Homologation of Boronic Esters with Lithiated Epoxides for the Stereocontrolled Synthesis of 1,2 and 1,3-Diols, and 1,2,4-Triols.

Emeline Vedrenne, Olov A. Wallner, Maxime Vitale, Frank Schmidt and Varinder K. Aggarwal*

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS (UK)
v.aggarwal@,bristol.ac.uk

Table of Contents

1) General Information S2
2) Experimental Procedures \& Data S3
3) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and Chiral HPLC traces for compounds $\mathbf{3}, 4,5,6,7,9$ S17
4) nOe's for compounds $\mathbf{6}$ and 7 S69

General information.

All reactions were carried out in flame dried Schlenk tubes under argon atmosphere employing standard manifold techniques. Solvents were dried by standard methods. NMR spectra were recorded on JEOL 270 MHz , JEOL 400 MHz or Eclipse 300 MHz spectrometers using tetramethylsilane as the internal standard (0.00 ppm). nOe's spectra were recorded on a VARIAN 500 MHz spectrometer. CDCl_{3} was used as an internal standard for ${ }^{13} \mathrm{C}$ NMR spectra (77.0 ppm). CI mass spectra were obtained using a VG Platform mass spectrometer. All IR data were obtained on a Perkin-Elmer Spectrum One FT-IR spectrometer. All MS were recorded on Agilent Technologies GC-MS Spectrum equipped with 6890 Series GC system, 7683 Series injector and 5973 Network Mass Selective detector. Analytical TLC was done on aluminium backed plates ($1.5 \times 5 \mathrm{~cm}$) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel $60 \mathrm{~F}_{254}$). Compounds were visualised by exposure to UV light or by dipping the plates in a solution of $5 \%\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in $95 \% \mathrm{EtOH}(\mathrm{w} / \mathrm{v})$ followed by heating. Flash chromatography was done on silica gel (Merck Kieselgel 60). Melting points were determined with a Kofler hot stage apparatus and were not corrected. Optical rotations were obtained on a Perkin-Elmer 241MC polarimeter. Chiral HPLC separations were done on Agilent 1100 series normal phase high performance liquid chromatography units using HP Chemstation for LC or LC/MS. Daicel Chiralcel AD and OD-H ($0.46 \times 25 \mathrm{~cm}$) were used for normal phase separations.

All chemicals were used as received from the supplier except for tertbutyloxirane (distilled over activated $4 \AA$ molecular sieves) and 2,2,6,6tetramethylpiperidine (distilled over CaH_{2}). $s \mathrm{BuLi}$ was purchased as a 1.3 M solution in cyclohexane from either Fluka or Acros Chemical Compagnies. $N, N, N, N-$ Tetramethylethylenediamine (TMEDA) was purchased from Aldrich and distilled over CaH_{2} prior to use. Boronic pinacol ester were synthesized according to literature procedures. ${ }^{1}$

[^0]
Experimental Procedures \& Data

General procedure for the preparation of lithium 2,2,6,6-tetramethylpiperidide.
A 10 ml Schlenk tube was charged with 2,2,6,6-tetramethylpiperidine ($1.33 \mathrm{ml}, 0.75$ M in THF). The solution was thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by addition of $n B u L i(0.40 \mathrm{ml}, 2.5 \mathrm{M})$. The resulting reaction mixture was then stirred for 30 min at room temperature.

General procedure for the homologation of boronates with epoxides leading to diols.

A 10 ml Schlenk tube was charged with the corresponding epoxide $(0.50 \mathrm{mmol})$ and boronate ($1.00 \mathrm{mmol}, 1.00 \mathrm{M}$ in THF). The resulting solution was thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by dropwise addition of freshly prepared lithium 2,2,6,6tetramethylpiperidide $(1.00 \mathrm{mmol})$. The reaction mixture was then stirred 2 h at $-30^{\circ} \mathrm{C}$ at which the reaction flask was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{~m})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred an additional 2 h at $4^{\circ} \mathrm{C}$ and was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with DCM (4 $\times 7 \mathrm{ml}$). The combined organic layer was dried over magnesium sulphate. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography.

Octane-3,4-diol (3a). ${ }^{2}$ This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \% \mathrm{EtOAc} /\right.$ Petrol $)$ which afforded 56 mg of a colourless oil (76\%). IR $v_{\max }\left(\right.$ (thin film) $/ \mathrm{cm}^{-1} 3617,2963$, 2874; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 3.39-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.27-1.68(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.95(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 76.0,74.2,33.4,27.9,26.5,22.8,14.1,10.1 ;$ MS (ESI) m/z 241, $169\left(\mathrm{M}+\mathrm{Na}^{+}\right) ;$HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+} 169.1194$, found 169.1199.

[^1]

1-Phenyloctane-3,4-diol (3b). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 25 \%\right.$ EtOAc/Petrol) which afforded $82 \mathrm{mg}(73 \%)$ of a colourless oil that solidified upon standing. IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3615,3573$, 2957; M.p: $50-51^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.14-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.37-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{ddd}, \mathrm{J}=13.9,8.8$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, \mathrm{J}=13.9,8.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.28(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.54(\mathrm{~m}, 6 \mathrm{H}), 0.85-0.94(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67\right.$ $\mathrm{MHz}) \delta 142.0,128.5,126.0,74.7,73.9,35.4,33.4,32.1,27.9,22.8,14.1$; MS (CI) m/z (\%) $223\left(\mathrm{M}+\mathrm{H}^{+}, 10\right), 205$ (100), 187 (70), 117 (60), 91 (50); HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}+\mathrm{Na}^{+} 245.1506$, found 245.1512 .

1-Cyclohexylhexane-1,2-diol (3c). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ EtOAc/Petrol) which afforded 83 mg of a colourless oil (83\%). IR $v_{\text {max }}$ (thin film) / $\mathrm{cm}^{-1} 3369,3056,2857 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 3.58-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.04-1.55(\mathrm{~m}, 12 \mathrm{H}), 0.86-0.96(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 78.4,71.4,40.2,33.8,29.9,28.0,27.7,26.4,26.2$, 26.1, 22.8, 14.1; MS (ESI) m/z 223 (M+Na ${ }^{+}$), 217, 186, 102; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}^{+} 223.1664$, found 223.1668.

1-Cyclopropylhexane-1,2-diol (3d). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 50 \%\right.$

EtOAc/Petrol) which afforded 68 mg of a colourless oil (86\%). IR $v_{\text {max }}$ (thin film) / $\mathrm{cm}^{-1} 3605,3083,2862 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 3.53-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J$ $=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.55(\mathrm{~m}, 5 \mathrm{H}), 0.85-$ $1.02(\mathrm{~m}, 4 \mathrm{H}), 0.50-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.23-0.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta$ 79.5, $75.4,33.2,28.0,22.8,14.7,14.1,3.4,2.3$; MS (EI) m/z (\%) $157\left(\mathrm{M}-\mathrm{H}^{+}, 5\right), 141$ (70), 123 (40), 85(100); MS (ESI) m/z $181\left(\mathrm{M}+\mathrm{Na}^{+}\right), 149$; HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$181.1194, found 181.1199.

1-Phenylhexane-1,2-diol (3e). ${ }^{3}$ This compound was synthesised according to the general procedure and was purified by flash chromatography ($\mathrm{SiO}_{2}, 25 \%$ $\mathrm{EtOAc} /$ Petrol) which afforded 56 mg of a colourless oil (57\%). IR $v_{\max }$ (thin film) / $\mathrm{cm}^{-1} 3601,3063,1395 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.27-7.41(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{dd}, J$ $=6.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.17-1.52(\mathrm{~m}, 6 \mathrm{H}), 0.80-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 141.3$, 128.6, 128.0, 126.9, 78.0, 76.0, 32.4, 27.9, 22.7, 14.0; MS (ESI) m/z $217\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 106; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$217.1194, found 217.1199.

Oct-7-ene-3,4-diol (3f). ${ }^{4}$ This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc} /\right.$ Petrol $)$ which afforded 34 mg of a colourless oil (47\%). IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3572,3390$, $1640 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 5.82(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}$, $J=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{ddt}, J=10.2,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dt}, J=8.0,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{ddd}, J=8.2,5.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.69(\mathrm{~m}, 4 \mathrm{H}), 0.97$

[^2]$(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 138.4,115.1,75.9,73.6,32.8,30.0$, 26.5, 10.1; MS (EI) m/z (\%) 143 (M-H+10), 127 (50), 109 (90), 85 (90), 57 (100); HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{Na}^{+}$167.1038, found 167.1042.

2-Methylhexane-3,4-diol (3g). This compound was synthesised according to the general procedure and was purified by flash chromatography ($\mathrm{SiO}_{2}, 25 \%$ EtOAc/Petrol) which afforded 43 mg of a colourless oil (65\%). IR $v_{\max }$ (thin film)/ $\mathrm{cm}^{-1} 3620,3572,1465 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 3.47-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{app} \mathrm{q}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.72-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.92-1.02(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 78.7,73.4,30.2,26.9,19.8,17.1,10.1 ; \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 155\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 129; HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{Na}^{+}$155.1039, found 155.1042.

2,2-Dimethylhexane-3,4-diol (3h). This compound was synthesised according to the general procedure and was purified by flash chromatography ($\mathrm{SiO}_{2}, 25 \%$ EtOAc/Petrol) which afforded 28 mg of a colourless solid (38\%). IR $v_{\max }$ (thin film) / $\mathrm{cm}^{-1} 3378$, 2957; M.p: $80-81{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 3.69$ (br q, $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.43-1.68 (m, 2H), $0.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right)$ $\delta 79.4,70.9,35.0,29.7,26.3,10.3 ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 169\left(\mathrm{M}+\mathrm{Na}^{+}\right), 129$; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$169.1195, found 169.1199.

1-(tert-Butyldimethylsilyloxy)pentane-2,3-diol (3i). This compound was synthesised according to the general procedure and was purified by flash chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc} /$ Petrol $)$ which afforded 64 mg of a colourless oil (54\%). IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3564,2956,1362 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta$ $3.76(\mathrm{dd}, J=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.45(\mathrm{~m}, 2 \mathrm{H})$, $2.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.96$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 73.9$, 72.6, 66.2, 26.5, 25.9, 18.3, 10.1, -5.4, -5.5; MS (ESI) m/z 257 (M+Na ${ }^{+}$), 215; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+} 257.1537$, found 257.1543.

1-Phenylhexane-3,4-diol (3j). This compound was synthesised from (+)-epoxybutane according to the general procedure but was subjected to kugel-rohr distillation which afforded $134 \mathrm{mg}(69 \%)$ of a colourless oil. IR $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 3615,3537$, , 2965; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.15-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.41-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.41$ (m, 1H), 2.85 (ddd, $J=13.8,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (ddd, $J=13.8,9.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.65(\mathrm{~m}$, $2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 67 \mathrm{MHz}\right) \delta 142.0,128.5,126.0,76.1$, 73.5, 35.4, 32.1, 26.5, 10.1; MS (EI) m/z (\%) 159 (30), 117 (30), 91 (100), 59 (20); HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$217.1194, found 217.1199; [$\left.\alpha\right]_{\mathrm{D}}{ }^{22}=+31.0$ (c $\left.1, \mathrm{CHCl}_{3}\right)($ e.r. $=99: 1) ; \mathrm{t}_{\mathrm{R}}=28.9 \mathrm{~min}(R, R$-major), $32.2 \mathrm{~min}(S, S$-minor) Daicel Chiralcel-AD column, $3 \% \mathrm{iPrOH}$ in Hexane $1 \mathrm{~mL} / \mathrm{min}$.

(1R,2R)-(1-Ethyl-2-triethylsiloxy)butyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
(4). A 50 ml Schlenk tube was charged with (+)-epoxybutane (3.00 mmol) and ethyl pinacol boronic ester (6.00 mmol) in 13 mL of THF. The resulting solution was
thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by dropwise addition of freshly prepared lithium 2,2,6,6-tetramethylpiperidide (6.00 mmol). The reaction mixture was then stirred 2 h and then allowed to warm to room temperature. TES-OTf (4.50 mmol) was added and the resulting mixture was stirred at room temperature overnight. The volatiles were removed under reduced pressure. The crude oil was purified by flash chromatography ($\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol $)$ which afforded 584 mg of a colourless oil (57%). $\mathrm{R}_{\mathrm{f}} 0.40(3 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2959,1460,1380 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.72(\mathrm{td}, J=6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.09$ (ddd, $J=10.0,4.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.8,77.0$, 29.9, 25.9, 25.1, 20.9, 15.0, 11.4, 7.7, 5.9; ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 96 \mathrm{MHz}\right) \delta 33.6$; MS (CI) m/z (\%) 341 ($\mathrm{M}-\mathrm{H}^{+}, 10$), 313 (30), 173 (90), 147 (60), 83 (100); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{BO}_{3} \mathrm{Si}+\mathrm{Na}^{+} 365.2654$, found 365.2647.

($\mathbf{3 R}, \mathbf{4 R}$)-4-Hydroxyhexan-3-yl benzoate (4'). A solution of boronic ester $\mathbf{4}(111 \mathrm{mg}$, $0.32 \mathrm{mmol})$ in 3 mL of THF was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred at $4^{\circ} \mathrm{C}$ for 1 h and was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with $\mathrm{DCM}(4 \times 7 \mathrm{ml})$. The organic solvents were then removed and the crude product was purified by flash chromatography ($\left.\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right)$ to yield (3R,4R)-4-(triethylsilyloxy)hexan-3ol as a colorless oil ($75 \mathrm{mg}, 99 \%$). It was dissolved in 1 mL of DCM and diisopropylethylamine ($85 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) and benzoyl chloride ($45 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) were added. The mixture was stirred at room temperature for 5 h . It was then poured onto water and extracted with DCM ($4 \times 3 \mathrm{~mL}$). The combined organic layer was dried over magnesium sulfate. The organic solvents were then removed. The crude oil was dissolved in 1 mL of THF and tetrabutylammonium fluoride ($151 \mathrm{mg}, 0.48$ mmol) was added. The resulting mixture was stirred at room temperature for 1 h . The organic solvents were then removed and the crude product was purified by flash
chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ to yield $\mathbf{4}^{\prime}$ as a colorless oil ($54 \mathrm{mg}, 76 \%$). ${ }^{5}$ $\mathrm{R}_{\mathrm{f}} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{ddd}, J=6.8,6.0,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69 (ddd, $J=8.6,4.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,133.2,129.8$, $128.5,78.3,74.0,26.8,23.9,10.2,10.0 .[\alpha]_{\mathrm{D}}{ }^{22}=-20.3(\mathrm{c} 1.07, \mathrm{MeOH})(\mathrm{e} . \mathrm{r} .=99: 1)$; $\mathrm{t}_{\mathrm{R}}=21.9 \mathrm{~min}(R, R$-major), $24.4 \mathrm{~min}(S, S$-minor) Daicel Chiralcel-AD column, 2% $i \mathrm{PrOH}$ in Hexane $1 \mathrm{~mL} / \mathrm{min}$.

2-ethyl-3-(triethylsilyloxy)pentan-1-ol (5). A 10 ml Schlenk tube was charged with the boronic ester $4(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ and chloroiodomethane ($17 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) in 0.5 mL of THF. The resulting solution was thereafter cooled to $-78^{\circ} \mathrm{C}$ followed by dropwise addition of $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $146 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$. The reaction mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature overnight. The reaction flask was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{~m})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred an additional 2 h at $4^{\circ} \mathrm{C}$ and was then diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ and extracted with DCM (4 $\times 4 \mathrm{ml})$. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right)$ to yield 5 as a colourless oil ($27 \mathrm{mg}, 90 \%$). One-pot process: A 10 ml Schlenk tube was charged with (+)epoxybutane (0.25 mmol) and ethyl pinacol boronic ester (0.50 mmol) in $500 \mu \mathrm{~L}$ of THF. The resulting solution was thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by dropwise addition of freshly prepared lithium 2,2,6,6-tetramethylpiperidide (0.50 mmol). The reaction mixture was then stirred 2 h at $-30^{\circ} \mathrm{C}$ at which the reaction flask was allowed to warm to room temperature. TES-OTf (0.30 mmol) was added and the resulting mixture was stirred at room temperature for 2 h . Chloroiodomethane (0.75 mmol) was then added and the resulting solution was thereafter cooled to $-78^{\circ} \mathrm{C}$ followed by

[^3]dropwise addition of $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 0.75 mmol$)$. The reaction mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature overnight. The reaction flask was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50$ $\mathrm{ml},>30 \% \mathrm{w} / \mathrm{v}$) were added. The reaction mixture was stirred an additional 30 min at $4^{\circ} \mathrm{C}$ and was then diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ and extracted with $\mathrm{DCM}(4 \times 4 \mathrm{ml})$. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ to yield 5 as a colourless oil (33 mg , 54%). $\mathrm{R}_{\mathrm{f}} 0.50$ ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3483,2960,2876 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94$ (dt, $J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (ddd, $J=7.8,5.1,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=11.5,7.6,4.4,1 \mathrm{H}), 3.16(\mathrm{dd}, J=7.6,5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-$ $1.74(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.4,62.3$, 43.5, 28.3, 22.0, 12.1, 9.8, 7.0, 5.1; MS (ESI) m/z 269 (M+Na ${ }^{+}$), 229, 215, 129; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}$269.1897, found 269.1907.

2-ethyl-3-hydroxy-pentyl benzoate (5'). 27 mg of $5 \mathbf{(0 . 1 1 ~ m m o l)}$ were dissolved in 1 mL of DCM and diisopropylethylamine ($22 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) and benzoyl chloride (15 $\mu \mathrm{L}, 0.13 \mathrm{mmol}$) were added. The mixture was stirred at room temperature for 5 h . It was then poured onto water and extracted with DCM ($4 \times 3 \mathrm{~mL}$). The combined organic layer was dried over magnesium sulphate. The organic solvents were then removed. The crude oil was dissolved in 1 mL of THF and tetrabutylammonium fluoride ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature for 1 h . The organic solvents were then removed and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right)$ to yield $\mathbf{5}$ ' as a colorless oil ($18 \mathrm{mg}, 69 \%$). $\mathrm{R}_{\mathrm{f}} 0.50\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol); IR $v_{\max }$ (thin film) / $\mathrm{cm}^{-1} 3405$, 3021,$1750 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.59$ (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (ddd, $J=11.5$, $4.9,1 \mathrm{H}), 3.58-3.64(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.79(\mathrm{~m}, 7 \mathrm{H}), 1.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,133.0,129.5,128.4,73.3,64.1,44.9$,
27.5, 21.1, 11.7, 10.3; MS (EI) m/z (\%) 237 (M+H+ 60), 219 (90), 123 (50), 105 (40), 97 (100); HRMS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$237.1491, found 237.1489. [$\left.\alpha\right]_{\mathrm{D}}{ }^{22}=$ $8.8\left(\mathrm{c} 0.91, \mathrm{CHCl}_{3}\right)($ e.r. $=99: 1) ; \mathrm{t}_{\mathrm{R}}=13.0 \mathrm{~min}(\mathrm{~S}, R$-minor $), 14.6 \mathrm{~min}(R, S$-major $)$ Daicel Chiralcel-OJ column, $2 \% \mathrm{iPrOH}$ in Hexane $1 \mathrm{~mL} / \mathrm{min}$.

(3R,4R,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (6). A 10 ml Schlenk tube was charged with boronic ester $4(102 \mathrm{mg}, 0.30 \mathrm{mmol})$ and (+)-epoxybutane ($13 \mu \mathrm{~L}$, 0.15 mmol) in $500 \mu \mathrm{~L}$ of THF. The resulting solution was thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by dropwise addition of freshly prepared lithium 2,2,6,6tetramethylpiperidide (0.30 mmol). The reaction mixture was then stirred 2 h at which the reaction flask was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{~m})$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ $(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred an additional 30 \min at $4^{\circ} \mathrm{C}$ and was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with $\mathrm{DCM}(4 \times 7 \mathrm{ml})$. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ to yield $\mathbf{6}$ as a colourless oil (16 mg , 35%). $\mathrm{R}_{\mathrm{f}} 0.20$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 2962,2937 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=6.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.43$ (br s, 1H), 1.35-1.77 (m, 7H), 1.03 (t, $J=7.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.94$ (t, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.70$ $(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 77.2,75.7,73.6,43.7,29.5,27.5,23.1$, 11.7, 10.6, 9.4, 6.8, 5.2; MS (CI) m/z (\%) 305 (M+H ${ }^{+}, 10$), 173 (90), 155 (100), 115 (40); HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si} 305.2512$, found 305.2525. [$\left.\alpha\right]_{\mathrm{D}}{ }^{22}=-16.7$ (c $0.18, \mathrm{CHCl}_{3}$).

(3S,4S,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (7). A 10 ml Schlenk tube was charged with boronic ester $4(146 \mathrm{mg}, 0.43 \mathrm{mmol})$ and (-)-epoxybutane ($18 \mu \mathrm{~L}$, 0.21 mmol) in $500 \mu \mathrm{~L}$ of THF. The resulting solution was thereafter cooled to $-30^{\circ} \mathrm{C}$ followed by dropwise addition of freshly prepared lithium 2,2,6,6tetramethylpiperidide (0.43 mmol). The reaction mixture was then stirred 2 h at which the reaction flask was transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0 \mathrm{~m})$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ $(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred an additional 30 \min at $4^{\circ} \mathrm{C}$ and was then diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with $\mathrm{DCM}(4 \times 7 \mathrm{ml})$. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography $\left(\mathrm{SiO}_{2}, 5 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ to yield 7 as a colourless oil (29 mg , 45%). $\mathrm{R}_{\mathrm{f}} 0.10$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }($ thin film $) / \mathrm{cm}^{-1} 2963,2957 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=9.3,5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{br} \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.28-1.76(\mathrm{~m}, 7 \mathrm{H}), 1.03(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.66(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 76.3,73.7,73.5,42.5,28.1$, $25.8,17.8,12.6,10.3,9.9,6.9,5.2 ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z}(\%) 305\left(\mathrm{M}+\mathrm{H}^{+}, 20\right), 257(40), 173$ (90), 155 (100); HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{Si} 305.2512$, found 305.2524. $[\alpha]_{\mathrm{D}}{ }^{22}=$ 23 (c $0.91, \mathrm{CHCl}_{3}$).

General procedure for the homologation of boronates with styrene oxide leading to compounds 9.
A 10 ml Schlenk tube was charged with (R)-styrene oxide ($46 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) and TMEDA ($180 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$) in 2.75 mL of ether. The resulting solution was thereafter cooled to $-115^{\circ} \mathrm{C}$ followed by dropwise addition of $s \mathrm{BuLi}(1.3 \mathrm{M}$ in hexanes, $370 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$). The resulting mixture was stirred at $-115^{\circ} \mathrm{C}$ for 10 min . A solution of the corresponding boronic ester $(0.50 \mathrm{mmol})$ in ether $(1.25 \mathrm{~mL})$ was then slowly added and the mixture was then stirred at $-110^{\circ} \mathrm{C}$ for 10 min . TES-OTf ($113 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) was added and the resulting mixture was allowed to warm to room temperature. The reaction flask was transferred to an ice bath. 3 mg of 2,6-di-tert-butyl-4-methylphenol were added, followed by a mixture of $\mathrm{NaOH}(1.0 \mathrm{ml}, 2.0$ M) and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{ml},>30 \% \mathrm{w} / \mathrm{v})$, previously degazed under vacuum. The reaction mixture was stirred an additional 10 min at room temperature and was then diluted
with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ and extracted with ether $(4 \times 7 \mathrm{ml})$. The organic solvents were then removed and the crude product was subjected to silica gel flash chromatography.

(R)-2-phenyl-1-(triethylsilyloxy)butan-2-ol (9a). This compound was synthesised according to the general procedure using MTBE as solvent and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ which afforded 97 mg of a colourless oil (87\%). $\mathrm{R}_{\mathrm{f}} 0.60$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3553,3062,3029 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24$7.28(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H}), 1.94$ (dq, $J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dq}, J=14.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8$, 128.1, 126.7, 125.6, 76.8, 70.7, 31.2, 7.8, 6.8, 4.4; MS (ESI) m/z 303 ($\mathrm{M}+\mathrm{Na}^{+}$), 245, 239, 151; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+} 303.1745$, found 303.1750; [$\left.\alpha\right]_{\mathrm{D}}{ }^{22}$ $=-4.5\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right)(\mathrm{e} . \mathrm{r} .=97: 3) ; \mathrm{t}_{\mathrm{R}}=7.0 \mathrm{~min}(S$-minor), $7.5 \mathrm{~min}(R$-major) Daicel Chiralcel-AD column, $0.5 \% \mathrm{iPrOH}$ in Hexane $1 \mathrm{~mL} / \mathrm{min}$.

(R)-2,4-diphenyl-1-(triethylsilyloxy)butan-2-ol (9b). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ which afforded 111 mg of a colourless oil (78\%). $\mathrm{R}_{\mathrm{f}} 0.60$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3552$, 3087, 3064, 3029; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.30$ (m, 3H), 7.11-7.17 (m, 3H), 3.74 (d, J=9.4 Hz, 1H), $3.68(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}$,
$1 \mathrm{H}), 2.72(\mathrm{td}, J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.11(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.55(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4,142.9,128.4$, 128.3, 126.9, 125.7, 125.5, 76.5, 71.0, 40.6, 29.9, 6.8, 4.4; MS (ESI) m/z 379 $\left(\mathrm{M}+\mathrm{Na}^{+}\right), 339,245$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}$379.2059, found $379.2063 ;[\alpha]_{\mathrm{D}}{ }^{22}=-22.2\left(\mathrm{c} 0.81, \mathrm{CHCl}_{3}\right)($ e.r. $=95: 5) ; \mathrm{t}_{\mathrm{R}}=14.1 \mathrm{~min}(S$-minor $), 17.8$ \min (R-major) Daicel Chiralcel-OD-H column, $0.5 \% \mathrm{iPrOH}$ in Hexane $0.5 \mathrm{~mL} / \mathrm{min}$.

(R)-1-cyclohexyl-1-phenyl-2-(triethylsilyloxy)ethanol (9c). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ which afforded 90 mg of a colourless oil (68\%). $\mathrm{R}_{\mathrm{f}} 0.60$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3694,2957,2931,2875$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.26(\mathrm{~m}$, $1 \mathrm{H}), 3.96(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}),, 3.88(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.78(\mathrm{~m}, 5 \mathrm{H}), 0.92-1.29(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.53(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.1,127.6,126.4,126.1,78.1,67.8,45.8,27.7$, 27.1, 26.9, 26.7, 26.5, 6.7, 4.3; MS (ESI) m/z 357 (M+Na ${ }^{+}$), 317, 239, 223, 151; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}$357.2217, found 357.2220. The stereochemistry of $9 \mathbf{c}$ was determined by conversion to 1-cyclohexyl-1-phenylethane-1,2-diol ($\mathbf{9} \mathbf{c}^{\mathbf{\prime}}$): 59 mg of $\mathbf{9 c}$ were dissolved in 1 mL of THF and tetrabutylammonium fluoride ($83 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature for 1 h . The organic solvents were then removed and the crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right)$ to yield to 1-cyclohexyl-1-phenylethane-1,2-diol 9c’ as a colorless oil (38 mg, 97\%). ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=11.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 0.99-1.90(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}(100 \mathrm{MHz}$,
CDCl_{3}) $\delta 143.2,128.3,127.0,126.3,79.3,69.3,45.6,27.3,26.9,26.7,26.6,26.4 .{ }^{6}$ $[\alpha]_{\mathrm{D}}^{22}=+21.1\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right)($ e.r. $=99: 1) ; \mathrm{t}_{\mathrm{R}}=47.2 \mathrm{~min}(R$-major $), 53.7 \mathrm{~min}(S-$ minor) Daicel Chiralcel-OD-H column, $2.5 \% \mathrm{iPrOH}$ in Hexane $0.5 \mathrm{~mL} / \mathrm{min}$.

(R)-2-phenyl-1-(triethylsilyloxy)pent-4-en-2-ol (9d). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ which afforded 101 mg of a colourless oil (86%). $\mathrm{R}_{\mathrm{f}} 0.60$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3554,3079,2958,1640$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.26(\mathrm{~m}$, $1 \mathrm{H}), 5.67$ (ddt, $J=17.3,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, 1 H), 3.68 (d, J = 9.5 Hz, 1H), 2.99 ($\mathrm{s}, 1 \mathrm{H}$), 2.68 (dd, J = 14.2, 7.1 Hz, 1H), 2.61 (dd, J $=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.56(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 143.8,133.9,128.1,126.9,125.6,118.2,75.9,70.2,43.4,6.8,4.4 ; \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 315\left(\mathrm{M}+\mathrm{Na}^{+}\right), 275,245,239,151$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+}$ 315.1746, found 315.1750; [$\alpha]_{\mathrm{D}}^{22}=-3.7\left(\mathrm{c} 0.27, \mathrm{CHCl}_{3}\right)(\mathrm{e} . \mathrm{r} .=96: 4) ; \mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}(\mathrm{~S}-$ minor), 9.9 min (R-major) Daicel Chiralcel-OD-H column, $0.5 \% \mathrm{iPrOH}$ in Hexane 1 $\mathrm{mL} / \mathrm{min}$.

(S)-1-(4-methoxyphenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9e). This compound was synthesised according to the general procedure and was purified by flash

[^4]chromatography $\left(\mathrm{SiO}_{2}, 2 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Petrol}\right)$ which afforded 114 mg of a colourless oil (80%). $\mathrm{R}_{\mathrm{f}} 0.50$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }$ (thin film) $/ \mathrm{cm}^{-1} 3540$, 2958, 2913, 2877; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.28$ (m, 1H), $6.88(\mathrm{~d}, ~ J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,145.0,137.0$, 128.1, 128.0, 126.7, 113.5, 76.9, 69.5, 55.3, 6.8, 4.4; MS (ESI) m/z $381\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 341, 273, 245, 151; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}+\mathrm{Na}^{+} 381.1853$, found 381.1856; $[\alpha]_{\mathrm{D}}{ }^{22}=-4.8\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right)(\mathrm{e} . \mathrm{r} .=94: 6) ; \mathrm{t}_{\mathrm{R}}=18.7 \mathrm{~min}(R$-minor $), 22.1$ $\min (S$-major) Daicel Chiralcel-AD column, 0.5% iPrOH in Hexane $0.7 \mathrm{~mL} / \mathrm{min}$.

(S)-1-(4-fluorophenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9f). This compound was synthesised according to the general procedure (on a 0.46 mmol scale) and was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Petrol $)$ which afforded 95 mg of a colourless oil (63%). $\mathrm{R}_{\mathrm{f}} 0.50$ ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\text {max }}$ (thin film) $/ \mathrm{cm}^{-1} 3691,3547$, 2959; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (s, 2H), $3.59(\mathrm{~s}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 144.4,140.6,128.6,128.5,128.2,127.3,126.6,115.0,114.7,77.8,69.3$, 6.8, 4.4; MS (CI) m/z (\%) 329 ((M- $\left.\mathrm{H}_{2} \mathrm{O}, 50\right), 201$ (10), 75 (100); HRMS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OFSi}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) 329.1737$, found 329.1724; $[\alpha]_{\mathrm{D}}{ }^{22}=-7.8\left(\mathrm{c} 0.19, \mathrm{CHCl}_{3}\right)$ (e.r. $=99: 1$); $\mathrm{t}_{\mathrm{R}}=10.8 \mathrm{~min}(R$-minor), $13.7 \mathrm{~min}(S$-major) Daicel Chiralcel-OD-H column, 0.5% iPrOH in Hexane $1 \mathrm{~mL} / \mathrm{min}$.

1,1-diphenyl-2-(triethylsilyloxy)ethanol (9g). This compound was synthesised according to the general procedure and was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $0.5 \% \mathrm{Et}_{2} \mathrm{O} /$ Petrol $)$ which afforded 90 mg of a colourless oil (69\%). $\mathrm{R}_{\mathrm{f}} 0.90(10 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ Petrol); IR $v_{\max }$ (thin film) / $\mathrm{cm}^{-1} 3634,3064,3029$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.34(\mathrm{~m}, 10 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.56(\mathrm{q}, J=8.1 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6,128.7,128.4,126.4,66.6,53.8,6.8,4.5 ; \mathrm{MS}$ (EI) m/z 336 (10), 283 (60), 117 (80), 84 (100); HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}+$ $\mathrm{Na}^{+} 351.1756$, found 351.1758 .

Octane-3,4-diol (3a)

Octane-3,4-diol (3a)

$\begin{array}{llllllll}75 & 70 & 65 & 60 & 55 & 50 & 45 & 40\end{array}$
Chemical Shift (ppm)

1-Phenylhexane-1,2-diol (3b)

1-Phenylhexane-1,2-diol (3b)

1-Cyclohexylhexane-1,2-diol (3c)

1-Cyclohexylhexane-1,2-diol (3c)

1-Cyclopropylhexane-1,2-diol (3d)

1-Cyclopropylhexane-1,2-diol (3d)

1-Phenyloctane-3,4-diol (3e)

1-Phenyloctane-3,4-diol (3e)

Oct-7-ene-3,4-diol (3f)

Oct-7-ene-3,4-diol (3f)

2-Methylhexane-3,4-diol (3g)

2-Methylhexane-3,4-diol (3g)

2,2-Dimethylhexane-3,4-diol (3h)

2,2-Dimethylhexane-3,4-diol (3h)

 $80 \quad 75$

7065 60 $55 \quad 50$ $50 \quad 45 \quad 40$ Chemical Shift (ppm)

1-(tert-butyldimethylsilyloxy)pentane-2,3-diol (3i)

1-(tert-butyldimethylsilyloxy)pentane-2,3-diol (3i)

1-Phenylhexane-3,4-diol (3j)

1-Phenylhexane-3,4-diol (3j)

Chiral HPLC Data for diol 3j

Diol 3j [from (\pm)-1,2-epoxybutane] Daicel Chiracel-AD column, 3:97 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

Diol 3j [from (+)-1,2-epoxybutane] Daicel Chiracel-AD column, 3:97 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(\mathrm{e} . \mathrm{r} .=99: 1)(210 \mathrm{~nm})$

(1R,2R)-(1-Ethyl-2-triethylsiloxy)butyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

(1R,2R)-(1-Ethyl-2-triethylsiloxy)butyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

Chiral HPLC Data for 4'

4’ [from (\pm)-1,2-epoxybutane] Daicel Chiracel-AD column, 2:98 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

4' [from (+)-1,2-epoxybutane] Daicel Chiracel-AD column, 2:98 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}($ e.r. $=99: 1)(210 \mathrm{~nm})$

2-ethyl-3-(triethylsilyloxy)pentan-1-ol (5)

2-ethyl-3-(triethylsilyloxy)pentan-1-ol (5)

Chiral HPLC Data for 5’
5’ [from (\pm)-1,2-epoxybutane] Daicel Chiracel-OJ column, 2:98 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(230 \mathrm{~nm})$

5’ [from (+)-1,2-epoxybutane] Daicel Chiracel-OJ column, 2:98 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(e . r$. $=99: 1)(230 \mathrm{~nm})$

(3R,4R,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (6)

(3R,4R,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (6)

(3S,4S,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (7)

(3S,4S,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (7)

(R)-2-phenyl-1-(triethylsilyloxy)butan-2-ol (9a)

(R)-2-phenyl-1-(triethylsilyloxy)butan-2-ol (9a)

Chiral HPLC Data for 9a

9a [from (\pm)-styrene oxide] Daicel Chiracel-AD column, 0.5:99.5 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(250 \mathrm{~nm})$

9a [from (+)-styrene oxide] Daicel Chiracel-AD column, $0.5: 99 .{ }^{\frac{6}{6} \mathrm{iPrOH} / H e x a n e, ~} 1 \mathrm{~mL} / \mathrm{min}($ e.r. $=97: 3)(250 \mathrm{~nm})$

(R)-2,4-diphenyl-1-(triethylsilyloxy)butan-2-ol (9b)

(R)-2,4-diphenyl-1-(triethylsilyloxy)butan-2-ol (9b)

Chiral HPLC Data for 9b

9b [from (\pm)-styrene oxide] Daicel Chiracel-OD-H column, $0.5: 99.5 \mathrm{iPrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}(250 \mathrm{~nm})$

9b [from (+)-styrene oxide] Daicel Chiracel-OD-H column, $0.5: 99.5^{12} \mathrm{iPrOH}^{13} /$ Hexane, $0^{16} 5^{16} \mathrm{~mL} / \mathrm{min}($ e.r. $=95: 5)(250 \mathrm{~nm})$

(R)-1-cyclohexyl-1-phenyl-2-(triethylsilyloxy)ethanol (9c)

(R)-1-cyclohexyl-1-phenyl-2-(triethylsilyloxy)ethanol (9c)

Chiral HPLC Data for 9c’

9c' [from (\pm)-styrene oxide] Daicel Chiracel-OD-H column, 2.5:97.5 iPrOH/Hexane, $0.5 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

9c' $\left[\right.$ from $(+)$-styrene oxide] Daicel Chiracel-OD-H column, ${ }^{46}{ }^{48} 5: 97.5 \mathrm{iPrOH} / \mathrm{Hexane}, 0.5 \mathrm{~mL} / \mathrm{min}(\mathrm{e} . \mathrm{r} .=99: 1)(210 \mathrm{~nm})$

(R)-2-phenyl-1-(triethylsilyloxy)pent-4-en-2-ol (9d)

(R)-2-phenyl-1-(triethylsilyloxy)pent-4-en-2-ol (9d)

Chiral HPLC Data for 9d

9d [from (\pm)-styrene oxide] Daicel Chiracel-OD-H column, 0.5:99.5 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

(S)-1-(4-methoxyphenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9e)

(S)-1-(4-methoxyphenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9e)

Chiral HPLC Data for 9e

9e [from (\pm)-styrene oxide] Daicel Chiracel-AD column, 0.5:99.5 iPrOH/Hexane, $0.7 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

9e [from (+)-styrene oxide] Daicel Chiracel-AD column, $0.5: 99.5{ }^{18}{ }^{18} \operatorname{PrOH} / H e x a n e, 0.7 \mathrm{~mL} / \mathrm{min}($ e.r. $=94: 6)(210 \mathrm{~nm})$

(S)-1-(4-fluorophenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9f)

(S)-1-(4-fluorophenyl)-1-phenyl-2-(triethylsilyloxy)ethanol (9f)

Chiral HPLC Data for 9f

9f [from (\pm)-styrene oxide] Daicel Chiracel-OD-H column, $0.5: 99.5 \mathrm{iPrOH} / H e x a n e, 1 \mathrm{~mL} / \mathrm{min}(210 \mathrm{~nm})$

9f [from (+)-styrene oxide] Daicel Chiracel-OD-H column, 0.5:99.5 iPrOH/Hexane, $1 \mathrm{~mL} / \mathrm{min}(e . r$. $=99: 1)(210 \mathrm{~nm})$

1,1-diphenyl-2-(triethylsilyloxy)ethanol (9g)

1,1-diphenyl-2-(triethylsilyloxy)ethanol (9g)

NMR experiments to give support for stereochemical assignment of $\mathbf{6}$ and 7: nOe experiments were conducted which clearly showed that H 1 and H 2 were close in space in diol 6 but not in diol 7 . This arises from the preferred conformation of the diols:

(3R,4R,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (6)

Irradiation of proton $\mathrm{H}_{1}(3.78 \mathrm{ppm})$ resulted in enhancement of proton $\mathrm{H}_{2}(3.44 \mathrm{ppm})$.

(3R,4R,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (6)

Irradiation of proton $\mathrm{H}_{2}(3.44 \mathrm{ppm})$ resulted in enhancement of proton H_{1} (3.78 ppm).

(3S,4S,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (7)

Irradiation of proton $\mathrm{H}_{1}(3.87 \mathrm{ppm})$ did not result in any enhancement of proton $\mathrm{H}_{2}(3.80 \mathrm{ppm})$.

(3S,4S,5S,6R)-5-ethyl-6-(triethylsilyloxy)octane-3,4-diol (7)

Irradiation of proton $\mathrm{H}_{2}(3.80 \mathrm{ppm})$ resulted in enhancement of proton $\mathrm{H}_{3}(3.59 \mathrm{ppm})$ but did not result in any enhancement of proton $\mathrm{H}_{1}(3.87 \mathrm{ppm})$.

[^0]: ${ }^{1}$ [a] S. Morandi, E. Caselli, A. Forni, M. Buccurelli, G. Torre, F. Prati, Tetrahedron: Asymmetry 2005, 16, 2918; [b] T. J. Southwood, M. C. Curry, C. A. Hutton, Tetrahedron 2006, 62, 236.

[^1]: ${ }^{2}$ All spectral data corresponded to literature values: C. Bonini, G. Righi, Tetrahedron 1992, 48, 1531.

[^2]: ${ }^{3}{ }^{1} \mathrm{H}$ NMR corresponded to literature values: G. Bellucci, C. Chiappe, A. Caordoni, Tetrahedron: Asymmetry 1996, 7, 197.
 ${ }^{4}$ This compound is known in the literature but only the elemental analysis was given: R. K. Hill, J. Am. Chem. Soc. 1957, 79, 1609.

[^3]: ${ }^{5}$ All spectra data corresponded to literature values: Y. Matsumura, T. Maki, S. Murakami, O. Onomura, J. Am. Chem. Soc. 2003, 125, 2052.

[^4]: ${ }^{6}$ All spectral data corresponded to literature values: K. P. M. Vanhessche, K. B. Sharpless, J. Org. Chem. 1996, 61, 7978.

