Supporting Information

For

H₂O₂-Reactivity of Copper(II) Complexes Supported by TPA Ligands with 6-Phenyl Substituents.

Atsushi Kunishita,[‡] Minoru Kubo,[¶] Hirohito Ishimaru,[¶] Takashi Ogura,[¶] Hideki Sugimoto,[‡] and Shinobu Itoh^{*,†,‡,∫}

[†]Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871,

Japan

*Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

⁵Institute for Molecular Science, National Institutes of Natural Sciences,

38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan

[¶]Research Institute of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan

*Corresponding Author: shinobu@mls.eng.osaka-u.ac.jp

Contents

- Figure S1. ESR spectrum of TPACu and its computer simulation spectrum.
- Figure S2. ESR spectrum of 1 and its computer simulation spectrum.
- Figure S3. ESR spectrum of 2 and its computer simulation spectrum.
- Figure S4. ESR spectrum of 3 and its computer simulation spectrum.
- Figure S5. Cyclic voltammogram of TPACu.
- Figure S6. Cyclic voltammogram of 1.
- Figure S7. Cyclic voltammogram of 2.
- Figure S8. Cyclic voltammogram of 3.
- Figure S9. ESR spectrum of 1-OOH and its computer simulation spectrum.
- Figure S10. UV-vis of 2-oxo.
- Figure S11. ESI-MS and elemental analysis data of 3^{red} .

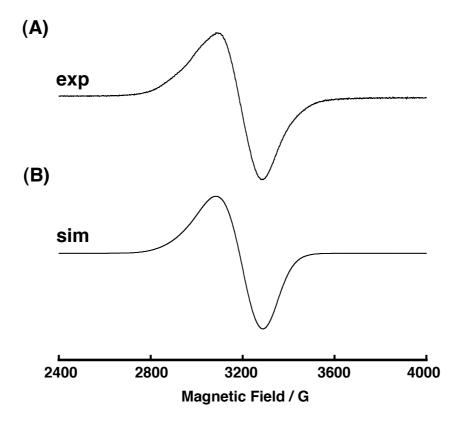


Figure S1. (A) ESR spectrum of CuTPA in CH₃CN at -145 °C and (B) a computer simulation spectrum with ESR parameters, $g_1 = 2.170$, $g_2 = 2.068$, $g_3 = 2.145$, $A_1 = 100$ G, $A_2 = 30$ G, $A_3 = 30$ G, $W_1 = 200$ G, $W_2 = 100$ G, $W_3 = 130$ G.

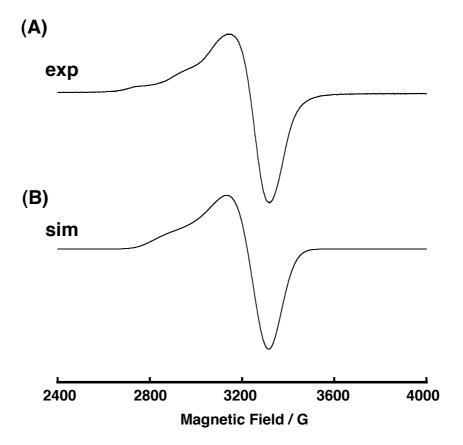


Figure S2. (A) ESR spectrum of 1 in CH₃CN at -145 °C and (B) a computer simulation spectrum with ESR parameters, $g_1 = 2.235$, $g_2 = 2.043$, $g_3 = 2.090$, $A_1 = 100$ G, $A_2 = 5$ G, $A_3 = 30$ G, $W_1 = 130$ G, $W_2 = 110$ G, $W_3 = 150$ G.

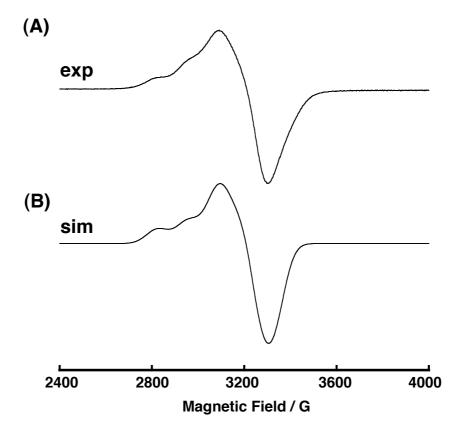


Figure S3. (A) ESR spectrum of 2 in CH₃CN at -145 °C and (B) a computer simulation spectrum with ESR parameters, $g_1 = 2.230$, $g_2 = 2.040$, $g_3 = 2.140$, $A_1 = 130$ G, $A_2 = 18$ G, $A_3 = 18$ G, $W_1 = 96$ G, $W_2 = 90$ G, $W_3 = 100$ G

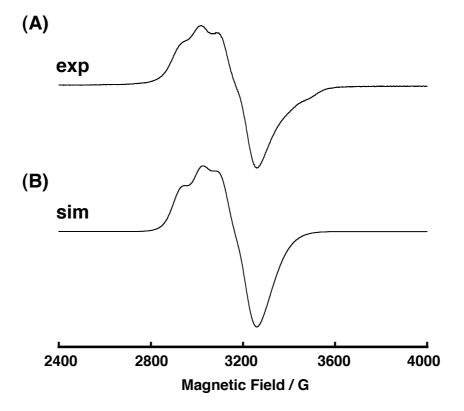


Figure S4. (A) ESR spectrum of 3 in CH₃CN at -144 °C and (B) a computer simulation spectrum with ESR parameters, $g_1 = 2.185$, $g_2 = 2.110$, $g_3 = 2.120$, $A_1 = 90$ G, $A_2 = 2$ G, $A_3 = 22$ G, $W_1 = 58$ G, $W_2 = 160$ G, $W_3 = 230$ G

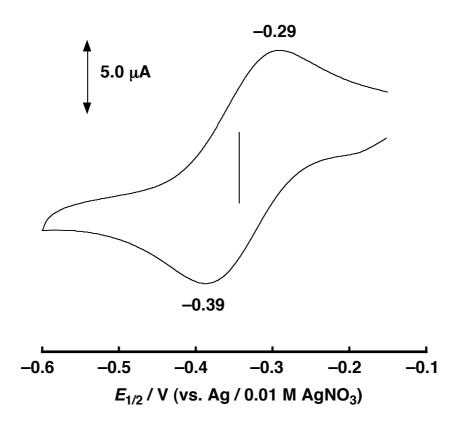


Figure S5. Cyclic voltammogram of CuTPA (2.0 x 10^{-3} M) in CH₃CN containing 0.1 M TBAP; working electrode Pt, counter electrode Pt, pseudo-reference electrode Ag / 0.01 M AgNO₃, scan rate 50 mV/s.

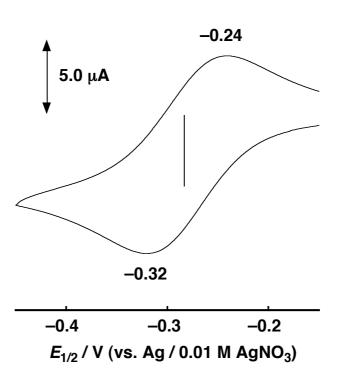


Figure S6. Cyclic voltammogram of 1 (2.0 x 10^{-3} M) in CH₃CN containing 0.1 M TBAP; working electrode Pt, counter electrode Pt, pseudo-reference electrode Ag / 0.01 M AgNO₃, scan rate 50 mV/s.

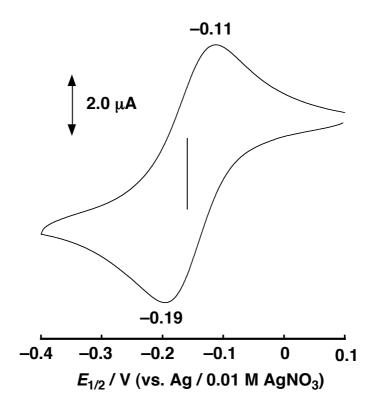


Figure S7. Cyclic voltammogram of 2 (2.0 x 10^{-3} M) in CH₃CN containing 0.1 M TBAP; working electrode Pt, counter electrode Pt, pseudo-reference electrode Ag / 0.01 M AgNO₃, scan rate 50 mV/s.

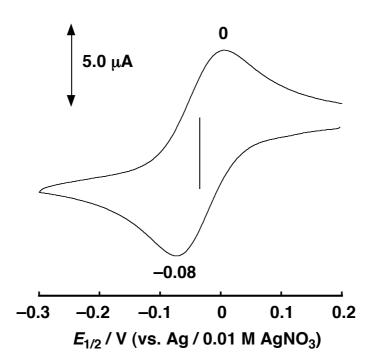


Figure S8. Cyclic voltammogram of 3 (2.0×10^{-3} M) in CH₃CN containing 0.1 M TBAP; working electrode Pt, counter electrode Pt, pseudo-reference electrode Ag / 0.01 M AgNO₃, scan rate 50 mV/s.

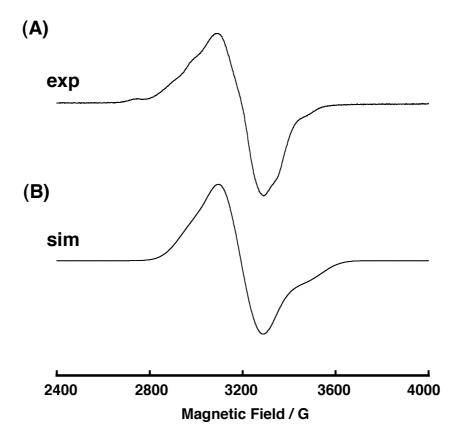
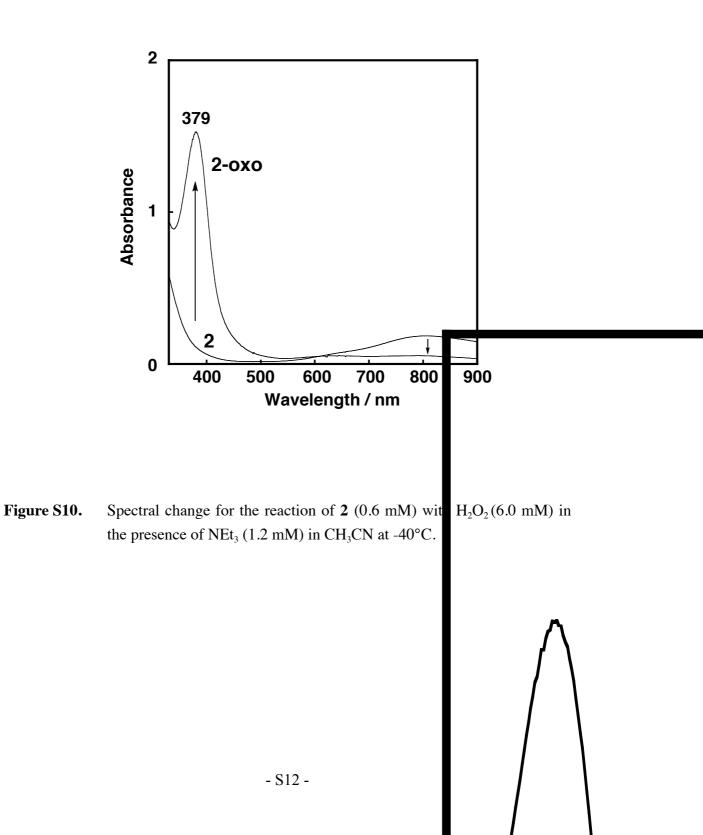
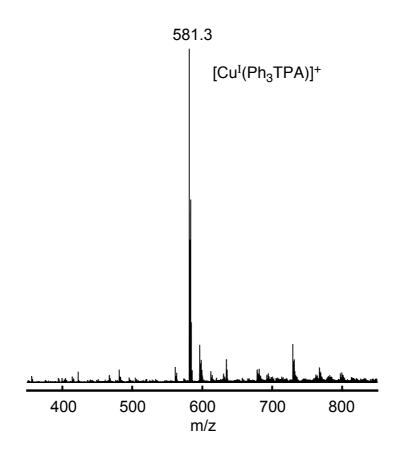




Figure S9. ESR spectrum (A) **1–OOH** in CH₃CN at -144 °C and (B) the computer simulation spectrum with the parameter $g_1 = 2.075$, $g_2 = 2.145$, $g_3 = 2.065$, $A_1 = 166$ G, $A_2 = 20$ G, and $A_3 = 15$ G $W_1 = 150$ G, $W_2 = 100$ G, $W_3 = 95$ G

Anal. Calcd for $\mathbf{3^{red}} \cdot 0.5 \text{ H}_2\text{O}(\text{C}_{36}\text{H}_{31}\text{Cu}_1\text{Cl}_1\text{N}_4\text{O}_{4.5})$: C, 62.61; H, 4.52; N, 8.11 Found: C, 62.64; H, 4.36; N, 8.09

Figure S11. ESI-MS of 3^{red} generated by the reaction of 3 and H_2O_2 in CH₃CN and elemental analysis data of 3^{red} .