X. Supporting Information – SAXS scattering data analysis details.

Here we summarize the scattering function I(q) from the disordered melt of an A-B diblock copolymer with a polydispersity in molecular weight and an asymmetry in segmental volume. The details are given in Leibler, L. *Macromolecules* **1980**, *13*, 1602-1617 and in Sakurai, S *et al. Macromolecules* **1992**, 25, (10), 2679-2691.

$$I(q) = K[S(q)/W(q) - 2\chi]^{-1}$$
(A1)

where K is a proportionality constant which is not important in the present work and χ is defined in the text.

$$S(q) = \langle S_{S,S}(q) \rangle_{v} + 2 \langle S_{S,MMA}(q) \rangle_{v} + \langle S_{MMA,MMA}(q) \rangle_{v}$$
(A2)

$$W(q) = \langle S_{S,S}(q) \rangle_{v} \langle S_{MMA,MMA}(q) \rangle_{v} + \langle S_{S,MMA}(q) \rangle_{v}^{2}$$
(A3)

where

$$\langle S_{X,X}(q) \rangle_{v} = r_{c,n} f_{X,n}^{2} g_{X,n}^{(2)}(q)$$
 (A4)

$$\langle S_{S,MMA}(q) \rangle_{v} = r_{c,n} f_{S} f_{MMA} g_{S,n}^{(1)}(q) g_{MMA,n}^{(1)}(q)$$
(A5)

$$r_{c,n} = (v_{\rm S}N_{\rm S,n} + v_{\rm MMA}N_{\rm MMA,n}) / (v_{\rm S} + v_{\rm MMA})^{1/2}$$
(A6)

$$g_{X,n}^{(1)}(q) = \frac{1}{x_{X,n}} \{1 - [x_{X,n}(\lambda_X - 1) + 1]^{-(\lambda_X - 1)^{-1}}\}$$
(A7)

$$g_{X,n}^{(2)}(q) = \frac{2}{x_{X,n}^2} \{-1 + x_{X,n} + [x_{X,n}(\lambda_X - 1) + 1]^{-(\lambda_X - 1)^{-1}}\}$$
(A8)

$$x_{X,n} \equiv (N_{X,n} b_X^2 / 6) q^2 \tag{A9}$$

$$\lambda_{X,n} = N_{X,w} / N_{X,n} \tag{A10}$$

Where X = S or MMA, v_X is the molecular volume of X, with $v_S \sim 100 \text{ cm}^3/\text{mol}$ and $v_{MMA} \sim 84.7$

cm³/mol. f_X is the volume fraction of X. $N_{X,n}$ and $N_{X,w}$ is the number-average and weight-average degree of polymerization of X block chain, respectively. b_X is the segment length of X, where $b_S \sim 0.68$ nm, and $b_{MMA} \sim 0.74$ nm. Here we assume $\lambda_S = \lambda_{MMA} \equiv \lambda$, which can be estimated from M_w/M_n for the block copolymer chains as a whole,

$$\lambda = (M_w / M_n - 1) / (w_s^2 + w_{MMA}^2) + 1$$
(A11)

Where $w_S = 1 - w_{MMA}$ is the weight fraction of S block chain in the PS-*b*-PMMA block copolymers. All parameters used are summarized in Table 1. χ was determined as a value which gives rise to a best fit between the experimental and theoretical relative intensity distributions, and summarized in Table 2. Table 1. Characteristic Parameters Used to Evaluate χ values.

Sample	$w_{\rm s}$	$f_{\rm S}$	$N_{ m S}$	$N_{ m MMA}$	λ	$r_{c,n}$
1	0.53	0.56	143	131	1.1	276
2	0.5	0.53	123	129	1.1	252

T, °C 230	χ for sample 1 0.0373	χ for sample 2
220	0.0374	0.0373
210	0.0375	0.0375
200		0.0377
190		0.0379
180		0.0381
170		0.0382
160		0.0383
150		0.0384
140		0.0385
130		0.03854
120		0.03856

Table 2. Temperature dependence of χ values.