Supporting Information

3,3'- and 4,4'-Biphenylene Bridged Subporphyrin Dimers

Yasuhide Inokuma and Atsuhiro Osuka*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502,
Japan

Contents

1. Experimental procedure
2. ${ }^{1} \mathrm{H}$ NMR spectra
3. Cyclic voltammetry
4. MO diagram
5. Optimized structures
6. References

1. Experimental procedure

General

All reagents and solvents were of commercial reagent grade and were used without further purification. ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL delta-600 spectrometer, and chemical shifts were reported as the delta scale in ppm relative to internal standards $\left(\mathrm{CHCl}_{3}\left(\delta=7.26 \mathrm{ppm}\right.\right.$ for ${ }^{1} \mathrm{H}, 77.16 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C}\right)$, and an external standard, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CDCl}_{3}\left(\delta=0.00 \mathrm{ppm}\right.$ for $\left.{ }^{11} \mathrm{~B}\right)$). Spectroscopic grade solvents were used for all spectroscopic studies without further purification. UV/visible absorption spectra were recorded on a Shimadzu UV-3100 spectrometer. Fluorescence spectra were recorded on a Hamamatsu Photonics C9920-02 spectrometer, and absolute fluorescence quantum yields were measured by photon-counting method using an integration sphere. ESI-TOF-MS spectra were recorded on a BRUKER DALTONICS microTOF LC using positive-ion mode. Thin layer chromatography (TLC) was performed on a silica gel sheet, MERCK silica gel $60 \mathrm{~F}_{254}$. Preparative separations were performed by silica gel gravity column chromatography (Wako gel C-300) or size exclusion gel permeation chromatography (GPC) (Bio-Rad Bio-Beads S-X1, packed with THF).

Pyridine-tri- N-pyrrolylborane was prepared by the reported procedure. ${ }^{51}$ Dry N, N-dimethylformamide was distilled from CaH_{2}.

4,4'-Biphenylene bridged dimer 1

To a suspension of pyridine-tri-N-pyrrolylborane ($1.50 \mathrm{~g}, 5.21 \mathrm{mmol})$ in 1,2-dichlorobenzene 225 ml , were added benzaldehyde ($1.12 \mathrm{ml}, 11.00 \mathrm{mmol}$) and 4-bromobenzaldehyde ($0.83 \mathrm{~g}, 4.50 \mathrm{mmol}$), and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ with an ice / water bath. After dropwise addition of trifluoroacetic acid ($0.50 \mathrm{ml}, 6.73 \mathrm{mmol}$) via syringe, the solution was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The acid was quenched with 0.60 ml of pyridine, and the resulting solution was refluxed for 1 h under aerobic conditions. After the solution was cooled to room temperature, the solvent was removed in vacuo. To the residual black tar, a mixture of THF/ MeOH (1:1) 50 ml was added and heated at $50^{\circ} \mathrm{C}$ for 10 min . After the removal of insoluble materials by filtration, the solvent was once evaporated, and the residue was mounted onto a GPC column ($6 \times 40 \mathrm{~cm}$, packed with THF) with a minimal amount of THF. Polymeric byproducts that eluted first was removed and the yellowish fractions that eluted around $\mathrm{R}_{\mathrm{f}}=0.50$ on TLC (silica gel; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane/ether=1:2:1) were collected. After passing through a short silica gel column (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane/ether=1:1:1), the crude mixture was dissolved in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with 10 g of MnO_{2} at room temperature overnight with vigorous stirring. The oxidant was removed by passing the suspension through a short Celite ${ }^{\circledR}$ pad. Further purification by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane/ether=1:2:1) gave a crude mixture of subporphyrins as orange-brown solid.

A 50 ml Schlenk tube was charged with the subporphyrin mixture, dry DMF (5 ml) NiCl_{2} (diphenylphosphinopropane) ($25 \mathrm{mg}, 46 \mu \mathrm{~mol}$), zinc powder (100 mg), and potassium iodide (100 mg). The resulting solution was deoxygenated via three freeze-pump-thaw cycles, and then stirred at $80^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. The resulting mixture was filtered, the filtrate was poured into 50 ml of water, and the products were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml} \times 3)$. Combined organic layer was washed with brine and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated. The products were separated by GPC column $(4 \times 90 \mathrm{~cm})$ to give dimer 1 as the second-to-last fraction and triphenylsubporphyrin 3 as the last fraction. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ afforded $\mathbf{1}(30 \mathrm{mg}, 1.3 \%)$ and $3(62 \mathrm{mg}, 2.4 \%)$ as orange crystalline solids.

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$, biphenylene bridge), 8.26 (d, $J=4.6$ $\mathrm{Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$, biphenylene bridge), 8.15 (s, $4 \mathrm{H}, \beta-\mathrm{H}), 8.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 8 \mathrm{H}$, meso-Ph-o-H), $7.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}$, meso-Ph-m-H), $7.63(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}$, meso-Ph-p-H), and $0.89\left(\mathrm{~s}, 6 \mathrm{H}\right.$, axial-OMe); ${ }^{11} \mathrm{~B}$ NMR ($193 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-15.2$ (s, 2B); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 141.2,141.1,140.5,140.1,137.3,136.8,133.9,133.3$, 128.8, 128.0, 127.6, 122.6, 122.5, 122.4, 122.3, 120.8 and 46.9 (axial- OCH_{3}); HR-ESI TOF-MS (positive mode) $m / z=969.3696$ (calcd. for $\mathrm{C}_{67} \mathrm{O}_{1} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{~B}_{2}=969.3699$ [$M-\mathrm{OMe}^{+}$); UV-vis (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 379(263000)$, 463(29000), and 494(32000); Fluorescence (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left.\lambda_{\mathrm{ex}}=379 \mathrm{~nm}\right) ; \lambda_{\text {max }}[\mathrm{nm}]=531, \Phi_{\mathrm{F}}=0.28$.

3,3'-Biphenylene bridged dimer 2

3,3'-dimer was synthesized from pyridine-tri- N -pyrrolylborane ($1.50 \mathrm{~g}, 5.21 \mathrm{mmol}$), benzaldehyde ($1.12 \mathrm{ml}, 11.00 \mathrm{mmol}$) and 3-bromobenzaldehyde ($0.52 \mathrm{ml}, 4.50 \mathrm{mmol}$) according to the same procedure as $\mathbf{1}$ in 1.0% yield (20 mg) along with triphenylsubporphyin $3(60 \mathrm{mg}$, $2.3 \%)$.

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.49$ (s, 2H, biphenylene bridge), 8.21 (d, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\beta-\mathrm{H}), 8.13(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.12(\mathrm{~s}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, biphenylene bridge), $8.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}$, meso-Ph-o-H), $8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, biphenylene bridge), $7.84(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$, biphenylene bridge), $7.69(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 8 \mathrm{H}$, meso-Ph-m-H), $7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$, meso-Ph-p-H), and 0.85 (s, 6H, axial-OMe); ${ }^{11} \mathrm{~B}$ NMR ($193 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-15.2(\mathrm{~s}, 2 \mathrm{~B}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 141.4,141.2,141.1,138.2,137.7,133.4,132.6,132.3,129.4,128.8$,
127.9, 126.9, 122.5, 122.4 (2C), 120.8, 120.3, 119.9, and $47.0\left(\right.$ axial- $\left.\mathrm{OCH}_{3}\right)$; HR-ESI TOF-MS (positive mode) $m / z=969.3694,1023.3789$ (calcd. for $\mathrm{C}_{67} \mathrm{O}_{1} \mathrm{H}_{43} \mathrm{~N}_{6} \mathrm{~B}_{2}=969.3699$ [$\left.\mathrm{M}-\mathrm{OMe}\right]^{+}$, $\mathrm{C}_{68} \mathrm{O}_{2} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{~B}_{2} \mathrm{Na}=1023.3781[\mathrm{M}+\mathrm{Na}]^{+}$); UV-vis (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\lambda[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 374(310000)$, 461(27000), and 486(21000); Fluorescence (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \lambda_{\mathrm{ex}}=374 \mathrm{~nm}$); $\lambda_{\max }[\mathrm{nm}]=516, \Phi_{\mathrm{F}}=0.15$.

Cyclic dimer 5

Dimer $2(4.8 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and biphenyl-3,3'-dicarboxylic acid (4) ($1.2 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$) were dissolved in toluene 40 ml and refluxed with a Dean-Stark trap for 6 h . Evaporation of the solvent gave orange crystalline solid of 5 quantitatively.

This material was stable in the solid state, however, it was partially hydrolyzed by adventitious water to release axial ligand after overnight storing in solution.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 9.27\left(\mathrm{~s}, 2 \mathrm{H}\right.$, biphenylene $\left.\mathrm{H}_{\mathrm{a}}\right), 8.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H})$, 8.18 (s and $\mathrm{d}, 4+2 \mathrm{H}, \beta-\mathrm{H}$ and biphenylene H_{d}), $8.14(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 8 H, meso-Ph-o-H), $7.81\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, biphenylene H_{c}), $7.70-7.65(\mathrm{t}$ and $\mathrm{d}, 8+2 \mathrm{H}$, meso-Ph-m-H and biphenylene H_{b}), $7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}$, meso- $\mathrm{Ph}-\mathrm{p}-\mathrm{H}), 6.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, axial ligand $\left.\mathrm{H}_{\mathrm{f}}\right), 6.85\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, axial ligand $\left.\mathrm{H}_{\mathrm{h}}\right), 6.82\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, axial ligand $\left.\mathrm{H}_{\mathrm{g}}\right)$, and 6.75 (s, 2H, axial ligand H_{e}); ${ }^{11} \mathrm{~B}$ NMR ($193 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})-15.2$ (br s, 2B); HR-ESI TOF-MS (positive mode) $m / z=1179.4028$ (calcd. for $\mathrm{C}_{80} \mathrm{O}_{4} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{~B}_{2}=1179.4019[M]^{+}$); UV-vis (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \lambda[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 371(297000), 458(27000)$, and $481(17000)$; Fluorescence (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left.\lambda_{\mathrm{ex}}=374 \mathrm{~nm}\right) ; \lambda_{\text {max }}[\mathrm{nm}]=516, \Phi_{\mathrm{F}}=0.16$.

2. ${ }^{1} \mathrm{H}$ NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of 1, 2, and 5 in CDCl_{3}.

3. Cyclic voltammetry

Figure S2. Cyclic voltammograms of 1, 2, and $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing $0.10 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$.

4. MO diagram

Figure S3. MO diagrams of 1 and 2 calculated at the B3LYP / 6-31G* level. ${ }^{\text {S2 }}$

5. Optimized structures

Figure S4. Optimized structures of (a) 2 and (b) 5 at the B3LYP / 6-31G* level.
(a)

(b)

6. References

1. P. Szarvas, B. Györi and J. Emri Acta. Chim. (Budapest), 1971, 70, 1.
2. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
