Supporting information

I. Crystallographic Information File (CIF) for $\left[\left(\mathrm{Ni}_{2}(\mathrm{~L}) \mathrm{ClO}_{4}\right)_{2}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\right]^{\mathrm{X}+}$

Table S1. Crystal Data and Structure Refinement for $\left[\left(\left(\mu_{2}-\mathrm{ClO}_{4}\right)\left(\mathrm{Ni}_{2}(\mathrm{~L})\right)_{2}\left(\mu_{2}-\mathrm{Cl}\right)\right]_{2}{ }^{\mathrm{X}+}\right.$

Identification code	ni23ns
Empirical formula	$\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{Cl}_{16} \mathrm{~N}_{8} \mathrm{Ni}_{4} \mathrm{O}_{71} \mathrm{~S}_{4}$
Formula weight	2837.5
Temperature	150(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=13.239(2) \AA \quad \alpha=90.431(2)^{\circ}$
	$\mathrm{b}=13.607(2) \AA \quad \beta=111.058(2)^{\circ}$
	$\mathrm{c}=14.751(2) \AA \AA^{\circ} \quad \gamma=90.606(2)^{\circ}$
Volume	2479.5(6) A
Z	1
Density (calculated)	$1.912 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.385 \mathrm{~mm}^{-1}$
F(000)	1460
Crystal size	$0.28 \times 0.16 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.78 to 27.51°
Index ranges	$-16<=\mathrm{h}<=16,-17<=\mathrm{k}<=17,-13<=1<=19$
Reflections collected	15639
Independent reflections	$10919\left[\mathrm{R}_{\text {int }}=0.034\right]$
Completeness to theta $=24.96^{\circ}$	95.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.720
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	10919 / 278 / 715
Goodness-of-fit on F^{2}	1.02
Final R indicies [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0588, \mathrm{wR} 2=0.136$
R indices (all data)	$\mathrm{R} 1=0.116, \mathrm{wR} 2=0.164$
Largest diff. peak and hole	1.38 and -0.72 e. \AA^{-3}

II. Coordinates $[\AA]$ of the model for $\mathrm{Ni}_{2}(\mathrm{~L} 1)(\mathrm{MeCN})_{2}$ used in the DFT calculations.

Ni	0.000000	0.000000	0.000000
S	2.368099	0.000000	-0.078061
C	2.765916	-1.105289	1.291375
C	3.879740	-0.812380	2.128325
C	4.637286	0.443526	2.068501
C	4.353974	-1.813585	3.024567
C	3.742532	-3.089635	3.125486
C	4.295651	-4.150961	4.047126
C	2.610070	-3.333340	2.305667
C	2.095585	-2.358891	1.401008
C	0.881407	-2.742890	0.657399
N	-0.023098	-1.981064	0.085618
C	-1.185520	-2.617675	-0.594060
C	-2.539433	-2.052973	-0.116939
C	-2.829665	-0.595803	-0.529584
N	-1.938662	0.394643	0.138612
H	5.655392	0.380880	2.506374
H	5.237383	-1.592016	3.648995
H	3.601197	-5.010595	4.159481
H	5.258935	-4.554722	3.649251
H	4.518224	-3.744766	5.060358
H	2.108874	-4.314987	2.371191
H	0.701241	-3.839861	0.626732
H	-1.065228	-2.452064	-1.690324
H	-1.151949	-3.718925	-0.424098
H	-2.642189	-2.172334	0.986624
H	-3.336416	-2.686425	-0.571323
H	-2.696543	-0.475893	-1.630748
H	-3.891594	-0.343987	-0.301462
S	0.515289	2.297736	-0.080997
Ni	2.605902	2.081157	0.794978
N	4.287469	1.608784	1.556825
C	-2.474732	1.438030	0.729621
C	-0.461018	2.947072	1.292102
N	2.508528	3.858747	1.477043
C	5.359768	2.654032	1.483496
C	-1.824138	2.552355	1.443080
H	-3.585692	1.488492	0.739868
C	0.071969	3.999011	2.086755
C	1.455278	4.477570	1.974038
C	3.771537	4.655161	1.369724
C	4.943757	3.992475	2.102968
H	5.604704	2.788480	0.401549
H	6.279503	2.267124	1.978209
C	-2.646517	3.275321	2.354617
C	-0.787244	4.691516	2.989341
H	1.615893	5.508576	2.352705
H	4.002053	4.761150	0.281899
H	3.593125	5.680566	1.765622
H	4.710561	3.870393	3.186054
H	5.818395	4.680837	2.044644
C	-2.155060	4.353725	3.138114
H	-3.708236	2.987706	2.453518
H	-0.375480	5.527660	3.580798
C	-3.065682	5.123920	4.065049
H	-2.498807	5.801134	4.738579
H	-3.777635	5.757776	3.481633
H	-3.687033	4.445719	4.693526
N	0.000000	0.000000	-2.099999
C	0.046552	0.117859	-3.276803

C	0.119352	0.257949	-4.724206
H	-0.332641	-0.625032	-5.232856
H	1.179685	0.342938	-5.057779
H	-0.425997	1.169905	-5.061243
N	0.023736	0.001550	2.099865
C	-0.148528	-0.183277	3.256048
C	-0.366953	-0.413751	4.679351
H	0.272934	0.258413	5.295998
H	-0.125314	-1.467114	4.951066
H	-1.430928	-0.225550	4.952521

III. The absolute sign of the nuclear quadrupole splitting

The absolute sign of the quadrupole interaction can be determined for the strongly coupled MeCN nitrogen atoms. Consider the intensity distribution of the signals in the ENDOR spectra recorded at the low-field $\left(g_{\text {eff }}=2.210\right)$ edge of the EPR spectrum, cf. figure 5 . Without hyperfine semi-selection, four bands with about equal intensity are expected, as is shown in the simulation of figure 5 . However, when the energy level diagram for an $S=1 / 2$ system coupled to a nitrogen $\left.\left(\mathrm{I}^{14} \mathrm{~N}\right)=1\right)$ with dominant hyperfine interaction is considered (see figure S1), only the ($\left.\Delta \mathrm{M}_{\mathrm{S}}= \pm 1, \mathrm{M}_{\mathrm{I}}=+1\right)$ EPR transition is resonant at the low-field edge of the EPR spectrum. Therefore, in the ENDOR spectrum, the transitions $\mathrm{M}_{\mathrm{I}}=0 \leftrightarrow+1$, indicated in red in figure $S 1$ will dominate and the transitions $\mathrm{M}_{\mathrm{I}}=0 \leftrightarrow-1$ will be attenuated. This is the case for the two innermost signals in the ENDOR spectrum, and such a pattern can only be reproduced by taking a positive value for P_{x} in Figure S1. If P_{x} is negative, the outermost two signals will dominate the ENDOR spectrum. By the same arguments, the transitions $\mathrm{M}_{\mathrm{I}}=0 \leftrightarrow-1$ will dominate the ENDOR spectrum for the magnetic field set near g_{z} (see Figure S 1). Since the ENDOR spectrum at $g_{\text {eff }}=2.037$ displays four signals for which the innermost two dominate the spectrum, P_{z} has to be negative.

B || $g_{\text {x }}$

B \| g_{z}

Figure S1. Energy level diagram, including electron and nuclear Zeeman, hyperfine and quadrupole interactions (not to scale) of the electron and nitrogen nuclear spin levels at lowfield $\left(B \| g_{x}\right)$ and high-field ($B \| g_{z}$) edge of the EPR spectrum. The vertical arrow indicates the microwave transition. At both edges, hyperfine-(semi)selection occurs and the two innermost signals in the ENDOR spectrum become dominant only for $P_{x}>0 \mathrm{MHz}$ and $P_{z}<0$ MHz .

IV. Hyperfine tensor for a mixed $3 d_{z^{2}}, 3 d_{x y}$ SOMO

IV.1. Definitions

The SOMO as found in $\left[\mathrm{Ni}_{2} \mathrm{~L}(\mathrm{MeCN})_{2}\right]^{3+}$ is given by

$$
\begin{equation*}
|\Psi\rangle=A|x y\rangle+E\left|z^{2}\right\rangle \tag{1.1}
\end{equation*}
$$

where A and E are the wavefunction coefficients. A^{2} and E^{2} are spin densities in the xy and z^{2} orbitals.

General Slater orbital $(n=3)$ expressions for the $3 d_{x y}$ and $3 d_{z^{2}}$ orbitals

$$
\begin{align*}
& |x y\rangle=N_{x y} x y e^{-\zeta \zeta / n a_{0}}=2 \sqrt{\frac{\left(\zeta / a_{0}\right)^{7}}{2 \pi(3)^{8}}} x y e^{-\zeta r / n a_{0}} \tag{1.2}\\
& \left|z^{2}\right\rangle=N_{z^{2}}\left(3 z^{2}-r^{2}\right) e^{-5 r / n a_{0}}=\sqrt{\frac{\left(5 / a_{0}\right)^{7}}{2 \pi(3)^{9}}}\left(3 z^{2}-r^{2}\right) e^{-5 r / n a_{0}} \tag{1.3}
\end{align*}
$$

where ζ is the Slater exponent and $N_{x y}$ and $N_{z^{2}}$ are the normalization factors.

The anisotropic hyperfine interaction (see, e.g. Carrington, A. and McLachlan, A.D., "Introduction to magnetic resonance", Harper and Row, New York, 1967) is given by

$$
\overrightarrow{\vec{A}}(\vec{r})=-\gamma_{e} \gamma_{N}\left\{\begin{array}{ccc}
r^{2}-3 x^{2} & -3 x y & -3 x z \tag{1.4}\\
-3 x y & r^{2}-3 y^{2} & -3 y z \\
-3 x z & -3 y z & r^{2}-3 z^{2}
\end{array}\right\} \frac{1}{r^{5}}
$$

where γ_{e} and γ_{N} are the electronic and nuclear gyromagnetic ratios. Note that the trace of (1.4) is zero.

The hyperfine tensor of the spin Hamiltonian is given by

$$
\begin{equation*}
\overrightarrow{\vec{A}}=\langle\Psi| \overrightarrow{\vec{A}}(\vec{r})|\Psi\rangle \tag{1.5}
\end{equation*}
$$

IV.2. Hyperfine tensor for a pure $3 d_{z^{2}}$ SOMO ($\boldsymbol{A}=\mathbf{0}$)

For a pure $3 d_{z^{2}}$ SOMO, equation (1.5) becomes

$$
\begin{equation*}
\overrightarrow{\vec{A}}=E^{2}\left\langle z^{2}\right| \overrightarrow{\vec{A}}(\vec{r})\left|z^{2}\right\rangle \tag{2.1}
\end{equation*}
$$

The off-diagonal elements are uneven functions of x, y and/or z. Since the $3 d_{z^{2}}$ orbital (1.3) is an even function of x, y and z, all off diagonal elements evaluate to 0 . The $A_{z z}$ term evaluates to

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} E^{2} N_{z^{2}}^{2}\left\langle\left(3 z^{2}-r^{2}\right)^{2} e^{-2 \zeta r / n a_{0}} \frac{r^{2}-3 z^{2}}{r^{5}}\right\rangle \tag{2.2}
\end{equation*}
$$

The integral can be evaluated after transformation into spherical coordinates

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} E^{2} N_{z^{2}}^{2} \int d r r^{3} e^{-2 \delta r / n a_{0}} \int \sin \theta d \theta \int d \varphi\left(3 \cos ^{2} \theta-1\right)^{2}\left(1-3 \cos ^{2} \theta\right) \tag{2.3}
\end{equation*}
$$

All three integrals are trivial. The φ integration gives 2π. The θ integral can be rewritten as

$$
\begin{equation*}
\int_{-1}^{1} d x\left(1-3 x^{2}\right)^{3}=\frac{-96}{105} \tag{2.4}
\end{equation*}
$$

The r integral evaluates to

$$
\begin{equation*}
\int d r r^{3} e^{-2 \zeta \zeta / n a_{0}}=-\left(\frac{n a_{0}}{2}\right)^{3} \frac{\partial^{3}}{\partial \zeta^{3}} \int d r e^{-2 \zeta r / n a_{0}}=-\left(\frac{n a_{0}}{2}\right)^{4} \frac{\partial^{3}}{\partial \zeta^{3}}\left(\frac{1}{\zeta}\right)=6\left(\frac{n a_{0}}{2 \zeta}\right)^{4} \equiv P_{r} \tag{2.5}
\end{equation*}
$$

where the r integral is abbreviated as P_{r} to save space in the coming formulas. Substitution of the integrals into (1.8) gives

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} E^{2} \frac{\left(\zeta / a_{0}\right)^{7}}{2 \pi(3)^{9}} P_{r} 2 \pi \frac{-96}{105}=\gamma_{e} \gamma_{N} E^{2} P_{r} \frac{\left(\zeta / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105} \tag{2.6}
\end{equation*}
$$

The $A_{x x}$ and $A_{y y}$ elements can in principle be calculated similarly. However, it is known that the trace of the anisotropic tensor (1.4) is $0\left(A_{x x}+A_{y y}+A_{z z}=0\right)$ and it is trivial to see that the $A_{x x}$ and $A_{y y}$ terms give exactly the same integral. Thus, $A_{x x}=A_{y y}=-1 / 2 A_{z z}$. The total hyperfine tensor for a pure $3 d_{z^{2}}$ SOMO becomes

$$
\overrightarrow{\vec{A}}=\gamma_{e} \gamma_{N} E^{2} P_{r} \frac{\left(5 a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105}\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \tag{2.7}\\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The tensor is axial and colinear with the $x y z$ axes of the set of d orbitals.

IV.3. Hyperfine tensor for a pure $3 d_{x y}$ SOMO ($\boldsymbol{E}=\mathbf{0}$)

Now we derive the hyperfine tensor in the case of a pure $3 d_{x y}$ orbital. Equation (1.5) evaluates to

$$
\begin{equation*}
\overrightarrow{\vec{A}}=A^{2}\langle x y| \overrightarrow{\vec{A}}(\vec{r})|x y\rangle \tag{3.1}
\end{equation*}
$$

The off diagonal elements are again zero, because the integrand is an uneven function of x, y and/or z. The $A_{z z}$ element becomes

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} A^{2} N_{x y}^{2}\left\langle x^{2} y^{2} e^{-2 \zeta / n a_{0}} \frac{r^{2}-3 z^{2}}{r^{5}}\right\rangle \tag{3.2}
\end{equation*}
$$

Transformation into spherical coordinates leads to

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} A^{2} N_{x y}^{2} \int d r r^{3} e^{-22 \zeta / / n a_{0}} \int \sin \theta d \theta \int d \varphi \sin ^{4} \theta \sin ^{2} \varphi \cos ^{2} \varphi\left(1-3 \cos ^{2} \theta\right) \tag{3.3}
\end{equation*}
$$

The r integral is equal to (2.5) and the φ integral evaluates as

$$
\begin{equation*}
\int_{0}^{2 \pi} d \varphi \sin ^{2} \varphi \cos ^{2} \varphi=\frac{\pi}{4} \tag{3.4}
\end{equation*}
$$

The θ integral simplifies to

$$
\begin{equation*}
\int_{-1}^{1} d x\left(1-x^{2}\right)^{2}\left(1-3 x^{2}\right)=\frac{64}{105} \tag{3.5}
\end{equation*}
$$

Substitution of the integrals into (3.3) followed by normalization gives

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} A^{2} 4 \frac{\left(5 / a_{0}\right)^{7}}{2 \pi(3)^{8}} P_{r} \frac{16 \pi}{105}=-\gamma_{e} \gamma_{N} A^{2} \frac{\left(\zeta / a_{0}\right)^{7}}{(3)^{8}} P_{r} \frac{32}{105} \tag{3.6}
\end{equation*}
$$

Note that except for the - sign, the expression (3.6) equals (2.6). The $A_{x x}$ and $A_{y y}$ elements are again either evaluated similarly, or by making use of the tracelessness of (1.4). Thus, $A_{x x}=A_{y y}$ $=-1 / 2 \mathrm{~A}_{z z}$. The total hyperfine tensor for a pure $3 d_{x y}$ SOMO is

$$
\overrightarrow{\vec{A}}=-\gamma_{e} \gamma_{N} A^{2} P_{r} \frac{\left(\zeta / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105}\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \tag{3.7}\\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The expressions (2.7) and (3.7) only differ in sign, and the coefficients A^{2} and E^{2}. The tensor is again axial and colinear with the $x y z$ axes of the set of d orbitals.

IV.4. Hyperfine tensor for mixed $3 d_{z^{2}}, 3 d_{x y}$ SOMO

Following the same procedure again and using (1.1) as the SOMO, equation (1.5) becomes

$$
\begin{equation*}
\overrightarrow{\vec{A}}=E^{2}\left\langle z^{2}\right| \overrightarrow{\vec{A}}(\vec{r})\left|z^{2}\right\rangle+A^{2}\langle x y| \overrightarrow{\vec{A}}(\vec{r})|x y\rangle+2 A E\langle x y| \overrightarrow{\vec{A}}(\vec{r})\left|z^{2}\right\rangle \tag{4.1}
\end{equation*}
$$

The first two terms have been evaluated in sections 2 and 3. The cross term $2 A E\langle x y| \vec{A}(\vec{r})\left|z^{2}\right\rangle$ now has to be evaluated. The cross term only contributes to the $A_{x y}$ element of (1.4), since all other elements give an integrand that is uneven with respect to either x, y or z. The $A_{x y}$ element becomes

$$
\begin{equation*}
A_{z z}=-\gamma_{e} \gamma_{N} 2 A E N_{x y} N_{z^{2}}\left\langle x y\left(3 z^{2}-r^{2}\right) e^{-2 \zeta / n a_{0}} \frac{-3 x y}{r^{5}}\right\rangle \tag{4.2}
\end{equation*}
$$

Transformation into spherical coordinates gives

$$
\begin{align*}
A_{z z} & =-\gamma_{e} \gamma_{N} 2 A E N_{x y} N_{z^{2}} \int d r r^{3} e^{-2 t r / n a_{0}} \int \sin \theta d \theta \int d \varphi(-3) \sin ^{4} \theta \sin ^{2} \varphi \cos ^{2} \varphi\left(3 \cos ^{2} \theta-1\right) \\
& =\gamma_{e} \gamma_{N} 6 A E N_{x y} N_{z^{2}} P_{r} \int \sin \theta d \theta \int d \varphi \sin ^{4} \theta \sin ^{2} \varphi \cos ^{2} \varphi\left(3 \cos ^{2} \theta-1\right) \tag{4.3}
\end{align*}
$$

The θ and φ integrals equal (3.4) and minus (3.5). Thus,

$$
\begin{align*}
A_{z z} & =\gamma_{e} \gamma_{N} 6 A E N_{x y} N_{z^{2}} P_{r} \frac{\pi}{4}\left(-\frac{64}{105}\right)=\gamma_{e} \gamma_{N} 6 A E P_{r} \frac{2}{\sqrt{3}} \frac{\left(5 / a_{0}\right)^{7}}{2 \pi(3)^{8}} \frac{\pi}{4}\left(-\frac{64}{105}\right) \\
& =-\gamma_{e} \gamma_{N} A E P_{r} \sqrt{3} \frac{\left(\zeta / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105} \tag{4.4}
\end{align*}
$$

The total hyperfine tensor becomes

$$
\overrightarrow{\vec{A}}=-\gamma_{e} \gamma_{N} P_{r} \frac{\left(5 / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105}\left(\begin{array}{ccc}
-\frac{1}{2}\left(A^{2}-E^{2}\right) & \sqrt{3} A E & 0 \tag{4.5}\\
\sqrt{3} A E & -\frac{1}{2}\left(A^{2}-E^{2}\right) & 0 \\
0 & 0 & \left(A^{2}-E^{2}\right)
\end{array}\right)
$$

Thus, the cross term of (4.1) causes a reorientation of the principal x and y axes of $\overrightarrow{\vec{A}}$. The principal z axis remains parallel to the z axis of the $3 d_{z^{2}}$ orbital. Diagonalization of (4.5) gives eigenvalues (denoted by primes)

$$
\left\{\begin{array}{c}
A_{x}^{\prime}=-\gamma_{e} \gamma_{N} P_{r} \frac{\left(5 / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105}\left[-\frac{1}{2}\left(A^{2}-E^{2}\right)+\sqrt{3} A E\right] \tag{4.6}\\
A_{y}^{\prime}=-\gamma_{e} \gamma_{N} P_{r} \frac{\left(5 a_{0}\right]^{7}}{(3)^{8}} \frac{32}{105}\left[-\frac{1}{2}\left(A^{2}-E^{2}\right)-\sqrt{3} A E\right] \\
A_{z}^{\prime}=-\gamma_{e} \gamma_{N} P_{r} \frac{\left(5 / a_{0}\right)^{7}}{(3)^{8}} \frac{32}{105}\left(A^{2}-E^{2}\right)
\end{array}\right.
$$

In general, the additional terms cause rhombicity, i.e., A_{x}^{\prime} and A_{y}^{\prime} are no longer equal. However, for the case $A= \pm \sqrt{3} E$ and $E= \pm \sqrt{3} A$, the tensor becomes axial.
V. Structures (left) and spin density plots (right) in DFT calculations with the aim to investigate the binding of $\mathbf{H}_{\mathbf{2}}$.
V.1. $\left[\mathrm{Ni}_{2}(\mathrm{~L})(\mathrm{MeCN})\left(\mathrm{H}_{2}\right)\right]^{3+}$

V. $2\left[\mathrm{Ni}^{3+}\left(\mathrm{SH}^{-}\right)_{4}\left(\mathrm{OH}^{-}\right)\left(\mathrm{H}_{2}\right)\right]$

V. 3 Hydrogenase active site, $\left[\mathrm{Fe}^{2+}\left(\mathrm{CN}^{-}\right)_{2}(\mathrm{CO}) \mathrm{Ni}^{3+}\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)_{4}\left(\mathrm{OH}^{-}\right)\left(\mathrm{C}_{4} \mathrm{NH}_{3} \mathrm{CH}_{3}\right)\left(\mathrm{H}_{2}\right)\right]$

