Fully Conjugated Tri(perylene bisimides) : an Approach to Construction of n-Type Graphene Nanoribbons Hualei Qian, ${ }^{\dagger, s}$ Fabrizia Negri, ${ }^{*,+}$ Chunru Wang, ${ }^{\dagger}$ and Zhaohui Wang ${ }^{*, \dagger}$
${ }^{\dagger}$ Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
${ }^{\ddagger}$ Dipartimento di Chimica "G. Ciamician", Unversità di Bologna, Via F. Selmi 2, 40126 Bologna, Italy and INSTM, UdR Bologna, Italy
${ }^{\S}$ Graduate School of the Chinese Academy of Sciences, Beijing 100190, China
*corresponding author, email: wangzhaohui@iccas.ac.cn, fabrizia.negri@unibo.it

Materials and Methods:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated solvents on a Bruker DMX 300 NMR Spectrometer and a Bruker ADVANCE 600 NMR Spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm downfield from tetramethylsilane (TMS) reference using the residual protonated solvent as an internal standard. Mass spectra (MALDI-TOF-MS) were determined on a Bruker BIFLEX Mass Spectrometer.
N,N’-di(2,6-diisopropylphenyl)-1,6,7,12-tetrabromoperylene-3,4:9,10-tetracarboxylicbisimides were prepared according to a known procedure. ${ }^{1}$ All chemicals were purchased from commercial suppliers and used without further purification unless otherwise specified. DMSO was freshly distilled from CaH_{2}. Two isomers of tri(perylene bisimides) were separated by HPLC using Cosmosil Buckyprep as the column and toluene as the eluent.
Absorption spectra were measured with Hitachi (model U-3010) UV-Vis spectrophotometer in a 1-cm quartz cell. Cyclic voltammograms (CVs) were recorded on a CHI66 electrochemical workstation using glassy carbon discs as the working electrode, Pt wire as the counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ electrode as the reference electrode, and ferrocene/ferrocenium as an internal potential marker. 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF_{6}) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was employed as the supporting electrolyte. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was freshly distilled prior to use. The reduction potentials have been recalculated to the reference of $\mathrm{Fc} / \mathrm{Fc}^{+}$. The energy level of $\mathrm{Fc} / \mathrm{Fc}+$ is assumed to be -4.8 eV below the vacuum level. ${ }^{2}$ The oxidation potential of $\mathrm{Fc} / \mathrm{Fc}^{+}$was measured as 0.40 V against $\mathrm{Ag} / \mathrm{AgCl}$.

Synthesis and Characterization of triPBIs:

triPBIs 5 and 6.

A mixture of tetrabromoperylene bisimide ($634 \mathrm{mg}, 0.62 \mathrm{mmol}$), CuI ($706 \mathrm{mg}, 3.72 \mathrm{mmol}$), L-proline ($500 \mathrm{mg}, 4.35 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($856 \mathrm{mg}, 6.2 \mathrm{mmol}$) in 10 ml DMSO was heated at $110{ }^{\circ} \mathrm{C}$ under Ar for 12 h . The cooled mixture was poured into 1 M HCl , and stirred for 1 hr . After filtration, the obtained solids were washed with brine, dried under vacuum, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield 65 mg (15\%) diPBI as black
solids and 70 mg (16\%) triPBIs as dark-green solids. The obtained triPBIs were separated by HPLC into two fractions using Cosmosil Buckyprep as the column and toluene as the eluent. After separation, triPBI $5(18 \mathrm{mg})$ and $6(52 \mathrm{mg})$ were obtained, in total yield of 4% and 12%, respectively. MS (MALDI-TOF): calcd for triPBI $\mathrm{C}_{144} \mathrm{H}_{114} \mathrm{~N}_{6} \mathrm{O}_{12}, 2118.8$ [M]; found, triPBI 5 $m / z=2118.1$; triPBI $6 \mathrm{~m} / \mathrm{z}=2118.2$.
triPBI 5. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=10.81(\mathrm{~s}, 2 \mathrm{H}), 10.24(\mathrm{~s}, 2 \mathrm{H}), 9.56(\mathrm{~m}, 4 \mathrm{H}), 9.45$ (d, 2H), $9.21(\mathrm{~d}, 2 \mathrm{H}), 7.40-7.60(\mathrm{~m}, 18 \mathrm{H}), 2.62-3.06(\mathrm{~b}, 12 \mathrm{H}), 0.98(\mathrm{~m}, 24 \mathrm{H}), 0.86(\mathrm{~m}, 48 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR of 5 can not be well resolved.
triPBI 6. ${ }^{1} \mathrm{H}$ NMR (1,2-dichlorobenzene-d4, $300 \mathrm{MHz}, 383 \mathrm{~K}$): $\delta=10.57$ (s, 2H), 10.44 (s, 2H), $9.30(\mathrm{~d}, 2 \mathrm{H}), 9.13(\mathrm{~d}, 2 \mathrm{H}), 8.97(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~m}, 12 \mathrm{H}), 3.12(\mathrm{~b}, 6 \mathrm{H}), 2.77(\mathrm{~m}, 6 \mathrm{H})$, $1.11(\mathrm{~m}, 24 \mathrm{H}), 1.06(\mathrm{~m}, 12 \mathrm{H}), 1.03(\mathrm{~m}, 12 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 0.74(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}, 298 \mathrm{~K}): \delta=164.0,163.8,163.6,163.1,163.0,134.9,134.7,133.8,132.6,131.7,130.9$, $130.7,130.6,129.8,129.7,129.5,129.4,129.2,128.9,128.3,127.7,127.6,126.0,125.0,124.8$, $124.6,124.3,124.2,124.1,123.4,122.9,122.6,121.9,120.5,118.9,30.5,30.2,29.7,29.2,29.1$, 28.8, 25.3, 25.1, 24.7, 24.3, 24.2, 24.1, 23.8, 22.7, 19.2.

MALDI-TOF,CCA,tripbi-1-18,2007,11,15

Figure S1: MALDI-TOF mass spectrum of triPBI 5.

MALDI-TOF,CCA,tripbi-2-27,2007,11,15

MALDI-TOF,CCA,tripbi-2-27,2007,11,15

Figure S2: MALDI-TOF mass spectrum of triPBI 6.

Referrences:

1. Qiu, W.; Chen, S.; Sun, X.; Liu, Y.; Zhu, D. Org. Lett. 2006, 8, 867-870.
2. (a) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551-554. (b) Sun, Q.; Wang, H.; Yang, C.; Li, Y. J. Mater. Chem. 2003, 13, 800-806.

DPV of triPBIs 5 and 6:

(a)

(b)

Figure S4: Differential pulse voltammetry (in V vs $\mathrm{Ag} / \mathrm{AgCl}$) of triPBIs 5 (a) and 6 (b).

Computed structures, spectra and MO energies:

Figure S5: the B3LYP/3-21G computed structures of PBI 1.

Figure S6: the B3LYP/3-21G computed structures of diPBI 4.

Figure S7. Top: the TDDFT calculated absorption spectrum of 4; bottom: absorption spectrum of 4 in CHCl_{3}

Table S1: MO energies and HOMO-LUMO gaps of PBI, diPBI, and triPBIs. From B3LYP/3-21G calculations at optimized geometries

	HOMO (ev)	LUMO (ev)	LUMO+1 (ev)	LUMO+2 (ev)	E(H-L) (ev)
PBI 1	-6.14	-3.56	---	---	2.58
diPBI 4	-6.04	-4.06	-3.28	---	1.98
triPBI 5 $^{\mathrm{a}}$	$-6.04(-6.03)$	$-4.25(-4.26)$	$-3.68(-3.68)$	$-3.20(-3.20)$	$1.79(1.77)$
triPBI 6 $^{\mathrm{a}}$	$-6.00(-5.99)$	$-4.29(-4.30)$	$-3.69(-3.68)$	$-3.20(-3.19)$	$1.71(1.69)$

${ }^{\text {a }}$ in parenthesis the values for non-helical isomer of triPBIs
Table S2: B3LYP/3-21G absolute energies, relative energies, optical gaps (lowest allowed
electronic transitions from TDDFT B3LYP/3-21G calculations), and HOMO-LUMO gaps

	Absolute Energy (a.u.)	Relative Energy $(\mathrm{kcal} / \mathrm{mol})$	$\mathrm{E}\left(\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}\right)(\mathrm{eV}$, $[\mathrm{nm}])$ and f	$\mathrm{E}(\mathrm{H}-\mathrm{L})$ (eV)
5-helical	-5812.07873469	0.00	$1.63[761](0.28)$	1.79
5-non-helical	-5812.07865775	+0.05	$1.61[769](0.30)$	1.77
6-helical	-5812.07601472	0.00	$1.53[811](0.25)$	1.71
6-non-helical	-5812.07156895	+2.8	$1.51[822](0.26)$	1.69
$\mathbf{4}$	-3875.90926192	0.00	$1.82[680](0.39)$	1.98

Full Citation of Reference 17.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc., Pittsburgh, PA, 2003.

