## Supporting Information

## Enantioselective Total Syntheses of Trichodermamides A and B

Xiaobo Wan and Madeleine M. Joullié*
231. S. 34th Street, Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104.

## General Procedures.

Solvents. Dry THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled over sodium benzophenone before use. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene were freshly distilled over calcium hydride before use. Anhydrous $\mathrm{MeOH}, \mathrm{MeCN}$ in AcroSeal bottles were used directly without further purification.
Purification. Flash chromatography were carried out using E. Merck silica gel $60(240-400 \mathrm{mesh})$ and the solvent systems listed under individual experiments. Analytical thin-layer chromatography (TLC) was performed on Sorbent silica gel (w/UV-254) plates ( 0.25 mm ). Visualization was effected with ultraviolet light and phosphomolybdic acid ( $7 \% \mathrm{w} / \mathrm{v}$ ) in $95 \%$ ethanol.
Characterization. Melting Points $\left({ }^{\circ} \mathrm{C}\right)$ were determined using a Thomas-Hoover melting point apparatus and were uncorrected. Infrared spectra (IR) were recorded on a Perkin-Elmer 281-B spectrometer. High resolution mass spectra (HRMS) were recorded on Micromass autospec high resolution instrument in either Electro-spray-Ionization (ESI) or Chemical ionization (CI) modes with OPUS software system. Proton magnetic resonance spectra ( ${ }^{1} \mathrm{H}$ NMR) and carbon magnetic resonance spectra ( ${ }^{13} \mathrm{C}$ NMR) were recorded on either a Bruker AMX or an Astra 500 MHz spectrometers. Rotations of the optical active compounds were recorded on a Jasco P-1010 polarimeter.

## Characterization Data for Key Intermediates.



## Compound 8

(4aS,6R,7R,8R,8aS)-3-((tert-Butyldiphenylsilyloxy)methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine-6,7-$O$-isopropylidene-4a,8-diol
To a stirred solution containing ketone $7(1.92 \mathrm{~g} ., 3.89 \mathrm{mmol})$ in 40 mL of EtOH at rt, was added dropwise an aqueous solution $(10 \mathrm{~mL})$ containing $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.81 \mathrm{~g}, 11.6 \mathrm{mmol})$ and $\mathrm{NaOAc}(0.96 \mathrm{~g}, 11.6 \mathrm{mmol})$. The reaction mixture was stirred at rt and monitored by TLC until all the starting material was consumed. A NaOH solution ( $2.96 \mathrm{~mL}, 2 \mathrm{M}$ ) was then added dropwise to the reaction mixture and the solution was stirred for 0.5 h . The reaction was then quenched with 50 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous phase was extracted with $3 \times 50 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography ( $50 \% \mathrm{EtOAc} /$ hexanes ) to give 1.20 g oxazine 71 as a colorless oil ( $2.34 \mathrm{mmol}, 60 \%$ ). EtOAc/hexanes; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.66-7.64(4 \mathrm{H}, \mathrm{m}), 7.47-7.38(6 \mathrm{H}, \mathrm{m}), 4.50-4.47(1 \mathrm{H}, \mathrm{m}), 4.43(1 \mathrm{H}, \mathrm{dd}, J=4.2$, $7.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, overlapped with a weak broad OH peak), $3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.2,7.6 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{dd}, J=2.5$, $15.5 \mathrm{~Hz}), 1.71(1 \mathrm{H}, \mathrm{dd}, J=3.6,15.5 \mathrm{~Hz}) ; 1.56(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.5,135.6$, $135.5,132.6,132.5,130.0,127.9,109.0,81.9,73.2,72.8,70.4,67.2,64.4,34.8,34.4,26.8,26.0,23.5,19.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Si}$ : 511.2390 , Found $(\mathrm{M}+\mathrm{Na})^{+}: 534.2039 ;[\alpha]_{D}{ }^{24}-20.0\left(\mathrm{c} 2.02, \mathrm{CHCl}_{3}\right)$.


Compound A
(4aS,6R,7R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)-methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine-6,7-O-isopropylidene-4a-ol

To a solution containing oxazine $8(1.96 \mathrm{~g}, 3.83 \mathrm{mmol})$ in 50 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, were added imidazole ( $0.78 \mathrm{~g}, 11.5$ $\mathrm{mmol})$ and $\operatorname{TBDPSCl}(1.50 \mathrm{~mL}, 5.74 \mathrm{mmol})$ in sequence at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred until all the starting material was consumed. The reaction was then quenched with 10 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The organic layer was separated, washed with 10 mL of brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography ( $30 \% \mathrm{EtOAc} /$ hexanes ) to give 2.71 g of compound 72 as a white foam-like solid ( $3.61 \mathrm{mmol}, 94 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83-7.76(4 \mathrm{H}, \mathrm{m}), 7.65-7.59(4 \mathrm{H}, \mathrm{m}), 7.46-7.27(12 \mathrm{H}, \mathrm{m})$, $4.23(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 4.07(2 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=3.1,9.0 \mathrm{~Hz}), 2.24(1$ $\mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 2.00(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}), 1.89(1 \mathrm{H}, \mathrm{dd}, J=3.7,16.5 \mathrm{~Hz}), 1.61(1 \mathrm{H}, \mathrm{dd}, J=3.7,16.5 \mathrm{~Hz}) ; 1.58$ ( 3 $\mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.11(9 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.2,136.3,135.9,125.6,135.5,134.3,132.8$, $132.6,129.9,129.8,129.5,127.8,127.5,127.4,108.6,82.7,75.4,72.5,71.3,69.0,64.5,36.3,32.8,27.1,26.9,26.8$, 23.7, 19.5, 19.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{NO}_{6} \mathrm{Si}_{2}: 749.3568$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 772.3481$.

## Compound B <br> (4aS,6R,7R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)-methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine-4a,6,7-triol

To a solution containing compound $\mathbf{A}(2.71 \mathrm{~g}, 3.61 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $3.42 \mathrm{~g} \mathrm{FeCl} 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}(12.6$ mmol ) at rt . The mixture was stirred at rt for 20 min . The solid was collected and the filtrate was washed with 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with $2 \times 20 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with 25 mL of $5 \% \mathrm{HCl}$ solution and 25 mL of brine, then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography ( $30 \% \mathrm{EtOAc} /$ hexanes) to give 2.19 g of compound 73 as a white foam-like solid ( $3.08 \mathrm{mmol}, 85 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.76-7.72(4 \mathrm{H}, \mathrm{m}), 7.64-7.60(4 \mathrm{H}, \mathrm{m}), 7.45-7.35(12 \mathrm{H}, \mathrm{m}), 4.21-4.20(1 \mathrm{H}, \mathrm{m}), 4.13(2 \mathrm{H}, \mathrm{s})$, 4.03-4.02 ( $1 \mathrm{H}, \mathrm{m}$ ), 3.77-3.76 ( $1 \mathrm{H}, \mathrm{m}$ ), 3.69 ( $1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}$ ), 2.93-2.63 (2 H, b), 2.35 (1 H, d, J=18.7 Hz), 2.22 (1 $\mathrm{H}, \mathrm{d}, J=18.7 \mathrm{~Hz}), 2.04-2.00(1 \mathrm{H}, \mathrm{m}), 1.74-1.70(1 \mathrm{H}, \mathrm{dd}, J=17.6,3.2 \mathrm{~Hz}), 1.11(9 \mathrm{H}, \mathrm{s}), 1.06(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 156.7,136.3,136.0,135.5,132.70,132.66,132.54,132.50,130.2,129.9,127.9,127.8,78.4,71.7,70.1$, $68.7,64.8,36.6,34.8,27.0,26.8,19.3,19.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{Si}_{2}: 709.3225$, Found (M + H $)^{+}$: $710.3344 ;[\alpha]_{D}^{22}+16.7\left(\mathrm{c} 0.97, \mathrm{CHCl}_{3}\right)$.

## Compound 9 <br> (4aR,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)methyl)-4a,5,8,8a-tetrahydro-4H-benzo[e][1,2]oxazin-4a-ol

To a solution containing compound B $(2.19 \mathrm{~g}, 3.08 \mathrm{mmol})$ in 40 mL of dry toluene, was added 1.22 g TCDI ( 6.16 mmol ) at rt . The solution was heated to reflux under argon for 4 h . The solution was then cooled to rt, diluted with 40 mL of EtOAc , washed with 25 mL of $\mathrm{H}_{2} \mathrm{O}$ and 25 mL of brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography ( $30 \% \mathrm{EtOAc} /$ hexanes) to give 2.30 g of the corresponding thiocarbonate as a white foam-like solid ( $3.06 \mathrm{mmol}, 99 \%$ ).

The thiocarbonate $(0.121 \mathrm{~g}, 0.16 \mathrm{mmol})$ was dissolved in 4 mL of $\mathrm{P}(\mathrm{OMe})_{3}$ in a microwave tube. The tube was sealed and subjected to microwave irradiation to maintain the inner temperature at $150^{\circ} \mathrm{C}$ and the inner pressure at 70 psi for 25 min . The solution was then cooled to rt and the solvent was evaporated. The crude product was purified by column chromatography ( $30 \% \mathrm{EtOAc} /$ hexanes) to give 88.6 mg of compound 9 as a colorless oil ( $0.13 \mathrm{mmol}, 83 \%$ ) with the recovery of 14.8 mg of the starting material. ( $94 \%$ yield based on the recovery of starting material). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta 7.70-7.63(8 \mathrm{H}, \mathrm{m}), 7.45-7.36(10 \mathrm{H}, \mathrm{m}), 5.68(1 \mathrm{H}, \mathrm{ddd}, J=2.6,5.3,10.1 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}), 4.31(1 \mathrm{H}$, s), $4.20(2 \mathrm{H}, \mathrm{s}), 4.00(1 \mathrm{H}, \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{d} J=2.4 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{d}, J=18.4), 2.27-2.22(1$ $\mathrm{H}, \mathrm{m}), 2.13-2.09(1 \mathrm{H}, \mathrm{m}), 1.08(9 \mathrm{H}, \mathrm{s}), 1.06(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 156.7,135.81,135.80,135.5,133.0,132.8$, 132.7, 132.4, 130.1, 130.0, 129.9, 127.84, 127.79, 127.74, 126.4, 125.5, 77.7, 67.2, 65.0, 63.9, 35.4, 34.6, 26.9, 26.8, 19.2, 19.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{NO}_{4} \mathrm{Si}_{2}: 675.3200$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 698.3124$; $[\alpha]_{D}^{22}-70.4$ (c $0.87, \mathrm{CHCl}_{3}$ ).


Compound 10
(4aR,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)methyl)-4a-hydroxy-8,8a-dihydro-4H-benzo[e][1,2]oxazin-5(4aH)-one
To a suspension of $3.70 \mathrm{~g} \mathrm{CrO}_{3}(37.0 \mathrm{mmol})$ in 15 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-15^{\circ} \mathrm{C}$, was added $3.63 \mathrm{~g} 3,5$-dimethylpyrazole ( 37.0 mmol ). The mixture was vigorously stirred at $-15^{\circ} \mathrm{C}$ for 0.5 h . Oxazine $9(1.25 \mathrm{~g}, 1.85 \mathrm{mmol})$ was dissolved in
1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to the mixture. The reaction mixture was stirred for another 0.5 h , then diluted with 30 mL of EtOAc, and quenched with 50 mL of saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution. The organic layer was separated, and the aqueous layer was extracted with $2 \times 100 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography ( $10 \%$ to $30 \% \mathrm{EtOAc} /$ hexanes) to separate 0.6 g of starting material and 0.23 g of enone $\mathbf{1 0}$. The recycled starting material was re-subjected to the oxidation conditions for two more reaction cycles, and an overall 0.37 g of product $\mathbf{1 0}$ was obtained ( $0.54 \mathrm{mmol}, 29.0 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta 7.72-7.62(5 \mathrm{H}, \mathrm{m}), 7.60-7.56(3 \mathrm{H}, \mathrm{m}), 7.46-7.32(12 \mathrm{H}, \mathrm{m})$, $6.57(1 \mathrm{H}, \mathrm{dd}, J=2.60,10.4 \mathrm{~Hz}), 6.00(1 \mathrm{H}, \mathrm{dd}, J=1.81,10.4 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{td}, J=2.2,7.1 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=$ $1.4,7.1 \mathrm{~Hz}), 4.19(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{s}), 2.20(1 \mathrm{H}, \mathrm{d}, J=18.6 \mathrm{~Hz}), 2.11(1 \mathrm{H}$, dd, $J=1.3 \mathrm{~Hz}, 18.6 \mathrm{~Hz}), 1.10(9 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 197.1,155.3,149.8,136.1,135.8,133.1$, $132.7,132.6,131.5,130.1,130.0,125.1,81.2,69.4,68.1,65.4,28.2,26.8,26.7,19.3,19.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{Si}_{2}: 689.2993$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 712.2882 ;[\alpha]_{D}^{22}-40.4\left(\mathrm{c} 0.77, \mathrm{CHCl}_{3}\right)$.


## Compound 11a

(4aS,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)-methyl)-4a,5,8,8a-tetrahydro-4Hbenzo $[e][1,2]$ ]oxazine-4a,5-diol Compound 11b
(4aS,5S,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-((tert-butyldiphenylsilyloxy)-methyl)-4a,5,8,8a-tetrahydro-4H-benzo[e][1,2]oxazine-4a,5-diol

To a solution containing enone $\mathbf{1 0}\left(0.19 \mathrm{~g}, 0.275 \mathrm{mmol}\right.$ in 5 mL of EtOH , were added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.102 \mathrm{~g}, 0.275$ mmol ) and 20.8 mg of $\mathrm{NaBH}_{4}(0.275 \mathrm{mmol})$ in sequence at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min then quenched with 5 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was diluted with EtOAc, and washed with water. The aqueous layer was extracted with $2 \times 10 \mathrm{~mL}$ of EtOAc. The organic layer was combined, washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography ( $30 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to yield two products: 87 mg of compound 11a and 98 mg of compound 11b in an overall $97 \%$ yield ( 0.267 mmol ).

Compound 11a: $R_{\mathrm{f}} 0.20$ in $30 \%$ EtOAc/hexanes; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.68-7.62(8 \mathrm{H}, \mathrm{m}), 7.46-7.34(12 \mathrm{H}, \mathrm{m}) ; 5.79(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,10.3 \mathrm{~Hz}), 5.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.9,9.0 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4$ $\mathrm{Hz}), 4.13(1 \mathrm{H}, \mathrm{m}), 3.93(1 \mathrm{H}, \mathrm{s}), 3.46(1 \mathrm{H}, \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.9 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.9 \mathrm{~Hz}), 1.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $9.7 \mathrm{~Hz}), 1.07(9 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.7,135.9,135.8,135.6,133.1,132.8,132.1,130.9,130.2$, $130.1,129.9,128.7,127.9,127.81,127.78,127.6,78.7,67.4,67.1,65.1,30.7,26.9,26.8,19.23,19.18$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2}: 691.3149$, Found $(\mathrm{M}+\mathrm{H})^{+}: 692.3247$; IR ( $\mathrm{NaCl}, \mathrm{cm}^{-1}$ ): $3420(\mathrm{~b}), 3071(\mathrm{w}), 2957(\mathrm{~m})$, $2931(\mathrm{~m}), 2857(\mathrm{~m}), 1472(\mathrm{~m}), 1428(\mathrm{~m}), 1112(\mathrm{~s}), 1060(\mathrm{~s}), 1009(\mathrm{~m}), 822(\mathrm{~m}), 739(\mathrm{~m}), 701(\mathrm{~s}) ;[\alpha]_{D}{ }^{27}-72.1(\mathrm{c} 2.04$, $\mathrm{CHCl}_{3}$ ).

Compound 11b: $R_{\mathrm{f}}: 0.34$ in $30 \% \mathrm{EtOAc} /$ hexanes; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.67-7.63(8 \mathrm{H}, \mathrm{m}), 7.49-7.37(12 \mathrm{H}, \mathrm{m}), 5.71$ $(1 \mathrm{H}, \mathrm{dd}, J=1.9,10.3 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{dd}, J=4.1,10.2 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{m}), 4.23(2 \mathrm{H}, \mathrm{s}), 4.09(1 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{m})$, $3.81(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}, J=18.5 \mathrm{~Hz}), 2.59(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{d}, J=18.5 \mathrm{~Hz}), 1.09(9 \mathrm{H}$, s), $1.07(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 157.5,135.8,135.7,135.6,132.8,132.7,132.5,132.0,130.9,130.3,130.2,129.9$, 128.0, 127.9, 127.8, 126.3, 77.1, 67.6, 66.6, 65.8, 65.0, 32.5, 26.9, 26.8, 19.2, 19.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2}: 691.3149$, Found (M + H ${ }^{+}$): 692.3247 IR ( $\mathrm{NaCl}, \mathrm{cm}^{-1}$ ): 3384 (b), 3071 (w), $2930(\mathrm{~m}), 2857(\mathrm{~m}), 1589$ (w), $1472(\mathrm{~m}), 1427(\mathrm{~m}), 1112(\mathrm{~s}), 1020(\mathrm{~m}), 823(\mathrm{~m}), 739(\mathrm{~m}), 701(\mathrm{~s}) ;[\alpha]_{D}{ }^{28}-49.4\left(\mathrm{c} 0.70, \mathrm{CHCl}_{3}\right)$.


Compound C

## (4aS,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-4a-hydroxy-3-(tert-butyldiphenyl-silyloxymethyl)-4a,5,8,8a-tetrahydro- 4 H -benzo $[e][1,2]$ oxazin- 5 -yl acetate

To a solution containing 98 mg of allylic alcohol 11a ( 0.14 mmol ) in 1.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, were added $16.0 \mu \mathrm{~L}$ of $\mathrm{Ac}_{2} \mathrm{O}(0.17 \mathrm{mmol}), 38.9 \mu \mathrm{~L}$ of $\mathrm{NEt}_{3}(0.28 \mathrm{mmol})$ and 1.7 mg of DMAP $(0.014 \mathrm{mmol})$ in sequence at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and stirred for 2 h . The mixture was then quenched with 5 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was diluted with 5 mL of EtOAc and washed with 5 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $2 \times 10 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with 10 mL of brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography ( $30 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to give 99.6 mg of the corresponding acetate $\mathbf{C}\left(0.0135 \mathrm{mmol}, 97 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.68-7.60(8 \mathrm{H}, \mathrm{m}), 7.47-7.35(12 \mathrm{H}, \mathrm{m}), 5.53$ $(2 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{d}, J$ $=5.0 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{s}), 2.32(1 \mathrm{H}, \mathrm{d}, J=18.9 \mathrm{~Hz}), 2.26(1 \mathrm{H}, \mathrm{d}, J=18.9 \mathrm{~Hz}), 2.00(3 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.5,156.9,136.0,135.8,135.5,133.4,132.8,132.6,132.2,130.0,129.9,127.8,127.7,124.9$, $79.6,73.8,67.2,67.0,65.1,28.9,26.8,26.7,20.8,19.2$; HRMS $\mathrm{m} / \mathrm{z}$ (ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{NO}_{6} \mathrm{Si}_{2}: 733.3255$, Found $(\mathrm{M}+\mathrm{H})^{+}: 734.3328 ;[\alpha]_{D}^{22}-86.3\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right)$.

## Compound D

## (4aS,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-4a-hydroxy-3-(hydroxymethyl)-4a,5,8,8a-tetrahydro-4H-benzo[e][1,2]oxazin-5-yl acetate

To a 0.84 mL of dry THF solution containing compound $\mathbf{C}(74.5 \mathrm{~g}, 0.101 \mathrm{mmol})$, was added 0.14 mL of fresh prepared HF-Pyridine/pyridine/THF solution ( $1: 2: 5 \mathrm{v} / \mathrm{v}$ ) at rt. The reaction was monitored by TLC until most of the starting material was consumed. The reaction was then diluted with 10 mL of THF, quenched with 1.0 mL of $5 \% \mathrm{HCl}$. The organic layer was separated, and the aqueous layer was extracted with $2 \times 10 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with 10 mL of brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by column chromatography $\left(20 \%\right.$ acetone $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 27.5 mg compound $\mathbf{D}(0.056 \mathrm{mmol})$ in $50 \%$ yield with the recovery of 30.0 mg of starting material. Yield based on the recovery of starting material: $91 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta$ 7.72-7.65 ( $4 \mathrm{H}, \mathrm{m}$ ), 7.47-7.36 ( $6 \mathrm{H}, \mathrm{m}$ ), 5.57-5.44 ( $3 \mathrm{H}, \mathrm{m}$ ), 4.19-4.13 ( $2 \mathrm{H}, \mathrm{m}$ ), $4.03(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{d}$, $J=4.0 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{s}), 2.43(1 \mathrm{H}, \mathrm{s}), 2.14(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{d}, J=18.9 \mathrm{~Hz}), 2.06(3 \mathrm{H}, \mathrm{s}), 1.08(9 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.8,156.0,136.2,135.9,132.2,130.4,130.0,129.9,127.68,127.66,125.0,80.9,74.9,67.4$, 67.3, 63.9, 27.4, 26.8, 20.9, 19.3; HRMS (ESI) $m / z$ calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{6}$ Si: 495.2077, Found (M + H $)^{+}: 496.2169$; IR ( $\mathrm{NaCl}, \mathrm{cm}^{-1}$ ): 3422 (b), 3071 (w), $2930(\mathrm{~m}), 2858(\mathrm{~m}), 1743$ (s), 1472 (m), 1427 (m), 1372 (m), 1236 ( s$), 1112$ ( s$)$, $1072(\mathrm{~m}), 1049(\mathrm{~m}), 957(\mathrm{~m}), 738(\mathrm{~m}), 704(\mathrm{~s}) ;[\alpha]_{D}^{22}-86.3\left(\mathrm{c} \mathrm{1.38}, \mathrm{CHCl}_{3}\right)$.

## Compound 12a <br> (4aS,5R,8R,8aS)-5-Acetoxy-8-(tert-butyldiphenylsilyloxy)-4a-hydroxy-4a,5,8,8a-tetrahydro-4Hbenzo $[e][1,2]$ oxazine-3-carboxylic acid

To a 2.5 mL of MeCN solution containing compound $\mathbf{D}(27.5 \mathrm{mg}, 0.055 \mathrm{mmol})$, was added 0.10 mL of a TEMPO $/ \mathrm{MeCN}$ solution (concentration: $0.75 \mathrm{mg} / \mathrm{mL}, 4.8 \times 10^{-4} \mathrm{mmol}$ ), followed by the addition of 1.7 mg of KBr $(0.022 \mathrm{mmol})$. The mixture was cooled to $0^{\circ} \mathrm{C}$. To the stirred reaction mixture, was added dropwise 0.35 mL of 0.3 M NaOCl aqueous solution containing 17.2 mg of $\mathrm{NaHCO}_{3}(0.20 \mathrm{mmol})$. The mixture was warmed to rt and the reaction was monitored by TLC until all the starting material was consumed. The reaction was then quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and the pH value of the solution was adjusted to 4 with $5 \% \mathrm{HCl}$. The solution was then extracted with $2 \times 10 \mathrm{~mL}$ of EtOAc, washed with 5 mL of brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was then concentrated and the residue was dried under reduced pressure to give 27.3 mg of acid $\mathbf{1 2 a}(0.053 \mathrm{mmol})$ in $96 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 7.70-7.62 ( $4 \mathrm{H}, \mathrm{m}$ ), 4.48-7.35 ( $6 \mathrm{H}, \mathrm{m}$ ), $5.61(1 \mathrm{H}, \mathrm{td}, J=2.3,10.5 \mathrm{~Hz})$; $5.53(1 \mathrm{H}, \mathrm{dd}, J=2.3,4.7 \mathrm{~Hz}), 5.48(1 \mathrm{H}$, td, ddd, $J=2.0,2.3,10.5 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{dd}, J=2.2,7.3 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{dd}, J=$ $2.2,19.5 \mathrm{~Hz}), 2.11(1 \mathrm{H}, J=18.5 \mathrm{~Hz}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.09(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.8,161.7,147.1,136.1$, $135.9,133.1,130.23,130.16,130.1,127.7,124.9,83.1,76.1,67.6,67.0,26.8,25.4,20.8,19.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Si}: 509.1870$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 532.1785 ;[\alpha]_{D}^{22}+6.2^{\circ}\left(\mathrm{c} 1.36, \mathrm{CHCl}_{3}\right)$.


Compound 12b
(4aS,5S,8R,8aS)-5-Acetoxy-8-(tert-butyldiphenylsilyloxy)-4a-hydroxy-4a,5,8,8a-tetrahydro-4H-
benzo[e][1,2]oxazine-3-carboxylic acid
Compound 12b was prepared from compound 11b following the same procedure as compound 12a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ : $\delta 7.69-7.63(4 \mathrm{H}, \mathrm{m}), 7.48-7.36(6 \mathrm{H}, \mathrm{m}), 5.75-5.66(2 \mathrm{H}, \mathrm{m}), 5.11(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 4.08$
$(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 2.41(1 \mathrm{H}, J=19.0 \mathrm{~Hz}), 2.20(1 \mathrm{H}, \mathrm{dd}, J=2.3,19.5 \mathrm{~Hz}), 2.19(3 \mathrm{H}, \mathrm{s}), 1.10(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.5,161.6,147.2,136.0,135.8,132.9,132.0,131.9,130.3,130.1,127.8,132.9,81.1,70.9,67.8,64.3$, 29.7, 26.9, 21.0, 19.2; HRMS (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{7}$ Si: 509.1870 , Found $(\mathrm{M}+\mathrm{Na})^{+}: 532.1785 ;[\alpha]_{D}{ }^{22}+48.1$ (c $1.37, \mathrm{CHCl}_{3}$ ).


2,3,4-trimethoxy-
13
benzaldehyde

## Compound 13

## 2-Hydroxy-3,4-dimethoxybenzaldehyde

2,3,4-Dimethoxybenzaldehyde ( $10.0 \mathrm{~g}, 51.0 \mathrm{mmol}$ ) was dissolved in 150 mL of dry benzene. To this solution, was added aluminum trichloride ( $7.40 \mathrm{~g}, 56.1 \mathrm{mmol}$ ) in several batches. The mixture was heated to reflux under argon and monitored by TLC until all the starting material was consumed. The reaction was cooled to rt and quenched with 100 mL of cold water. $\mathrm{NaHSO}_{4}$ solution ( $100 \mathrm{~mL}, 1.0 \mathrm{M}$ ) was added and the reaction mixture was stirred until all the solid material was dissolved. The aqueous phase was separated and extracted with $2 \times 80 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with 100 mL of saturated $\mathrm{NaHCO}_{3}$ solution, 80 mL of brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and recrystallized from EtOAc to give 8.1 g of 2-hydroxy-3,4-dimethoxy-benzaldehyde 13 (43.9 mmol, $85 \%$ ) as colorless needles. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.2(1 \mathrm{H}, \mathrm{s}), 9.75(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.61$ $(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 194.8,159.4,155.7,130.1,116.6,104.4,60.7$, 56.3; HRMS (CI) m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}: 182.1733$, Found $(\mathrm{M}+\mathrm{H})^{+}: 183.0652$; mp 66.0-68.0 ${ }^{\circ} \mathrm{C}$.


13
14

## Compound 14

## 7,8-Dimethoxy-3-nitro-2H-chromen-2-one

2-Hydroxy-3,4-dimethoxybenzaldehyde $13(1.84 \mathrm{~g}, 10.0 \mathrm{mmol})$ was dissolved in 100 mL of dry benzene. To this solution, was added 1.42 g of methyl nitroacetate $(12.0 \mathrm{mmol})$ and 0.2 mL of piperidine $(2.0 \mathrm{mmol})$. The reaction mixture was heated to reflux overnight with a Dean-Stark trap to collect the water. The reaction was then cooled to 0 ${ }^{\circ} \mathrm{C}$ and the yellow precipitate was collected on a sintered glass funnel. The precipitate was dissolved in 70 mL of DMF and cooled to $0^{\circ} \mathrm{C}$. Ice-water ( 200 mL ) was then added to the solution and the bright yellow precipitate was collected, washed with $2 \times 40 \mathrm{~mL}$ of cold water and dried under reduced pressure to give 2.12 g of nitrocoumarin 14 ( 8.4 mmol , $84 \%) .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 8.73(1 \mathrm{H}, \mathrm{s}), 7.44(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.03(3 \mathrm{H}, \mathrm{s}), 4.01(3 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.6,151.7,149.0,143.1,136.3,131.9,126.5,110.8,110.3,61.6,56.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{6}: 251.1923$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 274.0321$; mp 199.0-200.0 ${ }^{\circ} \mathrm{C}$.


## Compound 4

## 3-Amino-7,8-dimethoxy-2H-chromen-2-one

Nitrocoumarin $14(0.71 \mathrm{~g}, 2.83 \mathrm{mmol}), 0.602 \mathrm{~g}$ of $\mathrm{Pd} / \mathrm{C}(0.57 \mathrm{mmol})$ and 2 mL of cyclohexene were premixed in 10 mL of $95 \% \mathrm{EtOH}$ and the mixture was heated to reflux. The reaction was monitored by TLC until all the starting material was consumed. The mixture was then cooled to rt and collected through a Celite pad. The Celite pad was washed with $4 \times 40 \mathrm{~mL}$ of EtOAc. The filtrate was concentrated and dried under reduced pressure to give 0.510 g of aminocoumarin 4 as a yellow solid ( $2.29 \mathrm{mmol}, 84 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.96(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 159.2,151.8,143.1,136.3,129.9,119.4,115.8$, $112.0,109.3,61.5,56.5$; HRMS (ESI) $m / z$ calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4}: 221.0688$, Found (M+): 221.0681.


Compound 15a
(4aS,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-(7,8-dimethoxy-2-oxo-2H-chromen-3-ylcarbamoyl)-4a-hydroxy-4a,5,8,8a-tetrahydro-4H-benzo[e][1,2]oxazin-5-yl acetate
Acid $12 \mathrm{a}(21.0 \mathrm{mg}, 0.041 \mathrm{mmol})$, aminocoumarin $4(11.0 \mathrm{mg}, 0.049 \mathrm{mmol})$ and EDCI ( $9.5 \mathrm{mg}, 0.049 \mathrm{mmol}$ ) were dissolved in 0.2 mL of $30 \%$ pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at rt for 5 days. The solvent was evaporated and the residue was purified by column chromatography ( $5 \%-20 \%$ acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give compound $\mathbf{1 5 a}$ ( $23.7 \mathrm{mg}, 0.033 \mathrm{mmol}$, $81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.29(1 \mathrm{H}, \mathrm{s}), 8.57(1 \mathrm{H}, \mathrm{s}), 7.73-7.65(4 \mathrm{H}, \mathrm{m}), 7.45-7.35(6 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.58-5.47(3 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{dd}, J=2.0,6.9 \mathrm{~Hz}), 4.12-4.08(1 \mathrm{H}, \mathrm{m}), 4.02(3 \mathrm{H}, \mathrm{s})$, $3.95(3 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{s}), 2.51(1 \mathrm{H}, \mathrm{dd}, J=2.0,19.4 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.4 \mathrm{~Hz}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.10(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.4,160.9,157.9,154.3,149.0,144.3,136.3,136.1,135.9,133.4,131.8,130.2,129.9,127.9,127.8$, 127.7, 125.0, 124.3, 122.5, 121.1, 114.2, 109.5, 82.4, 75.8, 67.8, 67.1, 61.6, 56.5, 26.9, 25.1, 20.9, 19.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}: 712.2452$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 735.2452$; IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3361(\mathrm{~b}), 2932(\mathrm{w}), 2857$ (w), 1722 (s), 1682 (s), 1608 (s), 1520 (s), 1462 (s), 1428 (m), 1377 (m), 1232 (m), 1169 (w), 1110 (s), 1076 (m), 909 (w), $734(\mathrm{~m}), 703(\mathrm{~m}) ;[\alpha]_{D}^{22}+173.4\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)$.


Compound E
(4aS,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-N-(7,8-dimethoxy-2-oxo-2H-chromen-3-yl)-4a,5-dihydroxy-4a,5,8,8a-tetrahydro-4H-benzo $[e][1,2]$ oxazine-3-carboxamide
To a solution containing amide $15 a(9.8 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 0.2 mL of dry MeOH , was added 2.3 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at rt . The mixture was monitored by TLC until all the starting material was consumed. The solvent was evaporated and the residue was purified by column chromatography ( $5 \%-20 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give 6.8 mg of compound $\mathbf{E}$ ( 0.010 $\mathrm{mmol}, 71 \%$ yield). $R_{\mathrm{f}}: 0.26$ in $20 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.25(1 \mathrm{H}, \mathrm{s}), 8.56(1 \mathrm{H}, \mathrm{s}), 7.71-7.64(4 \mathrm{H}$, m), $7.45-7.36(6 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{td}, J=$ $2.4,10.4 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=1.4,6.0 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{s})$, $2.62(1 \mathrm{H}, \mathrm{dd}, J=1.4,19.5 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{d}, J=19.5 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{m}), 1.09(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 160.7$, $158.0,154.2,150.8,144.2,136.2,136.0,135.9,133.2,131.9,130.0,128.6,127.91,127.87,127.7,125.0,124.0,122.6$, 121.1, 114.1, 109.5, 82.4, 75.8, 67.8, 67.1, 61.6, 56.5, 26.9, 25.8, 19.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O} 9 \mathrm{Si}$ : 670.2347, Found $(\mathrm{M}+\mathrm{Na})^{+}: 693.2253 ;[\alpha]_{D}^{22}+133.4\left(\mathrm{c} 0.34, \mathrm{CHCl}_{3}\right)$.

## Trichodermamide A (1)

Amide $\mathbf{E}(6.8 \mathrm{mg}, 0.010 \mathrm{mmol})$ was dissolved in 0.3 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. TBAF ( $11 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in THF) was then added dropwise. The solution was warmed to rt and was monitored by TLC until all the starting material was consumed. The solvent was then evaporated and the residue was purified by column chromatography ( $20 \%-50 \%$ acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give 3.7 mg of trichodermamide A as a white solid ( $0.0084 \mathrm{mmol}, 84 \%$ yield). $R_{\mathrm{f}}: 0.09$ in $20 \%$ acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H}$ NMR ( $10 \%$ DMSO- $d_{6}$ in $\mathrm{CDCl}_{3}$ ): $\delta 9.28(1 \mathrm{H}, \mathrm{s}), 8.41(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.75(1$ $\mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{td}, J=10.6 \mathrm{~Hz}), 5.02(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 4.79(1 \mathrm{H}, \mathrm{s}), 4.34(1$ $\mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{dd}, J=2.2,7.8 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{m}) ; 3.78(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 2.50(1 \mathrm{H}, \mathrm{d}, J=19.5 \mathrm{~Hz}$, masked by DMSO peak, deduced); $2.38(1 \mathrm{H}, \mathrm{d}, J=19.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ( $10 \% \mathrm{DMSO}_{6} \mathrm{~d}_{6}$ in $\mathrm{CDCl}_{3}$ ): $\delta 160.9,157.7$, $153.6,149.9,143.5,135.6,129.1,127.4,123.5,122.1,120.7,113.7,109.2,83.3,73.7,67.8,66.1,60.9,56.0,23.7$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9}: 432.1169$, Found (M+H) ${ }^{+}$433. 1268; IR ( $\mathrm{NaCl}, \mathrm{cm}^{-1}$ ): 3363 (b), 2927 (w), 1713 (s), 1682 (s), 1607 (s), 1524 (s), 1462 (s), 1379 (s), 1286 (s), 1107 (s), 1010 (m), 905 (w), 789 (w); [ $\alpha]_{D}^{23}$ +158.1 (c 0.14, acetone).


Compound 15b
(4aS,5S,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-3-(7,8-dimethoxy-2-oxo-2H-chromen-3-ylcarbamoyl)-4a-hydroxy-4a,5,8,8a-tetrahydro-4H-benzo $[e][1,2]$ oxazin-5-yl acetate
Acid 12b ( $27.1 \mathrm{mg}, 0.053 \mathrm{mmol}$ ), aminocoumarin $4(14.2 \mathrm{mg}, 0.064 \mathrm{mmol})$ and EDCI ( $12.3 \mathrm{mg}, 0.064 \mathrm{mmol}$ ) were dissolved in 0.25 mL of $30 \%$ pyridine $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at rt for 5 days. The solvent was then evaporated and the residue was purified by column chromatography ( $5 \%-20 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give 31.8 mg of amide $\mathbf{1 5 b}(0.044 \mathrm{mmol}$, $83 \%$ yield). $R_{\mathrm{f}}: 0.76$ in $20 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.27(1 \mathrm{H}, \mathrm{s}), 8.57(1 \mathrm{H}, \mathrm{s}), 7.72-7.65(4 \mathrm{H}, \mathrm{m}), 7.46-$ $7.36(6 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{m}), 5.66(1 \mathrm{H}, \mathrm{dd}, J=2.6,10.3 \mathrm{~Hz}), 5.15$ $(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}), 4.29-4.26(1 \mathrm{H}, \mathrm{m}), 4.18-4.15(1 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{s}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=$ $1.5,19.0 \mathrm{~Hz}), 2.34(1 \mathrm{H}, \mathrm{d}, J=19.0 \mathrm{~Hz}), 2.18(3 \mathrm{H}, \mathrm{s}), 1.11(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.4,160.5,157.9,154.2$, $149.0,144.2,136.0,135.8,133.0,131.8,131.6,130.2,130.0,127.9,127.8,127.8,124.33,124.29,122.5,121.1,114.1$, $109.5,80.5,70.8,67.7,64.5,61.6,56.4,29.7,26.9,21.0,19.2$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}$ : 712.2452 , Found $(\mathrm{M}+\mathrm{Na})^{+}: 735.2333 ;[\alpha]_{D}^{22}+14.1\left(\mathrm{c} 1.71, \mathrm{CHCl}_{3}\right)$.


## Compound F

(4aS,5S,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-N-(7,8-dimethoxy-2-oxo-2H-chromen-3-yl)-4a,5-dihydroxy-4a,5,8,8a-tetrahydro-4H-benzo $[e][1,2]$ oxazine-3-carboxamide
To a solution containing amide 15b ( $27.5 \mathrm{mg}, 0.039 \mathrm{mmol}$ ) in 0.2 mL of dry MeOH , was added 6.4 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.046 \mathrm{mmol})$ at rt . The mixture was monitored by TLC until all the starting material was consumed. The solvent was evaporated and the residue was purified by column chromatography ( $5 \%-20 \%$ acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give 17.3 mg of compound $\mathbf{F}(0.030 \mathrm{mmol}, 66 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta 9.29(1 \mathrm{H}, \mathrm{s}), 8.59(1 \mathrm{H}, \mathrm{s}), 7.69-7.66(4 \mathrm{H}, \mathrm{m}), 7.48-7.39$ $(6 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{dd}, J=2.5,10.2 \mathrm{~Hz}), 5.57(1 \mathrm{H}, \mathrm{dd}, J=3.2$, $10.2 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{m}), 4.00(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=1.4$, $19.1 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.1 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{m}), 1.10(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 160.5,157.9,154.3,150.3$, $144.2,136.2,135.9,135.8,132.7,131.8,130.4,130.2,129.1,128.0,127.8,124.4,124.0,122.5,121.1,114.2,109.5$, 79.3, 68.1, 67.0, 65.3, 61.6, 56.4, 29.3, 26.9, 19.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}: 670.2347$, Found (M $+\mathrm{Na})^{+}: 693.2254 ;[\alpha]_{D}^{22}+24.7\left(\mathrm{c} 0.85, \mathrm{CHCl}_{3}\right)$.

## Compound G

(4aR,5R,8R,8aS)-8-(tert-Butyldiphenylsilyloxy)-5-chloro- $N$-(7,8-dimethoxy-2-oxo-2H-chromen-3-yl)-4a-hydroxy-4a,5,8,8a-tetrahydro- 4 H -benzo $[e][1,2]$ oxazine-3-carboxamide
Amide $\mathbf{F}(12.8 \mathrm{mg}, 0.019 \mathrm{mmol})$ was dissolved in 0.5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution, was added $4.0 \mu \mathrm{~L}$ of $\mathrm{NEt}_{3}(0.029 \mathrm{mmol})$ and $1.6 \mu \mathrm{~L}$ of $\mathrm{MsCl}(0.021 \mathrm{mmol})$ in sequence. The mixture was warmed to rt and stirred for 2 h . Anhydrous $\mathrm{LiCl}(4.1 \mathrm{mg}, 0.097 \mathrm{mmol})$ was then added and the mixture was stirred for 2 days. The solvent was evaporated and the residue was purified by column chromatography ( $30 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to give 7.9 mg of compound $\mathbf{G}$ (yield $61 \%$ ). $R_{\mathrm{f}}$ : 0.33 in $30 \% \mathrm{EtOAc} /$ hexanes; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.25(1 \mathrm{H}, \mathrm{s}), 8.58(1 \mathrm{H}, \mathrm{s}), 7.71-$ $7.64(4 \mathrm{H}, \mathrm{m}), 7.45-7.31(6 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{td}, J=2.0,10.4 \mathrm{~Hz})$, $5.57(1 \mathrm{H}, \mathrm{td}, J=2.4,10.4 \mathrm{~Hz}), 4.84(1 \mathrm{H}, \mathrm{q}, J=2.4 \mathrm{~Hz}), 4.38(1 \mathrm{H}, \mathrm{dd}, J=2.2,7.0 \mathrm{~Hz}), 4.13-4.08(1 \mathrm{H}, \mathrm{m}), 4.03(3 \mathrm{H}$, s), $3.96(3 \mathrm{H}, \mathrm{s}), 3.46-3.39(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{dd}, J=2.2,19.6 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}), 1.10(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ( $\left(\mathrm{CDCl}_{3}\right): \delta 160.5,157.9,154.3,149.3,144.3,136.3,135.9,133.3,131.6,130.1,130.0,128.9,127.7,124.4,122.5$, 121.1, 114.2, 109.5, 83.0, 68.1, 67.9, 63.5, 61.6, 56.5, 29.7, 26.2, 19.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}_{9} \mathrm{Si}: 688.2008$, Found $(\mathrm{M}+\mathrm{Na})^{+}: 711.1924 ;[\alpha]_{D}^{22}+121.1\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$.


## Trichodermamide B (2)

To a solution containing 1.0 mg amide G in 0.2 mL of THF, was added dropwise 0.15 mL of aqeous HF solution ( $48 \%$ ). The mixture was stirred at room temperature for 4 h . The reaction was then diluted with 0.5 mL of EtOAc, and quenched with adequate amount of saturated $\mathrm{NaHCO}_{3}$ solution. The organic layer was separated, and the aqueous phase was extracted with $2 \times 2 \mathrm{~mL}$ of EtOAc. The organic layers were combined, washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography ( $10 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to give 0.6 mg of trichodermamide B as a white solid(yield $90 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $10 \%$ DMSO- $d_{6}$ in $\mathrm{CDCl}_{3}$ ): $\delta 9.41(1 \mathrm{H}, \mathrm{s})$, $8.56(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.59(2 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=2.1$, $7.5 \mathrm{~Hz}), 4.11(1 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}, \mathrm{dd}, J=2.1,19.6 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{d}, J=19.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ( $10 \%$ DMSO- $d_{6}$ in $\mathrm{CDCl}_{3}$ ): $\delta 160.7,157.8,153.8,149.6,143.7,135.7,129.0,127.4,123.9,122.3,120.8,113.8$, 109.2, 83.9, 67.3, 65.6, 64.6, 61.2, 56.1, 25.1 (some impurities also showed up around 25.2 ppm ); HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{8}: 450.0830$, Found $(\mathrm{M}+\mathrm{H})^{+}: 451.0905 ;[\alpha]_{D}{ }^{29}+138.0\left(\mathrm{c} 0.03, \mathrm{CHCl}_{3}\right)$.


Figure 1. ${ }^{1} \mathrm{H}$ NMR of Compound 8.


Figure 2. ${ }^{13} \mathrm{C}$ NMR of Compound 8.


Figure 3. ${ }^{1} \mathbf{H}$ NMR of Compound B.


Figure 4. ${ }^{13}$ C NMR of Compound B.


Figure 5. ${ }^{1} \mathrm{H}$ NMR of Compound 9.


Figure 6. ${ }^{13} \mathrm{C}$ NMR of Compound 9.


Figure 7. ${ }^{1}$ H NMR of Compound 10.


Figure 8. ${ }^{13} \mathrm{C}$ NMR of Compound 10.


Figure 9. ${ }^{1} \mathrm{H}$ NMR of Compound 11a.


Figure 10. ${ }^{13} \mathrm{C}$ NMR of Compound 11a.


Figure 11. ${ }^{1} \mathrm{H}$ NMR of Compound C.


Figure 12. ${ }^{13}$ C NMR of Compound C.


Figure 13. ${ }^{\mathbf{1}} \mathrm{H}$ NMR of Compound D.


Figure 14. ${ }^{13}$ C NMR of Compound D.


Figure 15. ${ }^{1} \mathrm{H}$ NMR of Compound 12a.


Figure 16. ${ }^{13} \mathrm{C}$ NMR of Compound 12a.


Figure 17. ${ }^{1} \mathrm{H}$ NMR of Compound 12 b .


Figure 18. ${ }^{13} \mathrm{C}$ NMR of Compound 12 b .


Figure 19. ${ }^{1} \mathrm{H}$ NMR of Compound 13.


Figure 20. ${ }^{13} \mathrm{C}$ NMR of Compound 13.


Figure 21. ${ }^{1} \mathrm{H}$ NMR of Compound 14.


Figure 22. ${ }^{13} \mathrm{C}$ NMR of Compound 14.


Figure 23. ${ }^{1} \mathrm{H}$ NMR of Compound 4.


Figure 24. ${ }^{13} \mathrm{C}$ NMR of Compound 4.


Figure 25. ${ }^{1} \mathrm{H}$ NMR of Compound 15a.


Figure 6. ${ }^{13} \mathrm{C}$ NMR of Compound 15 a .


Figure 27. IR Spectrum of Compound 15a.


Figure 28. ${ }^{1}$ H NMR of Compound E.


Figure 29. ${ }^{13}$ C NMR of Compound E.


Figure 30. ${ }^{1} \mathrm{H}$ NMR of Trichodermamide A.


Figure 31. ${ }^{13} \mathrm{C}$ NMR of Trichodermamide A.


Figure 32. IR Spectrum of Trichodermamide A.


Figure 33. ${ }^{1} \mathrm{H}$ NMR of Compound 15 b .


Figure 34. ${ }^{13} \mathrm{C}$ NMR of Compound 15 b .


Figure 35. ${ }^{1}$ H NMR of Compound F.




Figure 37. ${ }^{1} \mathrm{H}$ NMR of Compound G.


Figure 38. ${ }^{13}$ C NMR of Compound G.


Figure 39. ${ }^{1} \mathrm{H}$-NMR of trichodermamide B


Figure 40. ${ }^{13}$ C-NMR of trichodermamide $\mathbf{B}$

## X-ray Structure Determination of Trichodermamide A



Trichodermamide $A, \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9}$, crystallizes in the orthorhombic space group I222 (systematic absences hkl: $\mathrm{h}+\mathrm{k}+\mathrm{l}=$ odd) with $\mathrm{a}=10.9542(12) \AA, \mathrm{b}=13.687(2) \AA$, $\mathrm{c}=32.040(4) \AA, \mathrm{V}=4803.6(10) \AA^{3}, \mathrm{Z}=8$ and $\mathrm{d}_{\text {calc }}=1.196 \mathrm{~g} / \mathrm{cm}^{3}$. X-ray intensity data were collected on a Rigaku Mercury CCD area detector employing graphite-monochromated Mo- $K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$ at a temperature of 143 K . Preliminary indexing was performed from a series of twelve $0.5^{\circ}$ rotation images with exposures of 45 seconds. A total of 660 rotation images were collected with a crystal to detector distance of 35 mm , a $2 \theta$ swing angle of $-10^{\circ}$, rotation widths of $0.5^{\circ}$ and exposures of 30 seconds: scan no. 1 was a $\phi$-scan from $157.5^{\circ}$ to $367.5^{\circ}$ at $\omega=10^{\circ}$ and $\chi=20^{\circ}$; scan no. 2 was an $\omega$-scan from $-20^{\circ}$ to $5^{\circ}$ at $\chi=-90^{\circ}$ and $\phi=135^{\circ}$; scan no. 3 was an $\omega$-scan from $-20^{\circ}$ to $4^{\circ}$ at $\chi=$ $-90^{\circ}$ and $\phi=315^{\circ}$; scan no. 4 was an $\omega$-scan from $-20^{\circ}$ to $11^{\circ}$ at $\chi=-90^{\circ}$ and $\phi=0^{\circ}$; scan no. 5 was an $\omega$-scan from $-20^{\circ}$ to $20^{\circ}$ at $\chi=-90^{\circ}$ and $\phi=225^{\circ}$. Rotation images were processed using CrystalClear ${ }^{\mathrm{i}}$, producing a listing of unaveraged $\mathrm{F}^{2}$ and $\sigma\left(\mathrm{F}^{2}\right)$ values which were then passed to the CrystalStructure ${ }^{\mathrm{ii}}$ program package for further processing and structure solution on a Dell Pentium III computer. A total of 21165 reflections were measured over the ranges $5.08 \leq 2 \theta \leq 50.06^{\circ}$, $-13 \leq \mathrm{h} \leq 13,-16 \leq \mathrm{k}$ $\leq 15,-38 \leq 1 \leq 38$ yielding 4253 unique reflections $\left(\mathrm{R}_{\text {int }}=0.0396\right)$. The intensity data
were corrected for Lorentz and polarization effects and for absorption using REQAB ${ }^{\text {iii }}$ (minimum and maximum transmission $0.773,1.000$ ).

The structure was solved by direct methods (SIR97 ${ }^{\text {iv }}$ ). Refinement was by fullmatrix least squares based on $\mathrm{F}^{2}$ using SHELXL- $97^{\mathrm{v}}$. All reflections were used during refinement ( $\mathrm{F}^{2}$ 's that were experimentally negative were replaced by $\mathrm{F}^{2}=0$ ). The weighting scheme used was $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+0.0821 \mathrm{P}^{2}+1.9748 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+\right.$ $\left.2 F_{c}^{2}\right) / 3$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a "riding" model. Refinement converged to $R_{1}=0.0531$ and $\mathrm{wR}_{2}=0.1357$ for 3751 reflections for which $\mathrm{F}>4 \sigma(\mathrm{~F})$ and $\mathrm{R}_{1}=0.0593$, $\mathrm{wR}_{2}=0.1417$ and $\mathrm{GOF}=1.090$ for all 4253 unique, non-zero reflections and 287 variables ${ }^{\text {vi. }}$. The maximum $\Delta / \sigma$ in the final cycle of least squares was 0.000 and the two most prominent peaks in the final difference Fourier were +0.379 and $-0.301 \mathrm{e} / \AA^{3}$.

Table 1. lists cell information, data collection parameters, and refinement data. Final positional and equivalent isotropic thermal parameters are given in Table 2. Anisotropic thermal parameters are in Table 3. Tables 4. and 5. list bond distances and bond angles. Figure 1. is an ORTEP ${ }^{\text {vii }}$ representation of the molecule with $30 \%$ probability thermal ellipsoids displayed.


Figure 1. ORTEP drawing of the title compound with $30 \%$ probability thermal ellipsoids.

Table 1. Summary of Structure Determination of Trichodermamide A

Formula:
Formula weight:
Crystal class:
Space group:
Z
Cell constants:

| a | 10.9542(12) $\AA$ |
| :---: | :---: |
| b | 13.687(2) $\AA$ |
| c | 32.040(4) $\AA$ |
| V | 4803.6(10) $\AA^{3}$ |
| $\mu$ | $0.96 \mathrm{~cm}^{-1}$ |
| crystal size, mm | $0.38 \times 0.18 \times 0.03$ |
| $\mathrm{D}_{\text {calc }}$ | $1.196 \mathrm{~g} / \mathrm{cm}^{3}$ |
| F(000) | 1808 |
| Radiation: | $\mathrm{Mo}-\mathrm{K}_{\alpha}(\lambda=0.71073 \AA)$ |
| $2 \theta$ range | 5.08-50.06 ${ }^{\circ}$ |
| hkl collected: | $-13 \leq h \leq 13 ;-16 \leq k \leq 15 ; ~-$ |
| $38 \leq 1 \leq 38$ |  |
| No. reflections measured: | 21165 |
| No. unique reflections: | 4253 ( $\mathrm{R}_{\text {int }}=0.0396$ ) |
| No. observed reflections | 3751 ( $\mathrm{F}>4 \sigma$ ) |
| No. reflections used in refinement | 4253 |
| No. parameters | 287 |
| R indices ( $\mathrm{F}>4 \sigma$ ) | $\mathrm{R}_{1}=0.0531$ |
|  | $\mathrm{wR}_{2}=0.1357$ |
| R indices (all data) | $\mathrm{R}_{1}=0.0593$ |
|  | $w R_{2}=0.1417$ |
| GOF: | 1.090 |
| Final Difference Peaks, e/ $\AA^{3}$ | +0.379, -0.301 |

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{9}$
432.38
orthorhombic
I222 (\#23)
8
$10.9542(12) \AA$
13.687(2) $\AA$
32.040(4) $\AA$
4803.6(10) $\AA^{3}$
$0.96 \mathrm{~cm}^{-1}$
$0.38 \times 0.18 \times 0.03$
$1.196 \mathrm{~g} / \mathrm{cm}^{3}$
1808
$\mathrm{Mo}-\mathrm{K}_{\alpha}(\lambda=0.71073 \AA)$
$5.08-50.06^{\circ}$
$-13 \leq h \leq 13 ;-16 \leq k \leq 15 ;-$

21165
4253 ( $\mathrm{R}_{\mathrm{int}}=0.0396$ )
3751 ( $\mathrm{F}>4 \sigma$ )
4253
287
$\mathrm{R}_{1}=0.0531$
$w R_{2}=0.1357$
$\mathrm{R}_{1}=0.0593$
$w_{2}=0.1417$
1.090
$+0.379,-0.301$

Table 2. Refined Positional Parameters for Trichodermamide A

| Atom | x | y | Z | $\mathrm{Ueq}, \AA^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| C1 | 0.8892(2) | 0.3824(2) | 0.12857(7) | 0.0348(6) |
| H1 | 0.9691 | 0.4140 | 0.1263 | 0.046 |
| C2 | 0.8997(2) | 0.2831(2) | 0.10748(8) | 0.0382(6) |
| H2 | 0.8323 | 0.2412 | 0.1167 | 0.051 |
| C3 | 0.8963(3) | 0.2927(2) | 0.06083(8) | 0.0427 (7) |
| H3 | 0.9203 | 0.2391 | 0.0450 | 0.057 |
| C4 | 0.8616(3) | 0.3722(2) | 0.04092(8) | 0.0451(7) |
| H4 | 0.8586 | 0.3704 | 0.0119 | 0.060 |
| C5 | 0.8270(3) | 0.4645(2) | 0.06222(8) | 0.0405(7) |
| H5 | 0.8966 | 0.5093 | 0.0604 | 0.054 |
| C6 | 0.7976(2) | 0.4494(2) | 0.10821(8) | 0.0351(6) |
| C7 | 0.6705(2) | 0.4053(2) | 0.11457(8) | 0.0357(6) |
| H7a | 0.6083 | 0.4515 | 0.1059 | 0.048 |
| H7b | 0.6619 | 0.3464 | 0.0980 | 0.048 |
| C8 | 0.6560(2) | 0.3820(2) | 0.15989(7) | $0.0314(6)$ |
| C9 | 0.5292(2) | 0.3796(2) | 0.17666(8) | 0.0331(6) |
| C10 | 0.4081(2) | 0.3755(2) | 0.24166(8) | 0.0324(6) |
| C11 | 0.4284(2) | 0.3631(2) | 0.28621(8) | $0.0352(6)$ |
| C12 | 0.2944(2) | 0.3852(2) | 0.22672(8) | 0.0346(6) |
| H12 | 0.2826 | 0.3959 | 0.1983 | 0.046 |
| C13 | 0.1906(2) | 0.3794(2) | 0.25394(8) | $0.0336(6)$ |
| C14 | 0.0706(2) | 0.3836(2) | 0.24051(8) | 0.0372(6) |
| H14 | 0.0546 | 0.3912 | 0.2122 | 0.049 |
| C15 | -0.0256(2) | 0.3768(2) | 0.26799(8) | 0.0389(6) |
| H15 | -0.1056 | 0.3795 | 0.2583 | 0.052 |
| C16 | -0.0019(2) | 0.3659(2) | 0.31089(8) | 0.0367(6) |
| C17 | 0.1170(2) | 0.3618(2) | 0.32540(8) | 0.0333(6) |
| C18 | 0.2116(2) | 0.3690(2) | 0.29675(8) | $0.0316(5)$ |
| C19 | -0.2152(2) | 0.3578(3) | 0.32738(10) | 0.0482(7) |
| H19a | -0.2343 | 0.4195 | 0.3147 | 0.072 |
| H19b | -0.2675 | 0.3475 | 0.3510 | 0.072 |
| H19c | -0.2274 | 0.3063 | 0.3075 | 0.072 |
| C20 | 0.1620(7) | 0.4248(4) | 0.39294(13) | 0.137(3) |
| H20a | 0.2451 | 0.4460 | 0.3900 | 0.205 |
| H20b | 0.1468 | 0.4070 | 0.4215 | 0.205 |
| H20c | 0.1080 | 0.4768 | 0.3850 | 0.205 |
| N1 | 0.7419(2) | 0.3666(2) | 0.18653(7) | 0.0374(5) |
| N2 | 0.5175(2) | 0.3762(2) | 0.21897(6) | $0.0347(5)$ |
| H2a | 0.5841 | 0.3744 | 0.2332 | 0.046 |
| O1 | 0.8637(2) | 0.3699(2) | $0.17298(5)$ | $0.0407(5)$ |
| O2 | 1.0134(2) | 0.2375(2) | $0.11778(6)$ | $0.0516(6)$ |
| H2b | 1.0076 | 0.2106 | 0.1405 | 0.077 |
| O3 | 0.7249(2) | 0.5105(2) | 0.04277(6) | 0.0528(6) |
| H3a | 0.7130 | 0.4857 | 0.0198 | 0.079 |


| O4 | $0.8068(2)$ | $0.5405(2)$ | $0.13026(7)$ | $0.0473(5)$ |
| :---: | :---: | :--- | :--- | :--- |
| H4a | 0.7395 | 0.5667 | 0.1312 | 0.071 |
| O5 | $0.4421(2)$ | $0.3840(2)$ | $0.15279(6)$ | $0.0420(5)$ |
| O6 | $0.5280(2)$ | $0.3543(2)$ | $0.30235(6)$ | $0.0456(5)$ |
| O7 | $0.32962(14)$ | $0.36248(14)$ | $0.31210(5)$ | $0.0343(4)$ |
| O8 | $-0.0901(2)$ | $0.3580(2)$ | $0.34077(6)$ | $0.0457(5)$ |
| O9 | $0.1415(2)$ | $0.3429(2)$ | $0.36689(6)$ | $0.0444(5)$ |
| $\mathrm{U}_{\mathrm{eq}}=1 / 3\left[\mathrm{U}_{11}\left(\mathrm{aa}^{*}\right)^{2}+\mathrm{U}_{22}(\mathrm{bb})^{2}+\mathrm{U}_{33}\left(\mathrm{cc}^{*}\right)^{2}+2 \mathrm{U}_{12} \mathrm{aa}^{*} \mathrm{bb}^{*} \cos \gamma+2 \mathrm{U}_{13} \mathrm{aa}^{* c c} * \cos \beta+2 \mathrm{U}_{23} \mathrm{bb}^{* c c}{ }^{*} \cos \alpha\right]$ |  |  |  |  |

Table 3. Refined Thermal Parameters (U's) for Trichodermamide A

| Atom | $\mathrm{U}_{11}$ | $\mathrm{U}_{22}$ | $\mathrm{U}_{33}$ | $\mathrm{U}_{23}$ | $\mathrm{U}_{13}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{U}_{12}$ |  |  |  |  |  |  |
| C1 | 0.0281(13) |  |  | 0.049(2) | 0.0276(12) |  | 0.0030(10) | -0.0032(12) |
|  |  |  |  | 0.0001(12) |  |  |
| C2 | 0.0334(14) | 0.048(2) | 0.0332(12) | 0.0050(12) | 0.0027(11) | 0.0041(12) |
| C3 | 0.039(2) | 0.052(2) | 0.0368(13) | - | 0.0032(12) | 0.0067(13) |
|  |  |  |  | 0.0033(13) |  |  |
| C4 | 0.042(2) | 0.062(2) | 0.0311(13) | $0.0009(13)$ | 0.0020(12) | 0.006(2) |
| C5 | 0.036(2) | 0.049(2) | 0.0368(14) | $0.0125(12)$ | 0.0057(11) | 0.0049 (12) |
| C6 | 0.0332(14) | 0.0387(14) | 0.0333(13) | 0.0016(11) | 0.0027(11) | -0.0016(12) |
| C7 | $0.0325(14)$ | 0.045(2) | 0.0296(13) | $0.0037(11)$ | - | -0.0019(11) |
|  |  |  |  |  | 0.0011(11) |  |
| C8 | 0.0305(13) | 0.0359(13) | 0.0278(12) | $0.0038(10)$ | 0.0016(10) | 0.0007(11) |
| C9 | 0.0354(14) | 0.0307(13) | 0.0332(12) | $0.0042(11)$ | 0.0055(11) | 0.0014(11) |
| C10 | 0.0295(13) | 0.0365(13) | 0.0313(12) | $0.0032(11)$ | 0.0065(10) | $0.0032(12)$ |
| C11 | 0.0283(13) | 0.043(2) | 0.0348(13) | 0.0060(12) | 0.0054(11) | $0.0043(12)$ |
| C12 | 0.0366(14) | 0.0364(14) | 0.0307(12) | $0.0038(11)$ |  | $0.0039(12)$ |
|  |  |  |  |  | 0.0029(11) |  |
| C13 | 0.0342(13) | 0.0351(13) | 0.0316(12) | $0.0035(11)$ |  | -0.0008(12) |
|  |  |  |  |  | 0.0018(11) |  |
| C14 | 0.0323(13) | 0.041(2) | 0.0381(13) | $0.0015(12)$ |  | 0.0022(12) |
|  |  |  |  |  | 0.0060(12) |  |
| C15 | 0.0279(13) | 0.043(2) | 0.046(2) |  |  | -0.0006(12) |
|  |  |  |  | 0.0016(12) | 0.0007(11) |  |
| C16 | 0.0274(12) | 0.0380(14) | 0.0449(14) | $0.0011(12)$ | 0.0020(11) | 0.0057(12) |
| C17 | 0.0315(13) | 0.0386(14) | 0.0299(12) | $0.0033(11)$ |  | $0.0068(12)$ |
|  |  |  |  |  | 0.0002(10) |  |
| C18 | 0.0248(12) | 0.0357(13) | 0.0343(12) | 0.0020(11) |  | $0.0005(12)$ |
|  |  |  |  |  | 0.0021(10) |  |
| C19 | 0.0251(13) | 0.057(2) | 0.063(2) | -0.004(2) | 0.0054(13) | $0.0015(14)$ |
| C20 | 0.261(8) | 0.092(3) | 0.058(2) | -0.037(2) | -0.068(4) | $0.095(4)$ |
| N1 | 0.0301(11) | 0.0507(14) | 0.0314(11) | $0.0018(10)$ | 0.0061(9) | -0.0013(11) |
| N2 | 0.0247(10) | 0.0473(13) | 0.0321(10) | 0.0090(10) | 0.0014(9) | 0.0011(10) |
| O1 | 0.0275(9) | 0.0657(13) | 0.0287(9) | 0.0025(9) | 0.0009(7) | -0.0012(10) |


| O2 | $0.0395(11)$ | $0.0678(14)$ | $0.0476(11)$ | $0.0179(10)$ | $0.0075(9)$ | $0.0175(10)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O3 | $0.0584(13)$ | $0.069(2)$ | $0.0303(9)$ | $0.0128(10)$ | $0.0017(9)$ | $0.0191(12)$ |
| O4 | $0.0457(11)$ | $0.0440(11)$ | $0.0523(12)$ | $-0.0084(9)$ | $0.0099(10)$ | $-0.0031(9)$ |
| O5 | $0.0321(10)$ | $0.0586(13)$ | $0.0354(9)$ | $0.0054(9)$ | $-0.0002(8)$ | $0.0008(9)$ |
| O6 | $0.0300(10)$ | $0.0697(14)$ | $0.0372(9)$ | $0.0116(10)$ | $0.0007(8)$ | $0.0019(10)$ |
| O7 | $0.0244(9)$ | $0.0459(10)$ | $0.0325(9)$ | $0.0034(8)$ | $0.0010(7)$ | $0.0018(8)$ |
| O8 | $0.0262(9)$ | $0.0636(13)$ | $0.0474(11)$ | $0.0033(10)$ | $0.0037(8)$ | $0.0025(10)$ |
| O9 | $0.0348(10)$ | $0.0650(14)$ | $0.0335(9)$ | $0.0067(9)$ | $0.0035(8)$ | $0.0012(10)$ |

The form of the anisotropic displacement parameter is:
$\exp \left[-2 \pi^{2}\left(a^{* 2} U_{11} h^{2}+b^{* 2} U_{22} k^{2}+c^{* 2} U_{33} l^{2}+2 b^{*} c^{*} U_{23} k l+2 a^{*} c^{*} U_{13} h l+2 a^{*} b^{*} U_{12} h k\right)\right]$.

Table 4. Bond Distances in Trichodermamide A, $\AA$

| C1-O1 | $1.460(3)$ | C1-C6 | $1.508(4)$ | C1-C2 | $1.522(4)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C2-O2 | $1.432(3)$ | C2-C3 | $1.501(4)$ | C3-C4 | $1.317(4)$ |
| C4-C5 | $1.485(4)$ | C5-O3 | $1.427(3)$ | C5-C6 | $1.523(3)$ |
| C6-O4 | $1.436(3)$ | C6-C7 | $1.531(4)$ | C7-C8 | $1.495(3)$ |
| C8-N1 | $1.287(3)$ | C8-C9 | $1.490(3)$ | C9-O5 | $1.224(3)$ |
| C9-N2 | $1.362(3)$ | C10-C12 | $1.342(4)$ | C10-N2 | $1.402(3)$ |
| C10-C11 | $1.454(4)$ | C11-O6 | $1.213(3)$ | C11-O7 | $1.364(3)$ |
| C12-C13 | $1.435(4)$ | C13-C14 | $1.384(4)$ | C13-C18 | $1.398(3)$ |
| C14-C15 | $1.377(4)$ | C15-C16 | $1.407(4)$ | C16-O8 | $1.365(3)$ |
| C16-C17 | $1.384(4)$ | C17-O9 | $1.381(3)$ | C17-C18 | $1.388(4)$ |
| C18-O7 | $1.386(3)$ | C19-O8 | $1.436(3)$ | C20-O9 | $1.414(5)$ |
| N1-O1 | $1.404(3)$ |  |  |  |  |

Table 5. Bond Angles in Trichodermamide A, ${ }^{\circ}$

| O1-C1-C6 | $111.4(2)$ | O1-C1-C2 | $110.0(2)$ | C6-C1-C2 | $113.7(2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O2-C2-C3 | $106.8(2)$ | O2-C2-C1 | $110.6(2)$ | C3-C2-C1 | $111.2(2)$ |
| C4-C3-C2 | $124.2(3)$ | C3-C4-C5 | $123.6(2)$ | O3-C5-C4 | $112.0(2)$ |
| O3-C5-C6 | $108.4(2)$ | C4-C5-C6 | $112.6(2)$ | O4-C6-C1 | $105.6(2)$ |
| O4-C6-C5 | $110.1(2)$ | C1-C6-C5 | $111.1(2)$ | O4-C6-C7 | $109.9(2)$ |
| C1-C6-C7 | $107.9(2)$ | C5-C6-C7 | $112.0(2)$ | C8-C7-C6 | $108.1(2)$ |
| N1-C8-C9 | $116.0(2)$ | N1-C8-C7 | $127.0(2)$ | C9-C8-C7 | $117.0(2)$ |
| O5-C9-N2 | $123.4(2)$ | O5-C9-C8 | $120.0(2)$ | N2-C9-C8 | $116.5(2)$ |
| C12-C10- | $127.5(2)$ | C12-C10- | $120.2(2)$ | N2-C10- | $112.3(2)$ |
| N2 |  | C11 |  | C11 |  |
| O6-C11-O7 | $117.0(2)$ | O6-C11- | $124.6(2)$ | O7-C11- | $118.4(2)$ |
|  |  | C10 |  | C10 |  |
| C10-C12- | $120.9(2)$ | C14-C13- | $117.7(2)$ | C14-C13- | $124.1(2)$ |
| C13 |  | C18 |  | C12 |  |
| C18-C13- | $118.1(2)$ | C15-C14- | $121.7(2)$ | C14-C15- | $119.3(2)$ |
| C12 |  | C13 |  | C16 |  |
| O8-C16- | $115.3(2)$ | O8-C16- | $124.2(2)$ | C17-C16- | $120.5(2)$ |
| C17 |  | C15 |  | C15 |  |
| O9-C17- | $120.9(2)$ | O9-C17- | $120.3(2)$ | C16-C17- | $118.5(2)$ |
| C16 |  | C18 |  | C18 |  |
| O7-C18- | $117.2(2)$ | O7-C18- | $120.5(2)$ | C17-C18- | $122.2(2)$ |
| C17 |  | C13 |  | C13 |  |
| C8-N1-O1 | $119.0(2)$ | C9-N2-C10 | $126.6(2)$ | N1-O1-C1 | $119.1(2)$ |
| C11-O7- | $121.6(2)$ | C16-O8- | $117.8(2)$ | C17-O9- | $116.8(3)$ |
| C18 |  | C19 |  | C20 |  |

${ }^{1}$. CrystalClear: Rigaku Corporation, 1999.
${ }^{1 i}$. CrystalStructure: Crystal Structure Analysis Package, Rigaku Corp. Rigaku/MSC (2002).
iii. REQAB4: R.A. Jacobsen, (1994). Private Communication.
${ }^{\text {iv }}$. SIR97: Altomare, A., M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, G. Polidori \& R. Spagna (1999). J. Appl. Cryst., 32, 115-119.
${ }^{\vee}$. SHELXL-97: Program for the Refinement of Crystal Structures, Sheldrick, G.M. (1997), University of Göttingen, Germany.
vi. $R_{1}=\sum\left\|F_{o}\left|-\left|F_{c} \| / \sum\right| F_{o}\right|\right.$
$w_{2}=\left\{\sum w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \sum w\left(F_{o}^{2}\right)^{2}\right\}^{1 / 2}$
GOF $=\left\{\sum w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} /(n-p)\right\}^{1 / 2}$
where $\mathrm{n}=$ the number of reflections and $\mathrm{p}=$ the number of parameters refined.
vii. "ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

