered mesoporous carbons have a low degree of graphitization.

Figure S8. FT-IR spectra of as-made LP-FDU-18-20 (a), LP-FDU-18-20-450 (b) and LP-FDU-18-20-800 (c). In the curve (a), the strong and broad band at 3400 cm⁻¹ is associated with the phenolic –OH groups, and the bands at 1100 and 2800 cm⁻¹ are assigned to PEO-*b*-PS and *h*-PS. The disappearance of characteristic bands at 1109 cm⁻¹ associated with PEO block and at 2850-2930 cm⁻¹ assigned to PS block in curve (b) suggests the decomposition of PEO-*b*-PS template and *h*-PS by pyrolysis in N₂. For curve (c), no absorption was observed, suggesting a carbon framework by pyrolysis at higher temperature.