Supporting Information

Chromium(0)-promoted [$6 \pi+2 \pi]$ cycloadditions of allenes with cycloheptatriene

James H. Rigby,* Stéphane B. Laurent, Zeeshan Kamal and Mary Jane Heeg Department of Chemistry, Wayne State University, Detroit, MI 48202-3489, USA
jhr@chem.wayne.edu
Table of Contents

1. General S2
2. Experimental procedures for allenes $\mathbf{2 c}, \mathbf{4 a},(S)-\mathbf{4 a}$ and $\mathbf{4 b} \mathbf{- c}$, and characterization data - S2
3. General procedures for cycloadditions between (η^{6}-cycloheptatriene)tricarbonyl- chromium(0) (CHT-Cr) complex 1 and allenes, and characterization data S7
4. Cycloaddition between $\mathbf{1}$ and (S)-4a, and determination of ee S23
5. Some examples of stereochemical rationales S24
5.1. Indirect stereochemical assignment for 3c via its alcohol derivative $\mathbf{1 7}$ S24
5.2. Representative ${ }^{1} \mathrm{H}$ NMR NOE data for (E)-5a, (Z)-8e, and $\mathbf{9 h}-\mathbf{i}$ S25
6. Derivatization of $5 \mathbf{5}$ into p-nitrobenzoate ester 18, and X-Ray structure of $\mathbf{1 8}$ S25
7. Deprotection of TBS-protecting groups in 11, and X-Ray structure of the corresponding diol 19 S27
8. Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds S29

1. General

All reactions were carried out under nitrogen using standard syringe, cannula and septa techniques. Reagents and solvents that were commercially available were used as received, except tetrahydrofuran: distilled over sodium-benzophenone ketyl; dichloromethane: distilled over calcium hydride. Thin-layer chromatography (TLC) was performed with 0.25 mm precoated glass silica gel plates (EMD, Silica Gel $60 \mathrm{~F}_{254}$). Detection was done by UV (254 nm) followed by using visualizing reagents such as p-anisaldehyde or phosphomolybdic acid. Flash chromatography was performed with Whatman silica gel (Purasil 60 \AA, 230-400 Mesh) and refers to the method of Still et al. ${ }^{1}$ IR spectra were recorded on a Perkin Elmer Spectrum RX-1 FT-IR system. Positions of absorption bands are reported in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded respectively at 400 or 300 and 100 or 75 MHz on a Varian Mercury 400 NMR spectrometer or Varian Unity 300 NMR. Chemical shifts are reported in ppm relative to the residual solvent signal (${ }^{1} \mathrm{H}$ NMR: $\delta 7.26 ;{ }^{13} \mathrm{C}: 77.0$ for $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ NMR: $\delta 7.12$; ${ }^{13} \mathrm{C}$: 128.0 for $\mathrm{C}_{6} \mathrm{D}_{6}$). Multiplicities are described as s (singlet), d (doublet), dd, ddd, etc. (doublet of doublets, doublet of doublets of doublets, etc.), t (triplet), q (quartet), quint (quintuplet), m (multiplet), and further qualified as br (broad), c (complex); coupling constants (J) are reported in Hz. The protons were assigned with the aid of COSY, and the carbons with the aid of Dept and HMQC experiments. Low resolution mass spectra were recorded on a Micromass QuattroLC triple quadrupole spectrometer in the ElectroSpray Ionisation (ESI) mode. High resolution mass spectra were performed with a Micromass GCT using a solid state probe in the Electron Impact (EI, ionization potential of 70eV) mode. GCMS was carried out using a Agilent Technologies 6890N GC system instrument coupled with a mass detector (EI mode at an ionization potential of 70 eV). Melting points (Mp) were obtained on a Thomas-Hoover Unimelt apparatus in open capillary tubes and are not corrected. Optical rotations were measured on a Perkin-Elmer 241 MC polarimeter using a sodium lamp (D line, 589.25 nm) in a quartz cell (cell lengh = 1 dm). Elemental analyses were performed by Atlantic Microlab, Inc. in Georgia.

2. Experimental procedures for allenes $\mathbf{2 c}, 4 a,(S)-4 a$ and $4 b-c$, and characterization data

Allene $7 \mathbf{e}$ was commercially available and used as supplied.
Allenes $\mathbf{2 a} \mathbf{a}^{2}, \mathbf{2 b}^{3}, \mathbf{7 a} \mathbf{a}^{4}, \mathbf{7 b}-\mathbf{d}^{5,6}, \mathbf{7 f}-\mathbf{g}, \mathbf{7 h}^{8}, \mathbf{7 i}^{9}$ have been prepared as described in the literature.

[^0]tert-Butyl(3-cyclohexylideneallyloxy)dimethylsilane (2c).

To a solution of tert-butyldimethyl(prop-2-ynyloxy)silane $\mathbf{1 2}^{10}(2.04 \mathrm{~g}, 12 \mathrm{mmols})$ in THF (12 mL) was introduced at $-78^{\circ} \mathrm{C} n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, 4.8 mL , 12 mmols) over 5 min , and the resulting mixture was stirred for 2 h at the same temperature. Then, cyclohexanone (1.24 $\mathrm{mL}, 12 \mathrm{mmols}$) was added and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for two more hours. The temperature was allowed to warm to rt and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with EtOAc (3 times); the organic extracts were combined, washed with brine, dried over MgSO_{4}, filtered and concentrated. The crude residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, $98: 2$) to afford 14^{11} ($2.04 \mathrm{~g}, 64 \%$) as a clear liquid which solidifies at rt: $\mathbf{R}_{\boldsymbol{f}} 0.13$ (pentane/EtOAc, 96:4); IR (thin film): 3272 (broad, OH), 2358 $(\mathrm{C} \equiv \mathrm{C}), 1101,1071 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right)$, 2.27 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.87-1.83 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.66-1.61 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.54-1.20 (m, 6 H , $\left.\mathrm{CH}_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=88.4$, $82.6(C \equiv C), 68.4(\mathrm{C}-\mathrm{OH}), 51.7\left(\mathrm{CH}_{2} \mathrm{OTBS}\right), 39.7\left(\mathrm{CH}_{2}\right.$ of cyclohexane), $25.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 25.1, $23.1\left(\mathrm{CH}_{2}\right.$ of cyclohexane), $18.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-5.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; MS (ESI): $m / z=291$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$: 250.1753; found: 250.1747 .

Then, according to a literature procedure, ${ }^{12}$ a mixture of $14(2.04 \mathrm{~g}, 7.6 \mathrm{mmols})$ and n $\mathrm{Bu}_{3} \mathrm{SnH}(3.06 \mathrm{~mL}, 11.4 \mathrm{mmols})$ was heated (oil-bath temperature $90^{\circ} \mathrm{C}$) for 2 h in the presence of a catalytic amount of AIBN ($62 \mathrm{mg}, 5 \mathrm{~mol} \%$). The mixture was then cooled to rt and 10 mL of DCM was added. $\mathrm{Et}_{3} \mathrm{~N}(2.12 \mathrm{~mL}, 15.2 \mathrm{mmols})$ and $\mathrm{MsCl}(0.89 \mathrm{~mL}, 11.4$ mmols) were introduced at $0^{\circ} \mathrm{C}$, and the reaction mixture was warmed to rt and stirred for 30 min. The mixture was poured into aq. 1 N HCl and extracted with DCM. The combined organic extracts were washed with sat. aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude residue was purified by flash chromatography on $\mathrm{SiO}_{2}(100 \%$

[^1]pentane) to afford 2c ($168 \mathrm{mg}, 9 \%$) as a clear liquid*: $\mathbf{R}_{f} 0.13$ (100% pentane); ${ }^{1} \mathbf{H} \mathbf{N M R}$ (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.11-5.05$ ($\mathrm{m}, 1 \mathrm{H},=\mathrm{CHCH}_{2} \mathrm{OTBS}$), 4.14 ($\mathrm{d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 1.70-1.50 (m, 10H, CH2 of cyclohexane), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; GCMS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.09 \mathrm{~min}\left(m / z=252\left(\mathrm{M}^{\dagger}\right)\right.$).

* 2c was contaminated by 35 mg of (Z, E)-tert-butyl(3-cyclohexenylallyloxy)-dimethylsilane.

tert-Butyldimethyl(4-phenylbuta-2,3-dienyloxy)silane (4a).

Synthesis of compound 4a was mentioned in the literature, ${ }^{12}$ but no spectroscopic data were reported. Following the procedure described above for synthesis of $\mathbf{1 4}$, addition of $12(1.7 \mathrm{~g}$, 10 mmols) to benzaldehyde ($1 \mathrm{~mL}, 10 \mathrm{mmols}$) furnished, after purification by flash chromatography on SiO_{2} (pentane/EtOAc, 100:0 to $90: 10$), alcohol $13^{13}(2.51 \mathrm{~g}, 91 \%)$ as a yellow liquid: $\mathbf{R}_{\boldsymbol{f}} 0.20$ (pentane/EtOAc, 95:5); IR (thin film): 3382 (broad, OH), 2360, 2338 $(\mathrm{C} \equiv \mathrm{C}), 1127,1082,1004 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.32(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), $5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH}), 4.40\left(\mathrm{br} \mathrm{d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 0.91(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.8\left(i-\mathrm{C}_{\text {arom }}\right), 128.8$ $\left(m-\mathrm{CH}_{\text {arom }}\right), 128.5\left(p-\mathrm{CH}_{\text {arom }}\right), 126.9\left(o-\mathrm{CH}_{\text {arom }}\right), 85.5,84.8(C \equiv C), 64.8(\mathrm{CHOH}), 52.0\left(\mathrm{CH}_{2}\right)$,
 HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right):$276.1546; found: 276.1546.

Then, compound $13(2.21 \mathrm{~g}, 8 \mathrm{mmols})$ was engaged in the procedure described above for synthesis of 2c. Purification by flash chromatography on SiO_{2} (pentane/EtOAc, 100:0 to 98:2) gave $\mathbf{4 a}\left(1.02 \mathrm{~g}, 49 \%\right.$) as a yellow liquid: $\mathbf{R}_{\boldsymbol{f}} 0.29$ (pentane/EtOAc, 98:2); IR (thin film): 1951 $(=\mathrm{C}=), 1132,1084 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $6.24(\mathrm{dt}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{C}=)$, $5.69\left(\mathrm{br} \mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{C}=\mathrm{CHCH}_{2}\right), 4.33-4.30$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10,0.09\left(2 * \mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=204.9(=\mathrm{C}=)$, $134.5\left(i-\mathrm{C}_{\text {arom }}\right)$, 128.8, 127.2, 127.1 ($\left.o, m, p-\mathrm{CH}_{\text {arom }}\right), 96.3,96.1$ $(\mathrm{HC}=\mathrm{C}=\mathrm{CH}), 61.6\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.81,-4.85\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 260.1596$; found: 260.1589.

[^2]
Preparation of enantioenriched (S)-4a.

According to a literature procedure, ${ }^{14} \mathrm{Zn}(\mathrm{OTf})_{2}(2 \mathrm{~g}, 5.5 \mathrm{mmols})$ and (+)- N-methylephedrine $(1.07 \mathrm{~g}, 6 \mathrm{mmols})$ were mixed together and purged with argon for 15 min . Then, toluene (15 mL) and fresly distilled triethylamine ($0.84 \mathrm{~mL}, 6 \mathrm{mmols}$) were added, and the resulting mixture was stirred at rt for 2 hours. tert-Butyldimethyl(prop-2-ynyloxy)silane 12 ($1.02 \mathrm{~g}, 6$ mmols) was introduced, followed after 30 min of stirring by benzaldehyde $(0.51 \mathrm{~mL}, 5$ mmols), and the reaction mixture was stirred at rt for 20 h . The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, 100:0 to 90:10) to give (R) - $\mathbf{1 3}$ (436 mg , $31 \%)$ in 88% ee $\left([\alpha]_{\mathbf{D}}^{23}=+12.7^{\circ}\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right)\right)$. The ee was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis after derivatization into the corresponding Mosher ester ${ }^{15}$ (R$)-(-)$-MTPA chloride, $\left.\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CDCl}_{3}, \mathrm{rt}, 1 \mathrm{~h}\right)$. Then, compound $(R) \mathbf{- 1 3}(436 \mathrm{mg}, 1.58 \mathrm{mmols})$ was engaged in the procedure described above for synthesis of 2c to afford, after flash chromatography on SiO_{2} (pentane/EtOAc, 100:0 to 98:2), (S)-4a ($135 \mathrm{mg}, 33 \%$) in 60% ee as measured by ${ }^{1} \mathrm{H}-$ NMR analysis with chiral shift reagents $(+)-\mathrm{Yb}(\mathrm{tfc})_{3}$ and $\operatorname{Ag}(\mathrm{fod}) .{ }^{16}[\alpha]_{\mathbf{D}}^{23}=+177^{\circ}(\mathrm{c}=1.04$, acetone).

1-(Buta-1,2-dienyl)benzene (4c).

Synthesis of compound 4c was already mentioned in the literature; however 4c was here prepared in a manner analogous to that for allene 2c. Following the procedure described above for synthesis of $\mathbf{1 4}$, addition of phenylacetylene ($2.72 \mathrm{~mL}, 24 \mathrm{mmols}$) to acetaldehyde $(1.35 \mathrm{~mL}, 24 \mathrm{mmols})$ gave, after purification by flash chromatography on SiO_{2}

[^3](pentane/EtOAc, 96:4), alcohol $\mathbf{1 5}{ }^{17}$ ($595 \mathrm{mg}, 17 \%$) as a slightly yellow liquid: $\mathbf{R}_{f} 0.28$ (pentane/EtOAc, 96:4); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.76(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.55\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Then, compound 15 ($837 \mathrm{mg}, 5.73 \mathrm{mmols}$) was engaged in the procedure described above for synthesis of $\mathbf{2 c}$ to afford, after flash chromatography on SiO_{2} (100% pentane), $\mathbf{4 c}(535 \mathrm{mg}, 72 \%$) as a slightly yellow liquid: $\mathbf{R}_{f} 0.69$ (100% pentane); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.10(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), 6.12-6.07 (m, 1H, $=\mathrm{CHPh}$), 5.54 (br quint, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}$), $1.78(\mathrm{dd}, J=$ $7.2,3.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); GC-MS (EI): $m / z=130\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ NMR data were in full agreement with those reported in the literature. ${ }^{18}$

2-(4-Phenylbuta-2,3-dienyloxy)tetrahydro-2H-pyran (4b).

The tilte compound was prepared from 4-phenylbuta-2,3-dien-1-ol 16 by simple protection. ${ }^{19}$ To a solution of $\mathbf{1 6}(424 \mathrm{mg}, 2.9 \mathrm{mmols})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added successively dihydropyran ($530 \mu \mathrm{~L}, 5.8 \mathrm{mmols}$) and PPTS (a pinch), and the resulting solution was stirred at rt for 2.5 h . The mixture was diluted with water. Tha water layer was separated and extracted with DCM. The organic layers were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification of the residue by flash chromatography on SiO_{2} (pentane/EtOAc, 98:2) furnished $\mathbf{4 b}(496 \mathrm{mg}, 74 \%)$ as a slightly yellow liquid: $\mathbf{R}_{\boldsymbol{f}} 0.25$ (pentane/EtOAc, 98:2); IR (thin film): 1951 ($=\mathrm{C}=$), 1124, 1069, $1027 \mathrm{~cm}^{-1}$ (C-O); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.15\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.27-6.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCH}=\mathrm{C}=$), 5.71 (br q, J $\left.=6.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{2} \mathrm{OTHP}\right), 4.76-4.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}-\mathrm{CH}-\mathrm{O}), 4.38-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHOTHP})$, 4.21-4.15 (m, 1H, CHHOTHP), 3.92-3.86 (m, 1H, CHHO of THP), 3.55-3.48 (m, 1H, CHHO of THP), 1.90-1.50 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$ of THP); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.9,205.8$ $(=\mathrm{C}=), 133.9^{* 20}\left(i-\mathrm{C}_{\text {arom }}\right), 128.5,127.0,126.8^{*}\left(o, m, p-\mathrm{CH}_{\text {arom }}\right), 97.7^{*}$ (O-CH-O), 95.6, 95.5, 92.7, $92.6(\mathrm{HC}=\mathrm{C}=\mathrm{CH}), 64.6^{*}, 62.2\left(\mathrm{CH}_{2}-\mathrm{O}\right), 30.5^{*}, 25.4,19.4^{*}\left(\mathrm{CH}_{2}\right.$ of THP); GC-MS (EI): $m / z=230\left(\mathrm{M}^{+}\right) ;$HRMS (ESI-TOF): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 253.1204$; found: 253.1209.

[^4]
3. General procedures for cycloadditions between ($\boldsymbol{\eta}^{6}$-cycloheptatriene)tricarbonylchromium(0) (CHT-Cr) complex 1 and allenes, and characterization data

Procedure A: In a dried pyrex tube, CHT-Cr $\mathbf{1}^{21}$ (1 equiv) and allene (2 equiv) were diluted in hexanes $\left(\mathrm{c}=2 \times 10^{-3} \mathrm{M}\right.$ in $\left.\mathbf{1}\right)$. The tube was placed 14 cm from a water-cooled pyrex immersion well containing a Canrad-Hanovia 450W medium-pressure mercury vapor lamp. The resulting red solution was irradiated with a concomitant moderate N_{2} bubbling for periods of 4-6 h. After irradiation, the solution usually turned yellow* (disappearence of all CHT-Cr) with a precipitate in the bottom of the tube. The reaction mixture was filtered over a pad of celite and the cake washed with hexanes. The filtrate was concentrated and the resultant crude residue was purified by flash chromatography on SiO_{2}.

* In some cases (when using some allenes or when working with higher concentrated solutions ($\mathrm{c}=4 \times 10^{-3} \mathrm{M}$ in $\mathbf{1}$)), the color of the reaction mixture was still orange-red after irradiation, indicating that all CHT-Cr was not consumed. Consequently, in order to simplifly purification, after filtration, the filtrate was reduced in volume to 10 mL and stirred with $\mathrm{P}(\mathrm{OMe})_{3}(2-3 \mathrm{~mL})$ at rt until the solution turned yellow to colorless (16-20h) (decomplexation of CHT-Cr). Concentration was followed by flash chromatography on SiO_{2}.

Procedure B: In a dried pyrex tube placed 14 cm from a water-cooled pyrex immersion well containing the medium-pressure mercury vapor lamp, CHT-Cr 1 (1 equiv) was diluted with hexanes $\left(c=2 \times 10^{-3} \mathrm{M}\right)$. To the resultant red solution was introduced slowly a solution of allene (2 equiv) in hexanes using a syringe pump ($10 \mathrm{~mL} / \mathrm{h}$), under irradiation and with moderate N_{2} bubbling. After addition, irradiation was kept for an additional time (4-6 h). The mixture was then filtered over celite and the cake washed with hexanes. The filtrate was concentrated and the resultant crude residue was purified by flash chromatography on SiO_{2}. When an orange-red solution was obtained after irradiation, treatment with $\mathrm{P}(\mathrm{OMe})_{3}$ was performed as described above in the procedure A.

7-(Diphenylmethylene)bicyclo[4.2.1]nona-2,4-diene (3a) (Table 1, entry 1).

1

2a

[^5]Following the Procedure A, a solution of CHT-Cr $\mathbf{1}$ ($50 \mathrm{mg}, 0.22 \mathrm{mmols}$) and allene 2a (84 $\mathrm{mg}, 0.44 \mathrm{mmols})$ in hexanes (100 mL) was irradiated for 5 h . Work-up and purification by flash chromatography on SiO_{2} (100% pentane) provided 3 a ($31 \mathrm{mg}, 50 \%$) as a colorless oil: $\mathbf{R}_{f} 0.53$ (100% pentane); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.13\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.02$ (dd, $J=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.70-5.57(\mathrm{~m}, 3 \mathrm{H}, 3,4,5-\mathrm{H}), 3.43$ (br t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $2.76\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}\right), 2.78-2.72$ (m (q overlapping with d at 2.76 ppm$\left.), 1 \mathrm{H}, 6-\mathrm{H}\right)$, $2.64\left(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}\right), 2.29-2.23\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 1.91(\mathrm{br} \mathrm{d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H_{b}); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6(\mathrm{C}-8), 144.3,142.7\left(i-\mathrm{C}_{\text {arom }}\right), 138.8,137.2(\mathrm{C}-2$, $\mathrm{C}-5), 133.1$ (C-10), 129.3, 129.2, 128.3, 128.2, 126.6, 126.4, 123.8 ($o, m, p-\mathrm{CH}_{\text {arom }}, \mathrm{C}-3, \mathrm{C}-4$), 44.9 (C-7), 44.2 (C-1), 38.7 (C-6), 32.6 (C-9); HRMS (EI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{20}$ $\left(\mathrm{M}^{+}\right): 284.1559$; found: 284.1574 .

7-Cyclohexylidenebicyclo[4.2.1]nona-2,4-diene (3b) (Table 1, entry 2).

1

2b

According to the procedure B , a solution of vinylidenecyclohexane ($\mathbf{2 b}$) ($86 \mathrm{mg}, 0.8 \mathrm{mmols}$) in hexanes (20 mL) was added over 2 h to a solution of CHT-Cr $1(91 \mathrm{mg}, 0.4 \mathrm{mmols})$ in hexanes (180 mL), under irradiation. After addition, irradiation was kept 4 more hours. Workup and purification by flash chromatography on $\mathrm{SiO}_{2}(100 \%$ cyclohexane $)$ furnished product $\mathbf{3 b}(41 \mathrm{mg}, 51 \%)$ as a colorless oil: $\mathbf{R}_{\boldsymbol{f}} 0.80$ (100% cyclohexane); IR (thin film): 3015, 2923, 2849, 1598, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.06-5.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}\right)$, $5.66-$ 5.53 (m, 2H, Hethylenic), 3.42 (br t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 2.74-2.67 (m, 1H, $6-\mathrm{H}), 2.60$ (d, $J=$ $\left.15.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}\right), 2.46\left(\mathrm{dd}, J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}\right), 2.26-2.01\left(\mathrm{~m}, 7 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}, \mathrm{H}\right.$ of cyclohexane), 1.93 (dd, $\left.J=11.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.60-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}\right.$ of cyclohexane); ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.7$ (C-8 or C-10), 138.4, 137.2 (C-2, C-5), 129.2 (C-8 or C10), 123.3, 122.9 (C-3, C-4), 44.1 (C-7), 42.1 (C-1), 39.1 (C-6), 33.5, 32.7, 31.2, 27.6, 27.5, 26.7 (C-9, CH_{2} of cyclohexane); HRMS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20}\left(\mathrm{M}^{+}\right)$: 200.1565; found: 200.1570 .
(The product was contaminated by a small amount (4%, based on GC) of isomer 7-cyclohexenylbicyclo[4.2.1]nona-2,4-diene).
tert-Butyl((8-cyclohexylidenebicyclo[4.2.1]nona-2,4-dien-7-yl)methoxy)dimethylsilane (3c) (Table 1, entry 3).

1

2c

(procedure B)

According to the procedure B , a solution of $\mathbf{2 c}(168 \mathrm{mg}, 0.67 \mathrm{mmols})$ in hexanes $(16 \mathrm{~mL})$ was added over 1.5 h to a solution of CHT-Cr 1 ($75 \mathrm{mg}, 0.33 \mathrm{mmols}$) in hexanes (150 mL), under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on SiO_{2} (100% cyclohexane) furnished product $3 \mathrm{c}(39 \mathrm{mg}, 35 \%)$ as a colorless oil: $\mathbf{R}_{\boldsymbol{f}} 0.45$ (100% cyclohexane); IR (thin film): $3017\left(\mathrm{CH}_{\text {ethylenic }}\right), 1106,1085,1056$ cm^{-1} (broad, C-O-Si); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.98(\mathrm{dd}, J=11.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $5.83-5.71(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 2-\mathrm{H}), 5.56(\mathrm{dd}, J=11.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.75(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{H}$), 3.44 (dd, $J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}^{\prime}$), 3.30 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.11-2.94 $(\mathrm{m}, 2 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 2.20-1.94\left(\mathrm{~m}, 7 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}, \mathrm{H}\right.$ of cyclohexane), 1.98 (br d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ $\left.\mathrm{H}_{\mathrm{b}}\right), 1.60-1.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}$ of cyclohexane $), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03,0.02(2 * \mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.0(\mathrm{C}-8$ or $\mathrm{C}-10), 137.0,135.1(\mathrm{C}-2, \mathrm{C}-5)$, 130.0 (C-8 or C-10), 125.0, 123.3 (C-3, C-4), 64.0 (C-11), 54.5 (C-7), 44.1 (C-1), 40.7 (C-6), $33.7\left(\mathrm{CH}_{2}\right.$ of cyclohexane), $31.9(\mathrm{C}-9), 30.3,28.2,28.0,26.6\left(\mathrm{CH}_{2}\right.$ of cyclohexane), 26.0 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-5.2,-5.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \text { HRMS (EI): } m / z \text { calcd for } \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{OSi} \mathrm{OSi}}\right.$ $\left(\mathrm{M}^{+}\right): 344.2535$; found: 344.2539. The relative endo stereochemistry at C-7 of 3c was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies performed on its alcohol derivative 17 (See page S24).
(E)-((8-Benzylidenebicyclo[4.2.1]nona-2,4-dien-7-yl)methoxy)(tert-butyl)dimethylsilane (5a) (Table 2, entry 1).

Following Procedure A, a solution of CHT-Cr 1 ($91 \mathrm{mg}, 0.4 \mathrm{mmols}$) and allene 4a (208 mg , 0.8 mmols) in hexanes (200 mL) was irradiated for 6 h . Work-up and purification by flash chromatography on SiO_{2} (cyclohexane/DCM, 96:4) provided unique $(E)-5 \mathbf{a}(83 \mathrm{mg}, 59 \%)$ as a colorless oil: $\mathbf{R}_{f} 0.17$ (cyclohexane/DCM, 96:4); IR (thin film): $3023\left(\mathrm{CH}_{\text {arom }}\right), 1086 \mathrm{~cm}^{-1}$
(broad, C-O-Si); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.18$ (m, $5 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $6.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $10-\mathrm{H}), 6.11$ (dd, $J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.93$ (dd, $J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.80(\mathrm{dd}, J=$ $11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.59(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.90(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-$ H), 3.80 (br t, $J=10.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}^{\prime}$), 3.70 (br t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $3.20-3.14$ (m, 1H, $7-\mathrm{H}), 2.96(\mathrm{br} \mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.32-2.25\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 2.02(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.9-\mathrm{H}_{\mathrm{b}}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.3$ (C-8), 138.3 ($i-\mathrm{C}_{\text {arom }}$), 135.4, 135.0 (C-2, C-5), 128.2, 127.7, 126.2 ($o, m, p-\mathrm{CH}_{\text {arom }}$), 125.7 (C4), 124.1 (C-3), 121.4 (C-10), 63.7 (C-11), 61.0 (C-7), 43.0 (C-1), 40.7 (C-6), 31.9 (C-9), 25.9 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, -5.30, -5.35 $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \mathbf{M S}(\mathrm{ESI}): m / z=353\left(\mathrm{M}+\mathrm{H}^{+}\right), 375$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (EI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 352.2222$; found: 352.2222. The relative endo stereochemistry at C-7 and the E geometry of 5 a were established by ${ }^{1} \mathrm{H}$ NMR NOE studies (See Figure 1, page S25) and confirmed by X-ray crystallographic analysis performed on its p-nitrobenzoate ester derivative 18 (See pages S25-S26).
(Traces (ca $<1 \%$) of the Z isomer could be detected by GC on the crude residue before chromatography).

(E)-(8-Benzylidenebicyclo[4.2.1]nona-2,4-dien-7-yl)methanol (5b) (Table 2, entry 3).

Following the Procedure A, a solution of CHT-Cr $\mathbf{1}(520 \mathrm{mg}, 2.28 \mathrm{mmols})$ and allene $\mathbf{4 b}$ (1.3 $\mathrm{g}, 5.6 \mathrm{mmols})$ in hexanes (300 mL) was irradiated for 4 h . After filtration over celite and concentration, the residue was dissolved in methanol (15 mL), and the resulting solution was refluxed for 2 h in the presence of a catalytic amount of PPTS. Then, the solvent was removed and the residue diluted in EtOAc. The solution was washed with brine, dried over MgSO_{4}, filtered and concentrated. The crude residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, $80: 20$) to give $(E)-5 \mathbf{b}(304 \mathrm{mg}, 56 \%)$ as a slightly yellow oil: $\mathbf{R}_{\boldsymbol{f}} 0.22$ (pentane/EtOAc, 80:20); IR (thin film): 3358 (broad, OH), $3022 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{\text {arom }}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$), 6.15 (br s, $1 \mathrm{H}, 10-\mathrm{H}$), 6.13 (dd, $J=11.6,7.4$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.98(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.86(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.62$ (dd, $J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), $3.95(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}$), 3.88 (br t, $J=10.4,9.6$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{H}$ '), 3.69 (br t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.23-3.16 (m, 1H, 7-H), 3.03-2.97 (m, 1H, 6H), 2.34-2.28 (m, $1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}$), $2.04\left(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.9$ (C-8), 138.3 ($i-\mathrm{C}_{\text {arom }}$), 135.5, 134.7 (C-2, C-5), 128.5, $127.9\left(o, m-\mathrm{CH}_{\text {arom }}\right), 126.8,126.7,124.4,\left(p-\mathrm{CH}_{\text {arom }}, \mathrm{C}-3, \mathrm{C}-4\right), 121.9(\mathrm{C}-10), 64.0(\mathrm{C}-11)$, 60.6 (C-7), 43.2 (C-1), $40.5(\mathrm{C}-6), 32.3(\mathrm{C}-9) ;$ MS (ESI): $m / z=239\left(\mathrm{M}+\mathrm{H}^{+}\right), 261\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 238.1358$; found: 238.1368. The relative endo stereochemistry at C-7 and the E geometry of $5 \mathbf{b}$ were confirmed by comparing the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{5 b}$ with those obtained from material obtained after removal of the TBS protecting group in $(E)-5 \mathbf{a}$, and both were found to be exactly the same.

7-Benzylidene-8-methylbicyclo[4.2.1]nona-2,4-diene (5c) and 7-ethylidene-8-phenylbicyclo[4.2.1]nona-2,4-diene (6c) (Table 2, entry 4).

According to the procedure B , a solution of $\mathbf{4 c}(156 \mathrm{mg}, 1.2 \mathrm{mmols})$ in hexanes $(20 \mathrm{~mL})$ was added over 2 h to a solution of CHT-Cr 1 ($137 \mathrm{mg}, 0.6 \mathrm{mmols}$) in hexanes (220 mL), under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on $\mathrm{SiO}_{2}(100 \%$ cyclohexane) furnished $\mathbf{6 c}(11 \mathrm{mg}, 8 \%)$ as an inseparable 23:77 mixture of E and Z isomers (ratio determined by GC on the crude product before chromatography) and $5 \mathrm{c}(74 \mathrm{mg}, 56 \%)$ as a separable $90: 10$ mixture of Z and E isomers (ratio determined by GC on the crude product before chromatography). Ratio 5c/6c was determimned by GC on the crude residue before chromatography.

Z isomer of $5 \mathbf{c}$ could be isolated with a purity of 93% (by GC): $\mathbf{R}_{f} 0.35$ (100% cyclohexane); IR (thin film): 3052, 3019, 2958, 2923, $2859 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{\text {arom }}, \mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.40-7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.17(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 10-$ H), $5.86-5.76(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}), 5.52(\mathrm{dd}, J=10.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.83(\mathrm{brt}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, 1-\mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 2.72(\mathrm{br} \mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.34-2.27\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right)$, 2.00 (br d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}$), $1.26\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=155.5$ (C-8), 138.7 ($i-\mathrm{C}_{\text {arom }}$), 135.9 (C-2), 135.1 (C-5), 128.2, 127.8 (o, m$\mathrm{CH}_{\text {arom }}$), 126.0, 125.7 ($p-\mathrm{CH}_{\text {arom }}, \mathrm{C}-4$), 123.9 (C-3), 120.3 (C-10), 54.5 (C-7), 43.8 (C-6), 42.0
(C-1), 32.1 (C-9), 13.7 (C-11); HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18}\left(\mathrm{M}^{+}\right): 222.1409$; found: 222.1412. The relative endo stereochemistry at C-7 and the Z geometry of the major isomer of 5 c was confirmed by ${ }^{1} \mathrm{H}$ NMR NOE studies.
The E isomer (7% by GC) could be seen in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 3.52 \mathrm{ppm}(1-\mathrm{H})$ and ${ }^{13} \mathrm{C}$ spectrum, but it could not be isolated in a pure state.

Z isomer of $\mathbf{6 c}$, major (contaminated by 23% of E isomer): $\mathbf{R}_{f} 0.42$ (100% cyclohexane); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.00(\mathrm{br} \mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.62$ (dd, $J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.49(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.40-5.32(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H})$, 5.22 (dd, $J=10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.20(\mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.31 (br t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 3.11$ (br q $, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.44-2.37\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 2.16(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.9-\mathrm{H}_{\mathrm{b}}\right), 1.12\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \mathbf{M S}(\mathrm{EI}): m / z=222\left(\mathrm{M}^{+}\right)$. The relative endo stereochemistry at C-7 and the Z geometry of the major isomer of $\mathbf{6 c}$ was confirmed by ${ }^{1} \mathrm{H}$ NMR NOE studies.

(Z,E)-7-Benzylidenebicyclo[4.2.1]nona-2,4-diene (8a) (Table 3, entry 1).

According to the procedure B, a solution of $7 \mathbf{7 a}(150 \mathrm{mg}, 1.2 \mathrm{mmols})$ in hexanes $(20 \mathrm{~mL})$ was added over 2 h to a solution of CHT-Cr $\mathbf{1}(137 \mathrm{mg}, 0.6 \mathrm{mmols})$ in hexanes (200 mL), under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on SiO_{2} (pentane/EtOAc, 99:1) afforded product 8a ($63 \mathrm{mg}, 50 \%$) as an inseparable 45:55 mixture of Z and E isomers (ratio based on ${ }^{1} \mathrm{H}$ NMR on the purified mixture): IR (thin film) $(Z+E): 3052,2923\left(\mathrm{CH}_{\text {arom }}, \mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(Z+E): \delta=7.36-7.14\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {arom }}(Z+E)\right.$), $6.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 10-\mathrm{H}(Z+E)), 6.21-$ $6.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right.$), $5.71-5.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 3.75(\mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}(Z)$), $3.48(\mathrm{br} \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(E)), 2.97\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}(Z\right.$ or $\left.E)\right), 2.87-$ $2.74(\mathrm{~m}, 5 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}(Z+E)), 2.31-2.26\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}(Z+E)\right.$), $2.01(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$,
$9-\mathrm{H}_{\mathrm{b}}(Z$ or $E)$), $1.98\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $\left.E)\right) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z+$ $E): \delta=154.3,152.2(\mathrm{C}-8, Z+E), 138.8,138.3,137.1,134.8(\mathrm{C}-2, \mathrm{C}-5, Z+E), 138.4(\mathrm{C}-11)$, 128.2, 128.13, 128.10, 127.6 (C-12, C-13, $Z+E$), 126.1, 125.8, 124.4, 123.8, 123.7, 123.6, 120.8, 120.7 (C-14, C-10, C-3, C-4, $Z+E), 49.0(\mathrm{C}-7, Z), 47.8(\mathrm{C}-1, E), 43.9$ (C-7, $E), 42.0$ $(\mathrm{C}-1, Z), 39.2,37.4(\mathrm{C}-6, Z+E), 33.4,31.2(\mathrm{C}-9, Z+E)$; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16}$ $\left(\mathrm{M}^{+}\right): 208.1257$; found: 208.1252.

Traces (ca 3\%) of isomer 7-methylene-8-phenylbicyclo[4.2.1]nona-2,4-diene could also be detected by GC on the crude residue before chromatography.

(Z,E)-7-(4-Methoxybenzylidene)bicyclo[4.2.1]nona-2,4-diene (8b) (Table 3, entry 2).

1

7b

According to the procedure B , a solution of $\mathbf{7 b}(88 \mathrm{mg}, 0.60 \mathrm{mmols})$ in hexanes $(15 \mathrm{~mL})$ was added over 1.5 h to a solution of CHT-Cr 1 ($68 \mathrm{mg}, 0.30 \mathrm{mmols}$) in hexanes (140 mL), under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on $\mathrm{SiO}_{2}(100 \%$ cyclohexane) furnished $\mathbf{8 b}(30 \mathrm{mg}, 42 \%)$ as an inseparable $48: 52$ mixture of Z and E isomers (ratio based on ${ }^{1} \mathrm{H}$ NMR on the purified mixture): $\mathbf{R}_{f} 0.18$ (100% cyclohexane); IR (thin film) $(Z+E): 3017,2926,2834\left(\mathrm{CH}_{\text {arom }}\right.$, $\mathrm{CH}_{\text {ethylenic }}$), $1298,1248,1177 \mathrm{~cm}^{-1}$ (C-O-C); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(Z+E): \delta=7.29(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}(Z)\right), 7.20\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}(E)\right), 6.88-6.84(\mathrm{~m}, 4 \mathrm{H}, 13-$ $\left.\mathrm{H}_{\text {arom }}(Z+E)\right), 6.22-6.16\left(\mathrm{~m}, 3 \mathrm{H}, 10-\mathrm{H}(Z+E)\right.$, $\left.\mathrm{H}_{\text {ethylenic }}(\mathrm{Z})\right), 6.10-6.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+\right.$ $E)$), $5.74-5.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}(Z\right.$ or $E)$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}(Z\right.$ or E)), 3.71 ($\mathrm{br} \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(Z)$), $3.45(\mathrm{brt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(E)$), 2.93 (d, $J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}(Z$ or $E)$), 2.88-2.72 (m, 5H, 6-H, 7-H $\left.(Z+E)\right), 2.32-2.23\left(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}(Z+E)\right)$, $2.00\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $E)$), $1.97\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $\left.E)\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z+E): \delta=158.2,157.9(\mathrm{C}-14, Z+E), 152.5,150.4(\mathrm{C}-8, Z+E)$, 139.1, 138.6, 137.5, $135.2(\mathrm{C}-2, \mathrm{C}-5, Z+E)$, 131.6, $131.4(\mathrm{C}-11, Z+E), 129.5,128.9$ (C-12, $Z+E), 124.6,123.93,123.90,120.40,120.33(\mathrm{C}-10, \mathrm{C}-3, \mathrm{C}-4, Z+E), 113.95,113.86(\mathrm{C}-13$, $Z+E), 55.5\left(\mathrm{OCH}_{3}, Z+E\right), 49.3(\mathrm{C}-7, Z$ or $E), 48.0(\mathrm{C}-1, E), 44.0(\mathrm{C}-7, Z$ or $E), 42.1(\mathrm{C}-1$, $Z), 39.5,37.8(\mathrm{C}-6, Z+E), 33.8,31.5(\mathrm{C}-9, Z+E)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=12.65 \mathrm{~min}$ $\left(Z\right.$ isomer, $\left.m / z=238\left(\mathrm{M}^{+}\right)\right), \mathrm{t}_{\mathrm{R}}=13.05 \mathrm{~min}\left(E\right.$ isomer, $\left.m / z=238\left(\mathrm{M}^{+}\right)\right) ;$HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{\dagger}\right)$: 238.1358; found: 238.1361.

Traces (ca 3\%) of isomer 7-(4-methoxyphenyl)-8-methylenebicyclo[4.2.1]nona-2,4-diene could also be detected by GC on the crude residue before chromatography.

(Z,E)-Ethyl 4-(bicyclo[4.2.1]nona-2,4-dien-7-ylidenemethyl)benzoate (8c) (Table 3, entry

 3).

1

According to the procedure B, a solution of $7 \mathbf{c}(104 \mathrm{mg}, 0.55 \mathrm{mmols})$ in hexanes $(15 \mathrm{~mL})$ was added over 1.5 h to a solution of CHT-Cr $\mathbf{1}(64 \mathrm{mg}, 0.28 \mathrm{mmols})$ in hexanes (140 mL), under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on SiO_{2} (pentane/EtOAc, 99:1) afforded 8c ($18 \mathrm{mg}, 23 \%$) as an inseparable $48: 52$ mixture of Z and E isomers (ratio based on ${ }^{1} \mathrm{H}$ NMR on the purified mixture): $\mathbf{R}_{\boldsymbol{f}} 0.24$ (pentane/EtOAc, 99:1); IR (thin film) $(Z+E): 3018$, 2975, $2930\left(\mathrm{CH}_{\text {arom }}\right.$, $\mathrm{CH}_{\text {ethylenic }}$), $1713(\mathrm{C}=\mathrm{O}), 1275,1178,1106 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\mathrm{Z}+$ $E): \delta=8.00-7.94\left(\mathrm{~m}, 4 \mathrm{H}, 13-\mathrm{H}_{\text {arom }}(Z+E)\right.$), $7.39\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}(Z\right.$ or $E)$), 7.29 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}(Z$ or $E)$), $6.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 10-\mathrm{H}(Z+E)), 6.18-6.00(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}_{\text {ethylenic }}(Z+E)$), $5.73-5.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 4.39-4.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}(Z+E)\right.$), 3.76 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(Z)$), 3.49 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(E)$), $2.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}(Z$ or $E)$), 2.88-2.72 (m, 5H, 6-H, 7-H $(Z+E)$), 2.32-2.24 (m, $2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}(Z+E)$), $2.01\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $E)$), $1.98\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $E)$), 1.39, $1.38\left(2 * t, 6 \mathrm{H}, \mathrm{CH}_{3}(Z+E)\right.$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(Z+E): \delta=166.8(\mathrm{C}=\mathrm{O}, Z+E)$, 157.3, $155.0(\mathrm{C}-8, Z+E), 143.14,143.08(\mathrm{C}-11, Z+E), 138.9,138.4,136.8,134.5(\mathrm{C}-2, \mathrm{C}-5$, $Z+E), 129.8,129.7(\mathrm{C}-13, Z+E), 128.1,127.6(\mathrm{C}-12, Z+E), 127.8(\mathrm{C}-14, Z+E), 125.0$, 124.4, $123.95,123.91,120.55,120.46(\mathrm{C}-10, \mathrm{C}-3, \mathrm{C}-4, Z+E), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}, Z+E\right), 49.8$ (C-7, Z or E), 48.2 (C-1, $E), 44.4$ (C-7, Z or $E), 42.3(\mathrm{C}-1, Z), 39.4,37.7(\mathrm{C}-6, Z+E), 33.7$, $31.3(\mathrm{C}-9, Z+E), 14.6\left(\mathrm{CH}_{3}, Z+E\right) ;$ GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=17.06 \mathrm{~min}(Z$ isomer, m / z $\left.=280\left(\mathrm{M}^{+}\right)\right), \mathrm{t}_{\mathrm{R}}=18.01 \mathrm{~min}\left(E\right.$ isomer, $m / z=280\left(\mathrm{M}^{+}\right)$); HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right): 280.1463$; found: 280.1466.

Traces (ca 3\%) of isomer ethyl 4-(8-methylenebicyclo[4.2.1]nona-2,4-dien-7-yl)benzoate could also be detected by GC on the crude residue before chromatography.

(Z,E)-7-(4-Nitrobenzylidene)bicyclo[4.2.1]nona-2,4-diene (8d) (Table 3, entry 4).

According to the procedure B , a solution of $\mathbf{7 d}(43 \mathrm{mg}, 0.267 \mathrm{mmols})$ (contaminated by 171 mg of 1-iodo-4-nitrobenzene) in hexanes ($8 \mathrm{~mL}+3 \mathrm{~mL}$ of DCM in order to dissolve all the nitroallene) was added over 1 h to a solution of CHT-Cr $1(31 \mathrm{mg}, 0.134 \mathrm{mmols})$ in hexanes $(60 \mathrm{~mL})$, under irradiation. After addition, irradiation was kept 6 more hours. Work-up and purification by flash chromatography on SiO_{2} (pentane/EtOAc, 99:1) gave an inseparable mixture of $\mathbf{8 d}$ ($19 \mathrm{mg}, 56 \%$, inseparable $40: 60$ mixture of Z and E isomers, ratio based on GC), starting allene $7 \mathbf{d}(28 \mathrm{mg})$ and contaminant 1-iodo-4-nitrobenzene (126 mg). Masses were determined from molar ratios of each compound determined by ${ }^{1} \mathrm{H}$ NMR on the purified mixture.

8d: $\mathbf{R}_{f} 0.30$ (pentane/EtOAc, 99:1); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(Z+E): \delta=8.20-8.10(\mathrm{~m}$, $4 \mathrm{H}, 13-\mathrm{H}_{\text {arom }}(Z+E)$), $7.45\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}(Z)\right), 7.35\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}_{\text {arom }}\right.$ $(E)), 6.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, 10-\mathrm{H}(Z+E)), 6.16-6.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 5.74-5.63(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H}_{\text {ethylenic }}(Z+E)$), $3.76(\mathrm{brt}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(Z)$), $3.52(\mathrm{br} \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(E))$, $2.98\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}(Z\right.$ or $E)$), 2.92-2.76 (m, $5 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}(Z+E)$), 2.36-2.26 (m, $2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}(Z+E)$), $2.02\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z\right.$ or $E)$), $2.00(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ $\mathrm{H}_{\mathrm{b}}(Z$ or $\left.E)\right)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=16.05 \mathrm{~min}\left(\operatorname{minor} Z\right.$ isomer, $\left.m / z=253\left(\mathrm{M}^{+}\right)\right)$, $\mathrm{t}_{\mathrm{R}}=$ 16.77 min (major E isomer, $m / z=253\left(\mathrm{M}^{+}\right)$); HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ $\left(\mathrm{M}^{+}\right):$253.1103; found: 253.1101.

Traces (ca 3\%) of isomer 7-methylene-8-(4-nitrophenyl)bicyclo[4.2.1]nona-2,4-diene could also be detected by GC on the crude residue before chromatography.

(Z,E)-Ethyl 2-(bicyclo[4.2.1]nona-2,4-dien-7-ylidene)acetate (8e) and ethyl 2-

(bicyclo[4.2.1]nona-2,4,7-trien-7-yl)acetate (10) (Table 3, entry 6).

1

7e

Following the procedure B , a solution of $7 \mathbf{e}(450 \mathrm{mg}, 4 \mathrm{mmols})$ in hexanes (20 mL) was added over 2 h to a solution of CHT-Cr $\mathbf{1}(182 \mathrm{mg}, 0.8 \mathrm{mmols})$ in hexanes (220 mL), under irradiation. After addition, irradiation was kept 4 more hours. Work-up and purification by flash chromatography on SiO_{2} (pentane/EtOAc, 96:4) afforded pure (Z)-8e ($65 \mathrm{mg}, 40 \%$) and an inseparable mixture of $(E)-\mathbf{8 e}(27 \mathrm{mg}, 16 \%)$ and isomer $\mathbf{1 0}(6 \mathrm{mg}, 4 \%)$ (ratio (E)-8e/10 determined by GC on the purified mixture). Ratio (Z)-8e/(E)-8e of the cycloaddition was determined by GC on the crude residue before chromatography.
(Z)-8e: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.72$ (pentane/EtOAc, 96:4); IR (thin film): 3021, 2933, 2820 $\left(\mathrm{CH}_{\text {ethylenic }}\right), 1710(\mathrm{C}=\mathrm{O}), 1288,1199,1147,1110 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}): $\delta=6.34(\mathrm{brt}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.00-5.95(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.70-5.62(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$, $3-\mathrm{H}), 5.63$ (br s, $1 \mathrm{H}, 10-\mathrm{H}$), $4.18-4.11\left(\mathrm{~m}, 3 \mathrm{H}, 1-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.77-2.69(\mathrm{~m}, 3 \mathrm{H}, 7-\mathrm{H}, 6-\mathrm{H})$, 2.24-2.17 (m, 1H, $9-\mathrm{H}_{\mathrm{a}}$), $1.98\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.26\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=6.70(\mathrm{br} \mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.77-5.72(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.67(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, 10-\mathrm{H}$), $5.64-5.57(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}), 4.36$ (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.07-3.99(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.47\left(\mathrm{br} \mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}\right), 2.29-2.20\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}, 6-\mathrm{H}\right), 1.90(\mathrm{br} \mathrm{d}, J=$ $\left.12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.86-1.80\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 0.98\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9(\mathrm{C}=\mathrm{O}), 166.5(\mathrm{C}-8), 137.0(\mathrm{C}-5), 134.9(\mathrm{C}-2), 123.9,123.8(\mathrm{C}-4, \mathrm{C}-$ 3), $110.7(\mathrm{C}-10), 59.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 48.7(\mathrm{C}-7), 43.5(\mathrm{C}-1), 37.4(\mathrm{C}-6), 32.5(\mathrm{C}-9), 14.3\left(\mathrm{CH}_{3}\right)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.23 \mathrm{~min}\left(\mathrm{~m} / \mathrm{z}=204\left(\mathrm{M}^{+}\right)\right.$); HRMS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right)$: 204.1150; found: 204.1157. The Z geometry was established by ${ }^{1} \mathrm{H}$ NMR NOE studies (See Figure 1, page S25).
(E)-8e: $\mathbf{R}_{\boldsymbol{f}} 0.61$ (pentane/EtOAc, 96:4); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.02$ (dd, $J=10.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 5.90 (br t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $5.68-5.58(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}, 10-\mathrm{H}) 4.10$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 3.43 (br t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.29(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-$ H_{d}), 2.86 (ddd, $J=19.2,8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}$), $2.79(\mathrm{br} \mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.24-2.17$ (m, 1H, $9-\mathrm{H}_{\mathrm{a}}$), $1.96\left(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.23\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0(\mathrm{C}=\mathrm{O}), 166.9(\mathrm{C}-8), 138.8(\mathrm{C}-5), 134.8(\mathrm{C}-2), 125.0,123.2(\mathrm{C}-$ 4, C-3), $111.5(\mathrm{C}-10), 59.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 46.9(\mathrm{C}-1), 45.7(\mathrm{C}-7), 38.6(\mathrm{C}-6), 30.9(\mathrm{C}-9), 14.3$ $\left(\mathrm{CH}_{3}\right)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.42 \mathrm{~min}\left(\mathrm{~m} / \mathrm{z}=204\left(\mathrm{M}^{+}\right)\right.$).
10: $\mathbf{R}_{\boldsymbol{f}} 0.61$ (pentane/EtOAc, 96:4); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.17-6.06(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{\text {ethylenic }}$), 5.85-5.77 (m, 2H, $\mathrm{H}_{\text {ethylenic }}$), 5.18 (br s, $1 \mathrm{H}, 7-\mathrm{H}$), 4.14-4.10 (hidden $\mathrm{q}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 3.05(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}$) , $3.01(\mathrm{br} \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 1.48\left(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.25-1.22$ (hidden $\left.\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ($6-\mathrm{H}$ and $9-\mathrm{H}_{\mathrm{a}}$ were hidden and not found); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3(\mathrm{C}=\mathrm{O}), 138.6$,
138.2 (C-5, C-2), 131.5 (C-8), 125.1, 123.8, $123.0(\mathrm{C}-4, \mathrm{C}-3, \mathrm{C}-7), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 45.5$, $43.1(\mathrm{C}-1, \mathrm{C}-6), 34.3(\mathrm{C}-10), 31.0(\mathrm{C}-9), 14.1\left(\mathrm{CH}_{3}\right) ;$ GC-MS (EI) : relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=8.73 \mathrm{~min}$ $\left(m / z=204\left(\mathrm{M}^{+}\right)\right)$.
(Z,E)-(2-(Bicyclo[4.2.1]nona-2,4-dien-7-ylidene)ethoxy)(tert-butyl)dimethylsilane (8f) and tert-butyldimethyl((8-methylenebicyclo[4.2.1]nona-2,4-dien-7-yl)methoxy)silane (9f) (Table 3, entry 7).

Following the procedure B, a solution of $7 \mathbf{f}(294 \mathrm{mg}, 1.6 \mathrm{mmols})$ in hexanes (20 mL) was added over 2 h to a solution of CHT-Cr $1(182 \mathrm{mg}, 0.8 \mathrm{mmols})$ in hexanes (220 mL), under irradiation. After addition, irradiation was kept 4 more hours. Work-up and purification by flash chromatography on SiO_{2} (cyclohexane/EtOAc, 100:0 to 98:2) afforded 9f ($57 \mathrm{mg}, 26 \%$) and $\mathbf{8 f}\left(26 \mathrm{mg}, 12 \%\right.$, inseparable $15: 85$ mixture of Z and E isomers, ratio determined by ${ }^{1} \mathrm{H}$ NMR on the purified mixture). Ratio $\mathbf{8 f} / \mathbf{9 f}$ of the reaction was determined by GC on the crude product before chromatography.
9f: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.44$ (cyclohexane/EtOAc, 98:2); IR (thin film): 3070, 3021, 2929, $2858\left(\mathrm{CH}_{\text {ethylenic }}\right), 1075 \mathrm{~cm}^{-1}$ (broad, C-O-Si); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.05(\mathrm{brt}$ t $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.88(\mathrm{dd}, J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.75(\mathrm{dd}, J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, $5.55(\mathrm{dd}, J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.82(\mathrm{br} \mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 4.78(\mathrm{br} \mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}$, one of $10-\mathrm{H}$), $3.83(\mathrm{dd}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 3.76(\mathrm{dd}, J=9.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $11-\mathrm{H}^{\prime}$), 3.36 (br t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.00-2.85 (m, 2H, 7-H, $6-\mathrm{H}$), 2.31-2.23 (m, 1H, 9H_{a}), $1.98\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5(\mathrm{C}-8), 138.0(\mathrm{C}-2), 135.5(\mathrm{C}-5), 125.8(\mathrm{C}-4), 123.7(\mathrm{C}-3)$, 106.1 (C-10), $62.9(\mathrm{C}-11), 59.7(\mathrm{C}-7), 45.2(\mathrm{C}-1), 41.9(\mathrm{C}-6), 31.1(\mathrm{C}-9), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $\left.18.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right),-5.38,-5.42\left(\mathrm{Si}^{(} \mathrm{CH}_{3}\right)_{2}\right)$; GC-MS $(\mathrm{EI}):$ relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.83 \mathrm{~min}(\mathrm{~m} / \mathrm{z}=276$ (M^{+}); ; HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 276.1909$; found: 276.1919 .

8f: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.28$ (cyclohexane/EtOAc, 98:2); IR (thin film) $(Z+E): 3019,2928$, $2857\left(\mathrm{CH}_{\text {ethylenic }}\right), 1099,1065 \mathrm{~cm}^{-1}$ (broad, C-O-Si); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(Z+E): E$ isomer, major: $\delta=6.00-5.92(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 5-\mathrm{H}), 5.62-5.57(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}), 5.28(\mathrm{br} \mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 4.11-4.09(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{H}), 3.30(\mathrm{br} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.76-2.71(\mathrm{~m}$ (br q), 1H, $6-\mathrm{H}), 2.57\left(\mathrm{br} \mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}\right), 2.48\left(\mathrm{br} \mathrm{dd}, J=17.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}\right.$),
2.23-2.16 (m, 1H, 9- H_{a}), $1.92\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.04(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$; Z isomer, minor: δ (residual) $=3.42$ (br t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z+E): E$ isomer, major: $\delta=152.3(\mathrm{C}-8), 138.5,137.3(\mathrm{C}-2, \mathrm{C}-5)$, 123.56, 123.54 (C-4, C-3), 120.3 (C-10), 61.5 (C-11), 45.5 (C-1), 42.1 (C-7), 38.6 (C-6), 31.7
 8), 138.1, 135.8 (C-2, C-5), 123.9, 123.8 (C-4, C-3), 120.0 (C-10), 62.9 (C-11), 47.6 (C-7), $41.4(\mathrm{C}-1), 38.9(\mathrm{C}-6), 32.8(\mathrm{C}-9), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~-5.03, ~-5.11\left(\mathrm{Si}^{2}\left(\mathrm{CH}_{3}\right)_{2}\right) \text {; }}\right.$ GC-MS (EI): 1 peak at $t_{R}=10.31 \min \left(m / z=276\left(\mathrm{M}^{+}\right)\right.$); HRMS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSi}\left(\mathrm{M}^{+}\right): 276.1909$; found: 276.1904 . The E geometry for the major isomer of $\mathbf{8 f}$ was established by ${ }^{1} \mathrm{H}$ NMR NOE studies.

(Z,E)-2-(Bicyclo[4.2.1]nona-2,4-dien-7-ylidene)ethanol (8g) and (8-methylenebicyclo[4.2.1]nona-2,4-dien-7-yl)methanol (9g) (Table 3, entry 8).

1

7g

Following the Procedure A, a solution of CHT-Cr $1(137 \mathrm{mg}, 0.6 \mathrm{mmols})$ and $\mathbf{7 g}(185 \mathrm{mg}, 1.2$ mmols) in hexanes (200 mL) was irradiated for 4 h . After filtration over celite and concentration, the residue was dissolved in methanol (4 mL), and the resulting solution was refluxed for 2 h in the presence of a catalytic amount of PPTS. Then, the solvent was removed and the obtained residue diluted in EtOAc. The solution was washed with brine, dried over MgSO_{4}, filtered and concentrated. The crude residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, 80:20) to give $\mathbf{9 g}(23 \mathrm{mg}, \mathbf{2 4 \%}$) and $\mathbf{8 g}(17 \mathrm{mg}, 17 \%$, inseparable 35:65 mixture of Z and E isomers, ratio based on ${ }^{1} \mathrm{H}$ NMR on the purified mixture).
9g: colorless oil; $\mathbf{R}_{\boldsymbol{f}} 0.41$ (pentane/EtOAc, 80:20); IR (thin film): 3348 (broad, OH), 3071, 3021, 2928, $2874 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.04$ (brt, $J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 5.91$ (dd, $J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.79$ (dd, $J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.56$ (dd, $J=10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 4.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 3.90$ (dd, $J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}$), 3.84 (dd, $J=10.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}^{\prime}$), 3.36 (br t, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, 1-\mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 2.93-2.88(\mathrm{~m}(\mathrm{br} \mathrm{q}), 1 \mathrm{H}, 6-\mathrm{H}), 2.32-2.26\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right)$, $2.00\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.8(\mathrm{C}-8), 138.1(\mathrm{C}-$ 2), 134.5 (C-5), 126.5 (C-4), 123.6 (C-3), 106.2 (C-10), 62.9 (C-11), 59.1 (C-7), 45.2 (C-1), $41.5(\mathrm{C}-6), 31.1(\mathrm{C}-9)$. MS (ESI): $m / z=163\left(\mathrm{M}+\mathrm{H}^{+}\right), 185\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (EI): m / z calcd
for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 162.1045; found: 162.1047. The relative endo stereochemistry at $\mathrm{C}-7$ of $\mathbf{9 g}$ was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies performed on its p-nitrobenzoate ester derivative.
8g: colorless oil; $\mathbf{R}_{f} 0.30$ (pentane/EtOAc, 80:20); IR (thin film) $(Z+E)$: 3334 (broad, OH), 3016, 2923, $2876 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{1} \mathbf{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z+E): \delta=6.10-5.93(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 5.70-5.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right), 5.46-5.35(\mathrm{~m}, 2 \mathrm{H}, 10-\mathrm{H}(Z+E))$, 4.14-4.02 (m, 4H, 11-H $(Z+E)$), 3.49 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(Z)$), 3.32 (br t, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}, 1-\mathrm{H}(E)$), 2.79-2.45 (m, 6H, 6-H, 7-H $(Z+E)$), 2.27-2.16 (m, $2 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}(Z+E)$), 1.94 (br d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(E), 1.92\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z) ;{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right)(Z+E): E$ isomer, major: $\delta=154.7(\mathrm{C}-8), 138.5,137.2(\mathrm{C}-2, \mathrm{C}-5), 123.7,123.5(\mathrm{C}-4$, $\mathrm{C}-3), 119.5$ (C-10), 60.6 (C-11), 45.4 (C-1), 42.0 (C-7), 38.5 (C-6), 31.7 (C-9); Z isomer, minor: $\delta=153.8$ (C-8), 138.1, 136.4 (C-2, C-5), 124.2, 123.6 (C-4, C-3), 119.3 (C-10), 62.3 (C-11), 47.8 (C-7), 41.0, 38.9 (C-1, C-6), 32.7 (C-9).
Obtention of pure isomer (Z)-8g. To a suspension of LAH ($11 \mathrm{mg}, 0.27 \mathrm{mmols}$) in diethyl ether (1 mL) at $-78{ }^{\circ} \mathrm{C}$ was introduced slowly a solution of pure ester $(Z)-8 \mathbf{e}(69 \mathrm{mg}, 0.338$ $\mathrm{mmols})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting mixture was stirred for 1 h by warming up the mixture to rt . Water was added and the resulting mixture was filtered through a short pad of celite, and the cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated from the aqueous layer, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, $80: 20$) to yield alcohol $Z-8 \mathbf{g}(33 \mathrm{mg}, 53 \%)$ as a colorless oil: $\mathbf{R}_{f} 0.30$ (pentane/EtOAc, 80:20); IR (thin film): 3331 (broad, OH), 3016, 2926, $2879 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.06(\mathrm{brt}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.98(\mathrm{dd}, J=$ $10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $5.68-5.59(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}), 5.44-5.40(\mathrm{~m}(\mathrm{ct}), 1 \mathrm{H}, 10-\mathrm{H}), 4.13-4.02$ (m, 2H, 11-H), 3.48 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}, 7-$ H), 2.25-2.19 (m, 1H, 9- H_{a}), $1.91\left(\mathrm{dd}, J=12.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , CDCl_{3}): $\delta=153.8(\mathrm{C}-8), 138.1(\mathrm{C}-5), 136.3(\mathrm{C}-2), 124.2,123.6(\mathrm{C}-4, \mathrm{C}-3), 119.3(\mathrm{C}-10)$, 62.2 (C-11), 47.8 (C-7), 41.0 (C-1), 38.9 (C-6), 32.7 (C-9); HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 162.1045 ; found: 162.1043 . The Z geometry was confirmed by ${ }^{1} \mathrm{H}$ NMR NOE studies.
(Z,E)-7-(Methoxymethylene)bicyclo[4.2.1]nona-2,4-diene (8h) and 7-methoxy-8-methylenebicyclo[4.2.1]nona-2,4-diene (9h) (Table 3, entry 9).

1

7h

Following the procedure B , a solution of $7 \mathrm{~h}(56 \mathrm{mg}, 0.8 \mathrm{mmols})$ in hexanes (20 mL) was added over 2 h to a solution of CHT-Cr $1(91 \mathrm{mg}, 0.4 \mathrm{mmols})$ in hexanes (200 mL), under irradiation. After addition, irradiation was kept 4 more hours. Treatment with $\mathrm{P}(\mathrm{OMe})_{3}$ after irradiation, followed by purification by flash chromatography on SiO_{2} (pentane/EtOAc, 96:4) gave $\mathbf{8 h}(8 \mathrm{mg}, 12 \%$, inseparable $35: 65$ mixture of Z and E isomers, ratio determined by GC on the purified mixture) and $\mathbf{9 h}(25 \mathrm{mg}, 39 \%)$. Ratios $\mathbf{8 h} / \mathbf{9 h}$ and $(Z) \mathbf{- 8 h} /(E)-\mathbf{8 h}$ of the reaction were determined by GC on the crude product before chromatography.
8h: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.54$ (pentane/EtOAc, 96:4); IR (thin film) $(Z+E)$: 3015, 2924, 2833 $\left(\mathrm{CH}_{\text {ethylenic }}\right), 1688(\mathrm{O}-\mathrm{C}=\mathrm{C}), 1221,1176,1117 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z$ $+E): \delta=6.22-5.54\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {ethylenic }}(Z+E)\right.$), $3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}(E\right.$, major) $), 3.52(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{3}(Z$, minor) $), 3.44$ (br t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(Z)$), 3.22 (br t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}(E)$), 2.75-2.45 (m, $6 \mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}(Z+E)$), 2.23-2.13 (m, 2H, $9-\mathrm{H}_{\mathrm{a}}(Z+E)$), 1.97 (br d, $J=12.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(E)\right), 1.88\left(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}(Z)\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z+E)$: E isomer, major: $\delta=139.6,139.0,138.2$ (C-5, C-2, C-10), 130.1 (C-8), 123.4, 123.3 (C-3, C4), $59.4\left(\mathrm{OCH}_{3}\right), 41.2(\mathrm{C}-1), 40.5(\mathrm{C}-7), 38.7(\mathrm{C}-6), 32.8(\mathrm{C}-9) ; Z$ isomer, minor: $\delta=139.3$, 137.8, 137.0 (C-5, C-2, C-10), $127.8(\mathrm{C}-8), 124.0,123.1(\mathrm{C}-3, \mathrm{C}-4), 59.4\left(\mathrm{OCH}_{3}\right), 43.0(\mathrm{C}-7)$, 39.69, 39.66 (C-1, C-6), 32.9 (C-9); GC-MS (EI): relative $t_{R}: t_{R}=7.18 \mathrm{~min}(m i n o r ~ Z$ isomer, $m / z=162\left(\mathrm{M}^{+}\right)$), $\mathrm{t}_{\mathrm{R}}=7.34 \min$ (major E isomer, $m / z=162\left(\mathrm{M}^{+}\right)$); HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 162.1045 ; found: 162.1048 . The E geometry for the major isomer of $\mathbf{8 h}$ was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies.
9h: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.43$ (pentane/EtOAc, 96:4); IR (thin film): 3079, 3019, 2925, 2820 $\left(\mathrm{CH}_{\text {ethylenic }}\right), 1220,1196,1118 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{C}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.19$ (br t, $J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.90-5.80(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}), 5.59(\mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.18(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 4.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 4.20(\mathrm{dt}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.48(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.34 (br t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}\right), 2.99(\mathrm{br} \mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.20-2.14$ (m, $1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}$), 1.89 (br d, $\left.J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.6(\mathrm{C}-8)$, $138.8(\mathrm{C}-2), 132.4(\mathrm{C}-5), 126.8(\mathrm{C}-4), 123.9(\mathrm{C}-3), 109.1(\mathrm{C}-10), 94.1(\mathrm{C}-7), 58.3\left(\mathrm{OCH}_{3}\right)$,
41.4 (C-6), 40.6 (C-1), $27.4(\mathrm{C}-9)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=7.08 \mathrm{~min}\left(\mathrm{~m} / \mathrm{z}=162\left(\mathrm{M}^{+}\right)\right.$); HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 162.1045; found: 162.1049. The relative endo stereochemistry at $\mathrm{C}-7$ of $\mathbf{9 h}$ was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies (See Figure 1, page S25).
(Z,E)-(Bicyclo[4.2.1]nona-2,4-dien-7-ylidenemethoxy)(tert-butyl)dimethylsilane (8i), tert-butyldimethyl(8-methylenebicyclo[4.2.1]nona-2,4-dien-7-yloxy)silane (9i) and tetracyle 11 (Table 3, entry 13).

1

Following the procedure B , a solution of $7 \mathbf{i}(136 \mathrm{mg}, 0.8 \mathrm{mmols})$ in hexanes $(20 \mathrm{~mL})$ was added over 2 h to a solution at $0^{\circ} \mathrm{C}$ of CHT-Cr $\mathbf{1}(91 \mathrm{mg}, 0.4 \mathrm{mmols})$ in hexanes (200 mL), under irradiation. After addition, irradiation was kept 1 more hour. Treatment with $\mathrm{P}(\mathrm{OMe})_{3}$ after irradiation, followed by purification by flash chromatography on SiO_{2} (cyclohexane/DCM, 96:4) furnished $\mathbf{8 i}$ ($38 \mathrm{mg}, 36 \%$, separable $40: 60$ mixture of Z and E isomers, ratio determined by GC on the purified mixture), $\mathbf{9 i}$ ($29 \mathrm{mg}, 28 \%$), and tetracycle 11 ($8 \mathrm{mg}, 5 \%$, one unique stereomer). Ratios $\mathbf{8 i} / \mathbf{9 i}$ and $(Z)-\mathbf{8 i} /(E)-\mathbf{8 i}$ of the reaction were determined by GC on the crude product before chromatography.

Pure (Z)-8i: colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.43$ (cyclohexane/EtOAc, 96:4); IR (thin film): 3018, 2929, $2858\left(\mathrm{CH}_{\text {ethylenic }}\right), 1680(\mathrm{O}-\mathrm{C}=\mathrm{C}), 1253,1154,1120 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}): $\delta=6.18(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.11(\mathrm{br} \mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 5.91(\mathrm{dd}$, $J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.66(\mathrm{dd}, J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.55(\mathrm{dd}, J=10.4,7.6 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}$), 3.47 (br t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 2.69-2.53 (br q $, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 2.53-2.42 (m, 2H, 7-H), 2.19-2.13 (m, 1H, 9-Ha), 1.88 (dd, $\left.J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 0.92(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09,0.08\left(2 * \mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.9(\mathrm{C}-2)$, 136.9 (C-5), 131.6 (C-10), 131.0 (C-8), 124.0 (C-4), 122.9 (C-3), 42.5 (C-7), 39.82, 39.76 (C-

relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.54 \mathrm{~min}\left(\mathrm{~m} / \mathrm{z}=262\left(\mathrm{M}^{+}\right)\right.$); HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{OSi}$ $\left(\mathrm{M}^{+}\right): 262.1753$; found: 262.1750. The Z geometry was etablished by ${ }^{1} \mathrm{H}$ NMR NOE studies. (E)-8i (purity 93% by GC): colorless liquid; $\mathbf{R}_{\boldsymbol{f}} 0.34$ (cyclohexane/EtOAc, 96:4); IR (thin film): 3018, 2930, $2857\left(\mathrm{CH}_{\text {ethylenic }}\right)$, $1678(\mathrm{O}-\mathrm{C}=\mathrm{C}), 1254,1175,1129 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.07$ (br s, $\left.1 \mathrm{H}, 10-\mathrm{H}\right), 6.00-5.96(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.91$ (br t, $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.61-5.52(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 3-\mathrm{H}), 3.22(\mathrm{brt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 2.73-2.68$ (br q (overlapping with d at 2.67 ppm), $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), $2.67\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{d}}\right.$), 2.49 (ddd, $\left.J=16.8,8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{c}}\right), 2.23-2.17\left(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 1.96(\mathrm{dd}, J=12.0,1.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09,0.08\left(2 * \mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta=138.9(\mathrm{C}-5), 138.3(\mathrm{C}-2), 134.3(\mathrm{C}-8), 132.1(\mathrm{C}-10), 123.4,123.1(\mathrm{C}-3, \mathrm{C}-4)$, $41.0(\mathrm{C}-1), 40.6(\mathrm{C}-7), 38.4(\mathrm{C}-6), 32.9(\mathrm{C}-9), 25.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-5.26, ~-5.30}\right.$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;$ GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=9.58 \mathrm{~min}\left(m / z=262\left(\mathrm{M}^{+}\right)\right) ;$HRMS $(\mathrm{EI}): m / z$ calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$: 262.1753 ; found: 262.1759. The E geometry was etablished by ${ }^{1} \mathrm{H}$ NMR NOE studies.

9i: yellowish liquid; $\mathbf{R}_{\boldsymbol{f}} 0.26$ (cyclohexane/DCM, 96:4); IR (thin film): 3079, 3023, 2929, $2856\left(\mathrm{CH}_{\text {ethylenic }}\right), 1130 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.22(\mathrm{brt} \mathrm{t}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.88-5.81(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}$, one of $10-$ H), $4.92(\mathrm{~m}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 4.59(\mathrm{dt}, J=5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.34(\mathrm{br} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $1-\mathrm{H}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.17\left(\mathrm{ddd}, J=12.0,8.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}\right), 1.81(\mathrm{br} \mathrm{d}, J=12.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=158.7$ (C-8), 139.1 (C-2), 134.6 (C-5), 126.1 (C-4), 124.2 (C-3), 108.1 (C-10), $86.4(\mathrm{C}-7)$, $45.0(\mathrm{C}-6), 39.8(\mathrm{C}-1), 27.4(\mathrm{C}-9), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),-4.9\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \text {; GC-MS }}\right.$ (EI): relative $t_{R}: t_{R}=9.31 \mathrm{~min}\left(m / z=262\left(\mathrm{M}^{+}\right)\right) ;$HRMS (EI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{OSi}$ $\left(\mathrm{M}^{+}\right): 262.1753$; found: 262.1761. The relative endo stereochemistry at C-7 of $\mathbf{9 i}$ was determined by ${ }^{1} \mathrm{H}$ NMR NOE studies (See Figure 1, page S25).
11: white oil which solidifies at rt; $\mathbf{R}_{\boldsymbol{f}} 0.63$ (cyclohexane/EtOAc, $96: 4$); $\mathbf{M p}=57-58{ }^{\circ} \mathrm{C}$; IR (thin film): 3070, 3024, 2952, 2935, 2886, $2862\left(\mathrm{CH}_{\text {ethylenic }}\right)$, 1151, 1104, 1065, 1010 (C-O$\mathrm{Si}), 863,842 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Si}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.65$ (br dd, $J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{H}$), $5.46-5.41(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.82\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 13-\mathrm{H}_{\mathrm{b}}\right.$), 4.63 (br s, $1 \mathrm{H}, 13-\mathrm{H}_{\mathrm{a}}$), 4.01 (br d, $J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}$), 3.63 (br s, 1H, 7-H), 2.81 (br m, 1H, $5-\mathrm{H}$), 2.34-2.22 (m, $5 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 6-$ $\mathrm{H}, 10-\mathrm{H}), 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}, 9-\mathrm{H}), 1.44\left(\mathrm{br} \mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of one TBS $), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of one TBS $), 0.06,0.04,0.03,0.01\left(4 * \mathrm{~s}, 12 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of two TBS); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.72$ (br dd, $J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 5.44 (br ddd, $J=9.6,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 4.86 (br t, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}_{\mathrm{b}}$), 4.69 (br t, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$,
$13-\mathrm{H}_{\mathrm{a}}$), 4.10 (br d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}$), 3.69 (br s, 1H, 7-H), 3.08 (br m, 1H, 5-H), 2.69 (br d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}$), $2.62\left(\mathrm{br} \mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}^{\prime}\right), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 2.43-$ $2.40(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 2.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 6-\mathrm{H}), 1.66-1.58(\mathrm{~m}, 2 \mathrm{H}, 9-\mathrm{H}), 0.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of one TBS), $0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ of one TBS), $0.09,0.08\left(2 * \mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right.$ of one TBS), $0.02(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$ of one TBS); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.4(\mathrm{C}-11)$, 129.2 (C-4), 128.0 (C-3), 112.7 (C-13), 81.0 (C-7), 76.3 (C-12), 50.6 (C-8), 49.2 (C-6), 45.0 (C-2), 42.9
 4.7, -4.9, -5.1 $\left(\mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=146.2(\mathrm{C}-11), 129.6(\mathrm{C}-4), 128.1$ (C-3), 113.5 (C-13), 81.5 (C-7), 76.9 (C-12), 51.1 (C-8), 49.7 (C-6), 45.5 (C-2), 43.5 (C-5), $\left.32.9(\mathrm{C}-10), 32.2(\mathrm{C}-1), 26.9(\mathrm{C}-9), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{C}_{3} \mathrm{CH}_{3}\right)_{3}\right),-4.5,-4.6,-4.8,-4.9$ $\left(\mathrm{Si}\left(\mathrm{CH}_{2}\right)_{3}\right)$; GC-MS (EI): relative $\mathrm{t}_{\mathrm{R}}: \mathrm{t}_{\mathrm{R}}=13.42\left(\mathrm{~m} / \mathrm{z}=432\left(\mathrm{M}^{+}\right)\right.$); HRMS $(\mathrm{EI}): m / z$ calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} \quad\left(\mathrm{M}^{+}\right): 432.2880$; found: 432.2890. Elemental analysis (\%) calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2}$: C, $69.38 ; \mathrm{H}, 10.25$; found: C, $69.19 ; \mathrm{H}, 10.42$. The structural and stereochemical assignment of $\mathbf{1 1}$ was confirmed by X-ray crystallographic analysis performed on its diol derivative 19 (See pages S27-S28).

4. Cycloaddition between 1 and (S)-4a, and determination of ee

Following the Procedure A, a solution of CHT-Cr $\mathbf{1}$ ($74 \mathrm{mg}, 0.32 \mathrm{mmols}$) and allene (S)-4a $(126 \mathrm{mg}, 0.48 \mathrm{mmols}, 60 \% \mathrm{ee})$ in hexanes $(100 \mathrm{~mL})$ was irradiated for 6 h . Treatment with $\mathrm{P}(\mathrm{OMe})_{3}$ after irradiation, followed by purification by flash chromatography (cyclohexane/DCM, 96:4) provided (E)-5a ($50 \mathrm{mg}, 45 \%$). Then, cyloadduct $\mathbf{5 a}$ was diluted in THF (2 mL) , and TBAF (1 M in THF, $185 \mu \mathrm{~L}, 0.185 \mathrm{mmols}$) was introduced slowly at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was held at $0^{\circ} \mathrm{C}$ for 5 min and then stirred at rt for 3 h . The mixture was quenched with water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography (pentane/EtOAc, 90:10 to $80: 20$) to give $\mathbf{5 b}$ ($22 \mathrm{mg}, 65 \%$) in 54% ee $\left([\alpha]_{\mathbf{D}}^{23}=-350.3^{\circ}\left(\mathrm{c}=0.90\right.\right.$ in $\left.\left.\mathrm{CHCl}_{3}\right)\right)$. The ee was determined by ${ }^{1} \mathrm{H}$ NMR analysis after derivatization into the corresponding Mosher ester ${ }^{15}$: to a solution of $\mathbf{5 b}$ ($9.5 \mathrm{mg}, 0.4 \mathrm{mmols}$) in $\mathrm{CDCl}_{3}(500 \mu \mathrm{~L})$ at rt was added successively pyridine (3 equiv), DMAP and (R)-(-)-MTPA chloride (1.5 equiv). After 1.5 h of stirring, the mixture was filtered through cotton and the resultant solution was directly analysed by ${ }^{1} \mathrm{H}$ NMR. The signal at 3.95 ppm (one proton 11H) appears split as two dd at 4.69 and 4.58 ppm . The ee was measured by integration. See copies of ${ }^{1} \mathrm{H}$ NMR spectra (racemic + enantioenriched) attached (See pages S95-S96).

5. Some examples of stereochemical rationales

5.1. Indirect stereochemical assignment for 3c via its alcohol derivative 17

NOE studies could not be done directly on 3c because the protons $7-\mathrm{H}$ and $6-\mathrm{H}$ were not split enough. It could be however performed on its alcohol derivative 17 obtained after removal of the TBS protecting group in 3c as described after:

To a solution of $3 \mathbf{c}(39 \mathrm{mg}, 0.113 \mathrm{mmols})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was introduced slowly TBAF (1 M in THF, $423 \mu \mathrm{~L}, 0.423 \mathrm{mmols}$). The mixture was held at $0^{\circ} \mathrm{C}$ for 5 min and then stirred at rt for 4 h . The mixture was quenched with water and extracted with EtOAc. The organic extracts were combined, washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, 90:10) to give alcohol 17 ($17 \mathrm{mg}, 65 \%$) as a colorless oil: $\mathbf{R}_{f} 0.25$ (pentane/EtOAc, 90:10); IR (thin film): 3347 (broad, OH), $3016 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{\text {ethylenic }}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.01$ (dd, $J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.88-5.81(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 2-\mathrm{H}), 5.59(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 3.76$ (dd, $J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 3.52(\mathrm{br} \mathrm{t}, J=11.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}$), 3.33 (br $\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 3.05-2.99(\mathrm{br} \mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.22-$ $1.96\left(\mathrm{~m}, 7 \mathrm{H}, 9-\mathrm{H}_{\mathrm{a}}, \mathrm{H}\right.$ of cyclohexane), $1.98\left(\mathrm{br} \mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right), 1.60-1.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}$ of cyclohexane); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.92(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.77-$ 5.69 (m, 2H, 4-H, 2-H), 5.54 (br dd, $J=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 3.74 (dd, $J=10.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{H}$), 3.56 (br t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}$), $3.15(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}), 3.08-2.99(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, 2.92-2.83 (m, 1H, 6-H), 2.00-1.80 (m, 8H, 9-H, H of cyclohexane), 1.45-1.30 (m, 4H, H of cyclohexane); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.2(\mathrm{C}-8$ or $\mathrm{C}-10), 136.1,134.6(\mathrm{C}-2, \mathrm{C}-$ 5), 130.2 (C-8 or C-10), 126.9 (C-4), 123.1 (C-3), 64.2 (C-11), 53.9 (C-7), 44.1 (C-1), 40.0 (C-6), $33.5\left(\mathrm{CH}_{2}\right.$ of cyclohexane), $31.9(\mathrm{C}-9), 30.2,28.2,27.9,26.6\left(\mathrm{CH}_{2}\right.$ of cyclohexane); MS (ESI): $m / z=231\left(\mathrm{M}^{+} \mathrm{H}^{+}\right), 253\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$ $\left(\mathrm{M}^{+}\right): 230.1671$; found: 230.1678 . NOE correlations were seen between $7-\mathrm{H}$ and $6-\mathrm{H}$, as well as between $7-\mathrm{H}$ and $9-\mathrm{H}_{\mathrm{a}}$, which is consistent with the endo stereochemistry assignment.

5.2. Representative ${ }^{1} \mathrm{H}$ NMR NOE data for (E)-5a, (Z)-8e, and 9h-i

In compounds $(E)-5 a$ and $(Z)-\mathbf{8 e}$, no NOE was seen between $1-\mathrm{H}$ and $10-\mathrm{H}$, which does suggest that $10-\mathrm{H}$ is syn to C-7 (Figure 1). NOE correlations were seen between $10-\mathrm{H}$ and $7-$ H , and between $10-\mathrm{H}$ and $11-\mathrm{H}$ in $\mathbf{5 a}$.

In compounds $\mathbf{5 a}, \mathbf{9 h}$ and $\mathbf{9 i}$, NOE correlations were seen between $7-\mathrm{H}$ and $\mathbf{6 - H}$, as well as between $7-\mathrm{H}$ and $9-\mathrm{H}_{\mathrm{a}}$, suggestive of the endo stereochemistry at C-7. Moreover, in compounds $\mathbf{9 h}$ and $\mathbf{9 i}, 7-\mathrm{H}$ and $6-\mathrm{H}$ display a coupling constant with a J value of 6.4 Hz (in $\mathbf{9 h}$) and 5.6 Hz (in $\mathbf{9 i}$), which also confirms the stereochemical assignment. In the case of the exo isomer, this constant would be close to zero because of an angle $\mathrm{H}_{\text {endo }}-(\mathrm{C}-7)-(\mathrm{C}-6)-\mathrm{H}$ around 90° (from molecular models).

Figure 1.

6. Derivatization of 5 a into p-nitrobenzoate ester 18, and X-Ray structure of 18

To a solution of (E)-5a ($55 \mathrm{mg}, 0.156 \mathrm{mmols}$) in THF (2 mL) at $0^{\circ} \mathrm{C}$ was introduced slowly TBAF (1 M in THF, $172 \mu \mathrm{~L}, 0.172 \mathrm{mmols}$). The mixture was held at $0^{\circ} \mathrm{C}$ for 5 min and then stirred at rt for 3 h . The mixture was quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (pentane/EtOAc, 80:20) to give alcohol (E)-5b (27 mg, 73\%) as a colorless oil. The IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as well
as the mass data were in complete accord with those obtained from material prepared above by cycloaddition with allene $\mathbf{4 b}$ (Table 2, entry 3). Then, to a solution of the obtained alcohol 5b ($21 \mathrm{mg}, 0.09 \mathrm{mmols}$) in DCM (2 mL) at rt was added successively DMAP ($1 \mathrm{mg}, 0.009$ mmols), pyridine ($23 \mu \mathrm{~L}, 0.28 \mathrm{mmols}$) and 4-nitrobenzoyl chloride ($33 \mathrm{mg}, 0.18 \mathrm{mmols}$). The mixture was stirred at rt for 41 h . Water was added, and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, 100:0 to 90:10) to afford ester $\mathbf{1 8}(21 \mathrm{mg}, 60 \%)$ as a yellow solid: $\mathbf{R}_{f} 0.60$ (100% pentane); $\mathbf{M p}=105^{\circ} \mathrm{C}$; $\mathbf{I R}(\mathrm{KBr}): 1724 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}$ of nitro benzyl), $8.24\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$ of nitro benzyl), 7.35-7.21 (m, $5 \mathrm{H}, \mathrm{H}_{\text {arom }}$ of phenyl), $6.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 10-\mathrm{H}), 6.17-6.12(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.92-5.84(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 5-$ H), $5.67-5.62(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.78(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}), 4.50(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.11-\mathrm{H}^{\prime}\right), 3.76$ (br t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 3.48-3.42 (m, 1H, 7-H), 3.06-3.01 (m, 1H, $6-\mathrm{H}$), 2.39-2.32 (m, 1H, 9- H_{a}), $2.10\left(\mathrm{br} \mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=164.5\left(\mathrm{C}=\mathrm{O}\right.$ of ester), 150.6 (2 lines, $\mathrm{C}-8$ and $\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{\text {arom }}$), 137.8 ($i-\mathrm{C}_{\text {arom }}$ of phenyl), 135.7 $\left(\mathrm{RO}_{2} \mathrm{C}-C_{\text {arom }}\right), 135.3,133.3$ (C-2, C-5), 130.7, 128.4, 127.7, 126.9, 126.7, 124.2, 123.6, 122.5 $\left(\mathrm{CH}_{\text {arom }}\right.$ of phenyl and nitrobenzyl, C-3, C-4, C-10), 66.8 (C-11), 56.3 (C-7), 42.6 (C-1), 40.5 (C-6), 32.0 (C-9); HRMS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right): 387.1471$; found: 387.1477.
Elemental analysis (\%) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 74.40 ; H, 5.46 ; N, 3.62; found: C, 74.14; H, 5.45 ; N, 3.57. The solid was dissolved with a minimum of diethyl ether, and hexanes was added. Solvents were evaporated very slowly to give yellow crystals which were dried and further analyzed by X-ray analysis (See Figure 2).

Figure 2. X-Ray structure of 18

7. Deprotection of TBS-protecting groups in 11, and X-Ray structure of the corresponding diol 19

To a solution of $11(59 \mathrm{mg}, 0.136 \mathrm{mmols})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was introduced slowly TBAF (1 M in THF, $1.36 \mathrm{~mL}, 1.36 \mathrm{mmols}$). The mixture was held at $0^{\circ} \mathrm{C}$ for 5 min and then stirred at rt for 3 days. The mixture was quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography on SiO_{2} (pentane/EtOAc, 30:70) to give diol 19 ($18 \mathrm{mg}, 64 \%$) as a yellow visqueous oil. The oil was triturated in diethyl ether, and the resultant solid residue was filtered, washed with cold $\mathrm{Et}_{2} \mathrm{O}$ and dried to give a white solid: $\mathbf{R}_{\boldsymbol{f}}$ 0.37 (pentane/EtOAc, 30:70); $\mathbf{M p}\left(\mathrm{Et}_{2} \mathrm{O}\right)=157-158{ }^{\circ} \mathrm{C}$; $\mathbf{I R}$ (thin film): $3362,3281 \mathrm{~cm}^{-1}$ (broad, OH); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.68(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), $5.50(\mathrm{br}$ ddd, $J=9.6,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 4.92 (br t, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}_{\mathrm{b}}$), 4.81 (br t, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $13-\mathrm{H}_{\mathrm{a}}$), $4.12(\mathrm{br} \mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 3.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, 7-\mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 2.52(\mathrm{br} \mathrm{dt}$, $J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, one of $10-\mathrm{H}), 2.46-2.31(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 6-\mathrm{H}$, one of $10-\mathrm{H}), 1.71-1.68$ ($\mathrm{m}, 1 \mathrm{H}, 9-\mathrm{H}$), $1.52\left(\mathrm{br} \mathrm{dt}, J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 145.4 (C-11), 128.9, 128.0 (C-4, C-3), 114.8 (C-13), 80.9 (C-7), 75.8 (C-12), 49.9 (C-8), 48.9 (C-6), 43.0, 42.9 (C-2, C-5), 31.8 (C-1), 31.5 (C-10), 26.5 (C-9); HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right):$204.1150; found: 204.1150. Elemental analysis (\%) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 76.44; H, 7.90; found: C, 76.19; H, 7.99. The solid was dissolved in diethyl ether by heating, and the resulting solution was evaporated very slowy to furnish yellow crystals which were dried and further analyzed by X-ray analysis (See Figure 3, page S28).

Figure 3. X-Ray structure of diol 19 (one enantiomer represented)

proton spectrum /in CDQ_{3}

Mercury 400 spectrometer
CoTHP

2
3
f
1.47
$1.28^{1.34}$

子
in
1.00
-6
7.

N

4
4.36
1.20

Morcury 400 spectrometer

[^6]| 者 | 上 |
| :--- | :--- |

$\frac{2}{2}$
$\stackrel{\sim}{\sim}$

＊\＄＊ 8 た

58L．9てT 0Z8．9ZT

000°
8 TE＊LL

$$
0-\frac{x}{1}
$$

\％
Mercury 400 appectrometer
in COCl_{3}
6 ss ＊$\%$ —

98L＇ε と
－\angle と「 9 た
L95．9ZT

$07 \cdot 68 \tau$
$\angle T \cdot 6 \tau T$
68て．6てT

140

pulse sequence: s2pul CDCl

pulse Sequence: s2pul

[^7]Pulse Sequence: s2pul

Mercury 400 spectrometer

ppm

iv 子

- न̈
$\stackrel{\text { n }}{\sim}$

$\underbrace{}_{\substack{3.60 \\ 0.83}} 7.06 .5$
carbon spectrum in COCQ_{3}
Pulse Sequence：s2pul

$986 \cdot 96$

とて・モも
$609 * 09$
Mercury 400 spectrometer

$\stackrel{508 \cdot 24}{ }$

$$
\tau 89^{\circ} \nabla \varepsilon \tau-
$$

TカS＇seT
とE6＊TST

$$
2
$$

$$
\text { Mercury } 400 \text { spectrometor }
$$

pulse sequence: s2pul

Proton spectrum / COQl_{3}

carbon apectrum in CDCl_{3}
Pulse Sequence: s2pul

$$
\text { proton spectrum in } \mathrm{COCl}_{3}
$$

pulse sequence: ${ }^{2}$ pul

proton spectrum $\mathrm{in} \mathrm{CSCl} \mathrm{Cl}_{3}$

$$
\begin{aligned}
& \text { carbon spectrum } \operatorname{in} \mathrm{CDCl}_{3} \\
& \text { Pulse sequence: s2pul }
\end{aligned}
$$

pulse sequence: s2pul $C_{6} D_{6}$

$$
\text { Carbon spectrum } \mathrm{m} \text { CCl }
$$

proton spectrum in CDCl_{3}
pu1se seguence: s2pul
Proton spectrum in $\mathrm{C}_{6} D_{6}$

Carbon spectrum incDCl
Pulse Sequence: ${ }^{\text {s2pul }}$
\qquad

$002 \cdot L L$
6TE. $\angle L$

[^0]: ${ }^{1}$ Still, W. C.; Khan, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
 ${ }^{2}$ Vermeer, P.; Meijer, J.; Brandsma, L. Recl. Trav. Chim. Pays-Bas 1975, 94, 112-114.
 ${ }^{3}$ Bailey, W. J.; Pfeifer, C. R. J. Org. Chem. 1955, 20, 95-101.
 ${ }^{4}$ Moreau, J. L.; Gaudemard, M. J. Organomet. Chem. 1976, 108, 159-154.

[^1]: ${ }^{5}$ Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002, 41, 3901-3903.
 ${ }^{6}$ (a) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958-5959. (b) Nakamura, H.; Kamakura, T.; Onagi, S. Org. Lett. 2006, 8, 2095-2098.
 ${ }^{7}$ (a) Crabbé, P.; Nassim, B.; Robert-Lopes, M.-T. Org. Synth. 1984, 63, 203-205. (b) Searles, S.; Li, Y.; Nassim, B.; Robert-Lopes, M.-T.; Tran, P. T.; Crabbé, P. J. Chem. Soc. Perkin Trans. I 1984, 747-751.
 ${ }^{8}$ Weiberth, F. J.; Hall, S. S. J. Org Chem. 1985, 50, 5308-5314.
 ${ }^{9}$ Stergiades, I. A.; Tius, M. A. J. Org. Chem. 1999, 64, 7547-7551.
 ${ }^{10}$ You, Z.-W.; Jiang, Z.-X.; Wang, B.-L.; Qing, F.-L. J. Org. Chem. 2006, 71, 7261-7267.
 ${ }^{11}$ Synthesis of compound 14 was mentioned in the literature: Shibata, T.; Takami, K.; Arai, Y.; Tsuchikama, K.; Maekawa, S. Bull. Chem. Soc. Jpn. 2004, 77, 1937-1938; but no spectroscopic data were reported.
 ${ }^{12}$ Konoike, T.; Araki, Y. Tetrahedron Lett. 1992, 33, 5093-5096.

[^2]: ${ }^{13}$ Synthesis of compound 13 was mentioned in the literature: Jiang, B.; Feng, Y. Tetrahedron Lett. 2002, 43, 2975-2978; but no spectroscopic data were reported.

[^3]: ${ }^{14}$ a) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806-1807. (b) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687-9688. (c) Boyall, D; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605-2606
 ${ }^{15}$ Ward, D. E.; Rhee, C. K. Tetrahedron Lett. 1991, 32, 7165-7166.
 ${ }^{16}$ Mannschreck, A.; Munninger, W.; Burgemeister, T.; Gore, J.; Cazes, B. Tetrahedron 1986, 42, 399-408.

[^4]: ${ }^{17}$ Tanaka, K.; Shoji, T. Org. Lett. 2005, 7, 3561-3563.
 ${ }^{18}$ Riveiros, R.; Rodriguez, D.; Pérez Sestelo, J.; Sarandeses, L. A. Org. Lett. 2006, 8, 1403-1406.
 ${ }^{19}$ Synthesis of 4 -phenylbuta-2,3-dien-1-ol 16 is well-described in the literature: Vinson, N. A.; Day, C. S.; Welker, M. E. Organometalics 2000, 19, 4356-4368. However, synthesis of $\mathbf{4 b}$ has never been reported so far.
 ${ }^{20}$ The * at ${ }^{13} \mathrm{C}$ NMR data points indicates a doublet due to the presence of the diastereomers of $\mathbf{4 b}$ associated with the stereocenter of THP group.

[^5]: ${ }^{21}$ Complex 1 was prepared by a literature procedure: Rigby, J. H.; Fales, K. R. Org. Synth. 2000, 77, 121-134.

[^6]: Carbon spectrum in $\mathrm{C}>\mathrm{Cl}_{3}$
 Pulse Sequence：s2pul

[^7]: proton spectrum in CDCl_{3}

