X. Supporting Information - SAXS scattering data analysis details.

Here we summarize the scattering function $I(q)$ from the disordered melt of an A-B diblock copolymer with a polydispersity in molecular weight and an asymmetry in segmental volume. The details are given in Leibler, L. Macromolecules 1980, 13, 1602-1617 and in Sakurai, S et al. Macromolecules 1992, 25, (10), 2679-2691.
$I(q)=\mathrm{K}[S(q) / W(q)-2 \chi]^{-1}$
where K is a proportionality constant which is not important in the present work and χ is defined in the text.
$\left.S(q)=\left\langle S_{\mathrm{S}, \mathrm{S}}(q)\right\rangle_{\mathrm{v}}+2<S_{\mathrm{S}, \mathrm{MMA}}(q)\right\rangle_{\mathrm{v}}+\left\langle S_{\mathrm{MMA}, \mathrm{MMA}}(q)\right\rangle_{\mathrm{v}}$
$W(q)=\left\langle S_{\mathrm{S}, \mathrm{S}}(q)\right\rangle_{\mathrm{v}}\left\langle S_{\mathrm{MMA}, \mathrm{MMA}}(q)\right\rangle_{\mathrm{v}}+\left\langle S_{\mathrm{S}, \mathrm{MMA}}(q)\right\rangle_{\mathrm{v}}{ }^{2}$
where

$$
\begin{align*}
& <S_{\mathrm{X}, \mathrm{X}}(q)>_{\mathrm{v}}=r_{c, n} f_{X, n}^{2} g_{X, n}^{(2)}(q) \tag{A4}\\
& <S_{\mathrm{S}, \mathrm{MMA}}(q)>_{\mathrm{v}}=r_{c, n} f_{S} f_{M M A} g_{S, n}^{(1)}(q) g_{M M A, n}^{(1)}(q) \tag{A5}\\
& r_{c, n}=\left(v_{\mathrm{S}} N_{\mathrm{S}, \mathrm{n}}+v_{\mathrm{MMA}} N_{\mathrm{MMA}, \mathrm{n}}\right) /\left(v_{\mathrm{S}}+v_{\mathrm{MMA}}\right)^{1 / 2} \tag{A6}\\
& g_{X, n}^{(1)}(q)=\frac{1}{x_{X, n}}\left\{1-\left[x_{X, n}\left(\lambda_{X}-1\right)+1\right]^{-\left(\lambda_{X}-1\right)^{-1}}\right\} \tag{A7}
\end{align*}
$$

$$
\begin{equation*}
g_{X, n}^{(2)}(q)=\frac{2}{x_{X, n}{ }^{2}}\left\{-1+x_{X, n}+\left[x_{X, n}\left(\lambda_{X}-1\right)+1\right]^{-\left(\lambda_{X}-1\right)^{-1}}\right\} \tag{A8}
\end{equation*}
$$

$$
\begin{equation*}
x_{X, n} \equiv\left(N_{X, n} b_{X}^{2} / 6\right) q^{2} \tag{A9}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{X, n}=N_{X, w} / N_{X, n} \tag{A10}
\end{equation*}
$$

Where $\mathrm{X}=\mathrm{S}$ or MMA, v_{X} is the molecular volume of X , with $v_{\mathrm{S}} \sim 100 \mathrm{~cm}^{3} / \mathrm{mol}$ and $v_{\mathrm{MMA}} \sim 84.7$
$\mathrm{cm}^{3} /$ mol. f_{X} is the volume fraction of $\mathrm{X} . N_{\mathrm{X}, \mathrm{n}}$ and $N_{\mathrm{X}, \mathrm{w}}$ is the number-average and weight-average degree of polymerization of X block chain, respectively. b_{X} is the segment length of X , where $b_{\mathrm{S}} \sim 0.68$ nm , and $b_{\mathrm{MMA}} \sim 0.74 \mathrm{~nm}$. Here we assume $\lambda_{\mathrm{s}}=\lambda_{\mathrm{MMA}} \equiv \lambda$, which can be estimated from $M_{\mathrm{w}} / M_{\mathrm{n}}$ for the block copolymer chains as a whole,

$$
\begin{equation*}
\lambda=\left(M_{w} / M_{n}-1\right) /\left(w_{S}{ }^{2}+w_{M M A}{ }^{2}\right)+1 \tag{A11}
\end{equation*}
$$

Where $w_{\mathrm{S}}=1-w_{\mathrm{MMA}}$ is the weight fraction of S block chain in the PS-b-PMMA block copolymers. All parameters used are summarized in Table 1. χ was determined as a value which gives rise to a best fit between the experimental and theoretical relative intensity distributions, and summarized in Table 2.

Table 1. Characteristic Parameters Used to Evaluate χ values.

Sample	w_{s}	f_{S}	N_{S}	$N_{\text {MMA }}$	λ	$r_{c, n}$
1	0.53	0.56	143	131	1.1	276
2	0.5	0.53	123	129	1.1	252

Table 2. Temperature dependence of χ values.

$\mathrm{T},{ }^{\circ} \mathrm{C}$	χ for sample 1	χ for sample 2
230	0.0373	
220	0.0374	0.0373
210	0.0375	0.0375
200		0.0377
190		0.0379
180		0.0381
170		0.0382
160		0.0383
150		0.0384
140		0.0385
130		0.03854
120		0.03856

