SUPPORTING INFORMATION

Alkylaluminum-Complexed Zirconocene Hydrides - Identification of Hydride-Bridged Species by NMR-Spectroscopy.

Steven M. Baldwin, ${ }^{\dagger}$ John E. Bercaw, ${ }^{*}{ }^{\dagger}{ }^{\dagger}$ and Hans H. Brintzinger* ${ }^{*}{ }^{\dagger}$
Contribution from the Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, USA, and Fachbereich Chemie, Universität Konstanz, D-78457 Konstanz,
\section*{Germany}
E-mail: Bercaw@caltech.edu; Hans.Brintzinger@uni-konstanz.de

NMR Spectra:

Figure S1. $\quad\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrH}_{2}(\mathbf{3})+1$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2}+1$ eq ClAl ${ }^{i} \mathrm{Bu}_{2} \quad$ S3
Figure S2. $\quad\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrH}_{2}(\mathbf{3})+1$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2}+2$ eq ClAl ${ }^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 3$
Figure S3. $\quad\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrH}_{2}(\mathbf{3})+\mathrm{xs} \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}(\mathbf{5}) \quad \mathrm{S} 4$
Figure S4. $\quad\left({ }^{n} \mathrm{Bu}-\mathrm{Cp}\right)_{2} \mathrm{ZrCl}_{2}(6)+2 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow\left({ }^{n} \mathrm{Bu}-\mathrm{Cp}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}(7) \quad \mathrm{C} 4$
Figure S5. $\quad\left(1,2-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2}(\mathbf{8})+\mathrm{xs} \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow\left(1,2-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}(\mathbf{9}) \quad$ S5

Figure S7. $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{ZrH}_{2}(\mathbf{1 3})+2 \mathrm{Al}^{i} \mathrm{Bu}_{3} \rightarrow\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{ZrH}^{i} \mathrm{Bu}(\mathbf{1 4})$ and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Zr}^{i} \mathrm{Bu}_{2}(\mathbf{1 5}) \quad \mathrm{S} 6$
Figure S8. (EBI) $\mathrm{ZrCl}_{2}(\mathbf{1 7})+2 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow(\mathrm{EBI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad$ S6
Figure S9. (EBTHI) $\mathrm{ZrCl}_{2}(\mathbf{1 8})+2 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow(\mathrm{EBTHI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad$ S7
Figure S10. $\mathrm{Me}_{2} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}_{2}(\mathbf{1 9})+$ xs HAl $^{i} \mathrm{Bu}_{2} \rightarrow \mathrm{Me}_{2} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad$ S7
Figure S11. $\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{2 0})+6 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow \mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 8$
Figure S12. $\mathrm{Me}_{2} \mathrm{Si}\left(2,4-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}_{2}(21)+\mathrm{xs} \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow \mathrm{Me}_{2} \mathrm{Si}\left(2,4-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \mathrm{~S} 8$
Figure S13. $\left(\mathrm{Me}_{2} \mathrm{Si}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{2 2})+2 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$S9

Figure S14. $\left(\mathrm{Me}_{2} \mathrm{Si}_{2}\right)_{2}\left(2,4-{ }^{i} \mathrm{Pr}_{2}-\mathrm{C}_{5} \mathrm{H}\right)\left(\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{ZrCl}_{2}(\mathbf{2 3})+2 \mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow$ $\left(\mathrm{Me}_{2} \mathrm{Si}\right)_{2}\left(2,4-{ }^{i} \mathrm{Pr}_{2}-\mathrm{C}_{5} \mathrm{H}\right)\left(\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$S9

Figure S15. gCOSY for (EBTHI) $\mathrm{ZrH}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(25) \quad \mathrm{S} 10$
Figure S16. ((EBTHI) $\left.\mathrm{ZrH}_{2}\right)_{2}(\mathbf{2 4})+4 \mathrm{HAl}^{i} \mathrm{Bu}_{2}+2 \mathrm{ClAl}^{i} \mathrm{Bu}_{2} \rightarrow(\mathrm{EBTHI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 10$
Figure S17. ((EBTHI) $\left.\mathrm{ZrH}_{2}\right)_{2}(\mathbf{2 4})+4 \mathrm{HAl}^{i} \mathrm{Bu}_{2}+4 \mathrm{ClAl}^{i} \mathrm{Bu}_{2} \rightarrow(\mathrm{EBTHI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 11$
Figure S18. $r a c-\mathrm{Me}_{2} \mathrm{C}(\text { indenyl })_{2} \mathrm{ZrCl}_{2}(\mathbf{2 8})+2$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow r a c-\mathrm{Me}_{2} \mathrm{C}(\text { indenyl })_{2} \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 11$

Figure S19. meso- $\mathrm{Me}_{2} \mathrm{C}(\text { indenyl })_{2} \mathrm{ZrCl}_{2}(\mathbf{2 8})+2$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow$ meso- $\mathrm{Me}_{2} \mathrm{C}$ (indenyl $)_{2} \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2} \quad \mathrm{~S} 12$
Figure S20. gCOSY of $r a c-\mathrm{Me}_{2} \mathrm{Si}\left(\left(2-\mathrm{Me}_{3} \mathrm{Si}-4-\mathrm{Me}_{3} \mathrm{C}^{-} \mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{ZrH}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}\right.$ (32) $\quad \mathrm{S} 12$
Figure S21. NOE of $r a c-\mathrm{Me}_{2} \mathrm{Si}\left(\left(2-\mathrm{Me}_{3} \mathrm{Si}-4-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{ZrH}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(\mathbf{3 2)} \quad \mathrm{~S} 13\right.$
Figure S22. meso- $\mathrm{Me}_{2} \mathrm{Si}\left(3-\mathrm{Me}_{3} \mathrm{C}_{-} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{3 3})+2$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow$ meso- $\mathrm{Me}_{2} \mathrm{Si}\left(3-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(\mathbf{3 4})$S14

Figure S23. gCOSY of meso- $\mathrm{Me}_{2} \mathrm{Si}\left(3-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(\mathbf{3 4}) \quad \mathrm{S} 14$
Figure S24. NOE of meso- $\mathrm{Me}_{2} \mathrm{Si}\left(3-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(\mathbf{3 4}) \quad \mathrm{S} 15$
Figure S25. $\mathrm{H}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{3 5})+4$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow \mathrm{H}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}(37) \quad \mathrm{S} 15$
Figure S26. NOE of $\mathrm{Me}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}(38) \quad$ S16
Figure S27. (EBTHI) $\mathrm{ZrF}_{2}+1$ eq $\mathrm{HAl}^{i} \mathrm{Bu}_{2} \rightarrow\left((\mathrm{EBTHI}) \mathrm{ZrH}_{2}\right)_{2}+(\mathrm{EBTHI}) \mathrm{ZrF}_{2} \quad \mathrm{~S} 16$
Appendix S-1. Analysis of changes in the chemical shift of the ZrH_{2} signal of $(\mathrm{SBI}) \mathrm{ZrCl}(\mu-$ $\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ upon addition of $\mathrm{Al}_{2} \mathrm{Me}_{6}$.

Figure S1. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrH}_{2}(\mathbf{3})$ with 1 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ and 1 equiv. $\mathrm{ClAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S2. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrH}_{2}(3)$ with 1 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ and 2 equiv. $\mathrm{ClAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S3. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Zr}(\mu-\mathrm{H})_{3}\left(\mathrm{Al}^{i} \mathrm{Bu}_{2}\right)_{3}(\mu-\mathrm{H})_{3}$ in toluene $-d_{8}$ at $-60^{\circ} \mathrm{C}$.

Figure S4. ${ }^{1} \mathrm{H}$ spectrum of $\left({ }^{n} \mathrm{Bu}-\mathrm{Cp}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{6})$ with 3 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$

Figure S5. ${ }^{1} \mathrm{H}$ spectrum of $\left(1,2-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{8})$ with excess $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S7. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrH}_{2}(\mathbf{1 3})$ with 2 equiv. $\mathrm{Al}^{i} \mathrm{Bu}_{3}$ to give $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{ZrH}^{i} \mathrm{Bu}(\mathbf{1 4})$ and $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}^{i} \mathrm{Bu}_{2}(\mathbf{1 5})$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S8. ${ }^{1} \mathrm{H}$ spectrum of $(\mathrm{EBI}) \mathrm{ZrCl}_{2}(\mathbf{1 7})$ with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S9. (EBTHI) $\mathrm{ZrCl}_{2}(\mathbf{1 8})$ with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S10. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{Me}_{2} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}\left(\mathbf{1 9)}\right.$ with excess $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S11. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}$ (19) with 6 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S12. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{Me}_{2} \mathrm{Si}\left(2,4-\mathrm{Me}_{2}-\mathrm{C}_{5} \mathrm{H}_{2}\right)_{2} \mathrm{ZrCl}_{2}$ (21) with excess $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S13. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{Me}_{2} \mathrm{Si}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{ZrCl}_{2}$ (22) with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in toluene- d_{8} at $-75^{\circ} \mathrm{C}$.

Figure S14. ${ }^{1} \mathrm{H}$ spectrum of $\left(\mathrm{Me}_{2} \mathrm{Si}_{2}\right)_{2}\left(2,4-{ }^{i} \mathrm{Pr}_{2}-\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{ZrCl}_{2}$ (23) with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in toluene- d_{8} at $-75^{\circ} \mathrm{C}$.

Figure S15. gCOSY of $(\mathrm{EBTHI}) \mathrm{ZrH}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}(\mathbf{2 5})$ in toluene- d_{8} at $-75^{\circ} \mathrm{C}$.

Figure S16. ${ }^{1} \mathrm{H}$ spectrum of $((\mathrm{EBTHI}) \mathrm{ZrH}(\mu-\mathrm{H}))_{2}(24)$ with 4 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ and 2 equiv. $\mathrm{ClAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S17. ${ }^{1} \mathrm{H}$ spectrum of $((\mathrm{EBTHI}) \mathrm{ZrH}(\mu-\mathrm{H}))_{2}(24)$ with 4 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ and 4 equiv. $\mathrm{ClAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S18. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{rac}-\mathrm{Me}_{2} \mathrm{C}(\text { indenyl })_{2} \mathrm{ZrCl}_{2}(27)$ with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S19. ${ }^{1} \mathrm{H}$ spectrum of meso- $\mathrm{Me}_{2} \mathrm{C}$ (indenyl) $)_{2} \mathrm{ZrCl}_{2}(\mathbf{2 8})$ with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S20. gCOSY of $\mathrm{rac}-\mathrm{Me}_{2} \mathrm{Si}\left(\left(2-\mathrm{Me}_{3} \mathrm{Si}-4-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{2}\right) \mathrm{ZrH}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}\right.$ (32) in toluene- d_{8} at $-75^{\circ} \mathrm{C}$

Figure S21. noedif of $\mathbf{3 2}$ in benzene $-d_{6}$ at $25^{\circ} \mathrm{C}$ irradiating the central hydride resonance (\mathbf{A}) and the terminal unbridged hydride resonance (B).
A

Figure S22. ${ }^{1} \mathrm{H}$ spectrum of meso- $\mathrm{Me}_{2} \mathrm{Si}\left(3-\mathrm{Me}_{3} \mathrm{C}-\mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{ZrCl}_{2}$ (33) with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in toluene- d_{8} at $25^{\circ} \mathrm{C}$.

Figure S23. gCOSY of $\mathbf{3 3}$ with 2 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in toluene- d_{8} at $25^{\circ} \mathrm{C}$.

Figure S24. noedif of $\mathbf{3 3}$ with 3 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S25. ${ }^{1} \mathrm{H}$ spectrum of $\mathrm{H}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}(\mathbf{3 5})$ with 4 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in toluene- d_{8} at $0^{\circ} \mathrm{C}$.

Figure S26. NOESY1D of $\mathrm{Me}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}$ (36) with 4 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Figure S27. ${ }^{1} \mathrm{H}$ spectrum of (EBTHI) ZrF_{2} with 1 equiv. $\mathrm{HAl}^{i} \mathrm{Bu}_{2}$ in benzene- d_{6} at $25^{\circ} \mathrm{C}$.

Appendix S-1. Analysis of changes in the chemical shift of the ZrH_{2} signal of (SBI$) \mathrm{ZrCl}(\mu-$ $\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ upon addition of $\mathrm{Al}_{2} \mathrm{Me}_{6}$.

1) Adduct Formation:

Adduct formation of $(\mathrm{SBI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ with $\mathrm{Al}_{2} \mathrm{Me}_{6}$, is represented by Equ. 1, with \mathbf{A} representing the starting complex, \mathbf{X}_{2} the AlMe_{3} dimer and $\mathbf{A X}$ the adduct:

$$
\begin{equation*}
A+\frac{1}{2} X_{2} \leftrightarrow A X \tag{1}
\end{equation*}
$$

The equilibrium constant K for this reaction is represented by Equ. 2:

$$
\begin{equation*}
K=\frac{[A X]}{[A] \sqrt{\left[X_{2}\right]}} \tag{2}
\end{equation*}
$$

Under conditions of rapid exchange between \mathbf{A} and $\mathbf{A X}$ the chemical shift of the resulting signal, δ, is the weighted average of the chemical shifts of $\mathbf{A}, \delta_{\mathrm{A}}$, and $\mathbf{A X}, \delta_{\mathrm{AX}}$ (Equ. 3).

$$
\begin{equation*}
\delta=\frac{[A]}{[A X]+[A]} \delta_{A}+\frac{[A X]}{[A X]+[A]} \delta_{A X} \tag{3}
\end{equation*}
$$

The difference in chemical shift, $\Delta \delta$, of the signal at any given concentration of added \mathbf{X}, δ, and that of pure \mathbf{A} is given by Equ. 4 .

$$
\begin{equation*}
\Delta \delta=\delta-\delta_{A} \tag{4}
\end{equation*}
$$

Combining Equ. 3 and Equ. 4 we get:

$$
\begin{equation*}
\Delta \delta=\left(\frac{[A]}{[A X]+[A]}-1\right) \delta_{A}+\frac{[A X]}{[A X]+[A]} \delta_{A X} \tag{5}
\end{equation*}
$$

Which simplifies to:

$$
\begin{equation*}
\Delta \delta=\frac{[A X]}{[A X]+[A]}\left(\delta_{A X}-\delta_{A}\right) \tag{6}
\end{equation*}
$$

With the maximum change in chemical shift represented as $\Delta \delta_{\text {max }}$, we get Equ. 7 .

$$
\begin{equation*}
\Delta \delta_{\max }=\delta_{A X}-\delta_{A} \tag{7}
\end{equation*}
$$

Taking the reciprocal of Equ. 6 and using Equ. 7 gives Equ. 8:

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{1}{\Delta \delta_{\max }} \cdot \frac{[A]}{[A X]} \tag{8}
\end{equation*}
$$

Together with the equilibrium constant, Equ. 2, this yields a Benesi-Hildebrand type relation (Equ. 9):

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{1}{\Delta \delta_{\max } K \sqrt{\left[X_{2}\right]}} \tag{9}
\end{equation*}
$$

Assuming that K is small, the amount of $\mathbf{X}_{\mathbf{2}}$ added is approximately equal to the amount of $\mathbf{X}_{\mathbf{2}}$ in solution. A plot of the reciprocal of the change in chemical shift against the reciprocal of the square root of the concentration of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ added should thus be linear, with a slope of $1 / \mathrm{K}$ and a y-axis intercept of $1 / \delta_{A X}$, neither of which should depend on $[\mathrm{Zr}]_{\text {Tот }}$.

The data plotted in Chart 1 according to Equation 9 approximate this requirement. Some curvature of the data in Chart 1 might originate from a partial dissociation of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ to AlMe_{3} in dilute solutions and/or from the fact that the most concentrated solutions of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ contain up to 20 volume percent $\mathrm{Al}_{2} \mathrm{Me}_{6}$, such that these solution can no longer be considered to be ideal solutions of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ in benzene. Nevertheless, the values of $1 / \delta_{\max }$ and of $1 / \mathrm{K}$ derived from the data for $[\mathrm{Zr}]=7 \mathrm{mM}$ and from those for $[\mathrm{Zr}]=28 \mathrm{mM}$ are indistinguishable within their error
margins. Our data are thus compatible with the view that the change in chemical shift of the ZrH_{2} signal upon addition of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ to a solution of $(\mathrm{SBI}) \mathrm{Zr}(\mathrm{Cl})(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ is due to formation of an adduct, e.g. of the type $(\mathrm{SBI}) \mathrm{Zr}\left(\mathrm{Cl}^{\cdots} \mathrm{AlMe}_{3}\right)(\mu-\mathrm{H})_{2} \mathrm{AlR}_{2}$, with $\mathrm{R}={ }^{i} \mathrm{Bu}$ and/or Me .

2) Exchange Reaction:

The reaction of $(\mathrm{SBI}) \mathrm{ZrCl}(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ to exchange either the Zr -bound Cl or an Al -bound ${ }^{i} \mathrm{Bu}$ with one of the methyl groups of $\mathrm{Al}_{2} \mathrm{Me}_{6}$, to yield $\mathrm{Al}_{2} \mathrm{Me}_{5} \mathrm{X}$ where $\mathrm{X}=\mathrm{Cl}$ or ${ }^{i} \mathrm{Bu}$, is represented by Equ. 10, with \mathbf{A} representing the starting ZrClH_{2} complex, \mathbf{X}_{2} the AlMe_{3} dimer, \mathbf{B} the exchange product and \mathbf{Y} the $\mathrm{Al}_{2} \mathrm{Me}_{5} \mathrm{X}$ product:

$$
\begin{equation*}
A+X_{2} \leftrightarrow B+Y \tag{10}
\end{equation*}
$$

The equilibrium constant K for this reaction is represented by Equ. 2:

$$
\begin{equation*}
K=\frac{[B][Y]}{[A]\left[X_{2}\right]} \tag{11}
\end{equation*}
$$

We can use the same derivation as for Equation 8, except [$\mathbf{A} \mathbf{X}]$ is now replaced by $[\mathbf{B}]$.

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{1}{\Delta \delta_{\max }} \cdot \frac{[A]}{[B]} \tag{12}
\end{equation*}
$$

Using the equilibrium constant, Equ. 11, this yields a Benesi-Hildebrand type relation (Equ. 13):

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{1}{\Delta \delta_{\max }} \bullet \frac{[Y]}{K\left[X_{2}\right]} \tag{13}
\end{equation*}
$$

Since we are adding $\mathbf{X}_{\mathbf{2}}$ to $\mathbf{A},[\mathbf{Y}]$ is equal to $[\mathbf{B}]$, yielding:

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{1}{\Delta \delta_{\max }} \bullet \frac{[B]}{K\left[X_{2}\right]} \tag{14}
\end{equation*}
$$

Rearranging to give $\mathrm{a} y=m x+b$ format gives:

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\left(\frac{[B]}{\Delta \delta_{\max } K}\right) \cdot \frac{1}{\left[X_{2}\right]}+\frac{1}{\Delta \delta_{\max }} \tag{15}
\end{equation*}
$$

Alternatively Equ. 14 can be modified by using the following relationship which is derived by combining Equ. 3, 4 and 7:

$$
\begin{equation*}
\Delta \delta=\Delta \delta_{\max } \frac{[B]}{[A]+[B]} \tag{16}
\end{equation*}
$$

Solving for [B] and substituting into Equation 14 gives:

$$
\begin{equation*}
\frac{1}{\Delta \delta}=\frac{1}{\Delta \delta_{\max }}+\frac{\Delta \delta}{\Delta \delta_{\max }} \cdot \frac{[A]+[B]}{\Delta \delta_{\max } K\left[X_{2}\right]} \tag{17}
\end{equation*}
$$

With $[\mathrm{A}]+[\mathrm{B}]=[\mathrm{Zr}]_{\text {TOT }}$ and $\left[\mathrm{X}_{2}\right]=\left[\mathrm{Al}_{2} \mathrm{Me}_{6}\right]$, equation 17 can be rearranged to:

$$
\begin{equation*}
\left(\frac{\Delta \delta_{\max }}{\Delta \delta}-1\right) \frac{\Delta \delta_{\max }}{\Delta \delta}=\frac{[Z r]_{O T}}{K \cdot\left[A l_{2} M e_{6}\right]} \tag{18}
\end{equation*}
$$

The value of $\Delta \delta_{\text {max }}$ can be estimated from the chemical shift at the highest concentrations of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ or from the plot in Chart 1 . Assuming that K is small, the amount of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ added is approximately equal to the amount of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ in solution. Therefore, a plot of the left side of Equ. 18 against $[\mathrm{Zr}]_{\text {TOT }} /\left[\mathrm{Al}_{2} \mathrm{Me}_{6}\right]$ should give a straight line going through the origin, with a slope of $1 / \mathrm{K}$, which should thus be independent of $[\mathrm{Zr}]_{\text {тотт }}$.

Inspection of such a plot (Chart 2) shows that the data do not meet this requirement. Instead, the slope of the data for $[\mathrm{Zr}]_{\text {tot }}=7 \mathrm{mM}$ is about three times larger than that of the data for $[\mathrm{Zr}]_{\text {tot }}=$ 28 mM . The change in chemical shift of the ZrH_{2} signal upon addition of $\mathrm{Al}_{2} \mathrm{Me}_{6}$ to a solution of $(\mathrm{SBI}) \mathrm{Zr}(\mathrm{Cl})(\mu-\mathrm{H})_{2} \mathrm{Al}^{i} \mathrm{Bu}_{2}$ can thus not be due to an exchange reaction, e.g. of the Cl against a Me ligand.

