Lewis Acid Catalyzed Formation of Tetrahydroquinolines via an Intramolecular Redox Process

Sandip Murarka, Chen Zhang, Marlena D. Konieczynska, and Daniel Seidel ${ }^{*}$
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
\section*{Supporting Information}

General Information: Starting materials, reagents and solvents were purchased from commercial sources and were used as received with the exception of acetonitrile which was distilled from calcium hydride prior to use. Reactions were run under an atmosphere of nitrogen unless mentioned otherwise. Purifications of reaction products were carried out by flash chromatography using EM Reagent silica gel 60 ($230-400$ mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light and permanganate stain, followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus. Infrared spectra were recorded on an ATI Mattson Genesis Series FT-Infrared spectrophotometer. Proton nuclear magnetic resonance spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ were recorded on a Varian VNMRS- 500 MHz instrument and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm). Data are reported as app $=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, comp $=$ complex; $\mathrm{br}=$ broad; integration; coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}-\mathrm{NMR}$) spectra were recorded on a Varian VNMRS-500 MHz instrument and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.0 ppm$)$. Mass spectra were recorded on a Finnigan LCQ-DUO mass spectrometer. Optical rotations were recorded on a Perkin-Elmer 343 polarimeter at 589 nm and 293 K . HPLC analyses were carried out on an Agilent 1100 series HPLC with auto sampler and a multiple wavelength detector. The starting material 2-(pyrrolidin-1-yl)benzaldehyde ($3 \mathbf{a}$), ${ }^{1}$ 2-(piperidin-1yl)benzaldehyde $\quad(\mathbf{3 j}),{ }^{1} \quad 2$-morpholinobenzaldehyde $\quad(\mathbf{3 k}),{ }^{2} \quad 2$-(azepan-1-yl)benzaldehyde $\quad(\mathbf{3 l}),{ }^{3} \quad 2-(3,4-$ dihydroisoquinolin-2(1H)-yl)benzaldehyde (3n), ${ }^{4}$ 2-(2-methylpyrrolidin-1-yl)benzaldehyde (30), ${ }^{1}$ dimethyl 2-(2-(pyrrolidin-1-yl)benzylidene)malonate (1a), ${ }^{2}$ and 2-(2-(pyrrolidin-1-yl)benzylidene)malononitrile (1i), ${ }^{2}$ were prepared according to literature methods.

General procedure for the preparation of aminobenzaldehyde:

To a solution of 2-fluorobenzaldehyde ($2.48 \mathrm{~g}, 20 \mathrm{mmol}$) and potassium carbonate ($3.18 \mathrm{~g}, 23 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ was added the amine (23 mmol). The resulting reaction mixture was heated under reflux until complete consumption of 2 -fluorobenzaldehyde as judged by TLC analysis. The reaction mixture was subsequently allowed to cool to room temperature, diluted with water (100 mL), and extracted with ethyl acetate ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with a saturated $\mathrm{NH}_{4} \mathrm{C} 1$ solution ($3 \times 75 \mathrm{~mL}$) and subsequently dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography.

2-(azocan-1-yl)benzaldehyde (3m): The title compound was prepared according to the general procedure (3 h) and isolated as a liquid in 65% yield. ($\mathrm{R}_{\mathrm{f}}=0.50$ in $80 \% \mathrm{DCM} / \mathrm{Hex}$); IR (film) 2924, 2849, 1681, 1594, 1483, 1449, 1374, 1274, 1186, 1160, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.23(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.26(\mathrm{~m}, 1 \mathrm{H})$, 7.07 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.19$ (comp, 4H), $1.87-1.46$ (comp, $10 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.3, 155.8, 134.6, 130.6, 127.7, 119.9, 119.5, 55.5, 27.8, 27.4, 25.2; m/z (ESIMS) $218.6[\mathrm{M}+\mathrm{H}]^{+}$.

2-(dibenzylamino)benzaldehyde (3p): The title compound was prepared according to the general procedure (12 h) and isolated as a liquid in 25% yield $\left(\mathrm{R}_{\mathrm{f}}=0.61\right.$ in $\left.80 \% \mathrm{DCM} / \mathrm{Hex}\right)$;

IR (film) 3062, 3028, 2938, 2840, 2733, 1686, 1595, 1494, 1481, 1452, 1384, 1365, 1276, 1254, 1189, 1161, $1028,833,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $10.57(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39$ $-7.24($ comp, $6 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{app} \mathrm{dt}, J=9.7,20.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.31, 154.42, 137.12, 134.44, 129.83, 129.57, 128.64, 128.43, 127.44, 122.89, 122.40, 58.70; m / z (ESIMS) $324.7[\mathrm{M}+\mathrm{Na}]^{+}$.

2-(benzyl)methyl)amino)benzaldehyde (3q): The title compound was prepared according to
 the general procedure (4 h) and isolated as a liquid in 75% yield ($\mathrm{R}_{\mathrm{f}}=0.42$ in 15% EtOAc/Hex); IR (film) 2843, 1684, 1596, 1483, 1452, 1276, 1190, 945, 832, 763, 734, 698 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=1.7,7.7,1 \mathrm{H}), 7.49(\mathrm{ddd}, J=$ $1.8,7.2,8.3,1 \mathrm{H}$), $7.41-7.22$ (comp, 5H), $7.20-7.01$ (comp, 2H), 4.35 (s, 2H), 2.83 (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.14, 155.57, 137.30, 134.57, 130.07, 128.45, 128.25, 128.02, 127.34, 121.54, 119.41, 62.26, 42.24.; m/z (ESIMS) $258.1[\mathrm{M}+\mathrm{Na}]^{+}$.

General procedure for the preparation of alkylidenemalonates:

A mixture of aminobenzaldehyde (20 mmol), malonate (21 mmol), piperidine (3.4 mmol) and benzoic acid (2.2 $\mathrm{mmol})$ in benzene (21 ml) was refluxed using a Dean-Stark trap. After completion of the reaction as judged by TLC, benzene was evaporated off and the reaction mixture was dissolved in ethyl acetate (50 mL). This solution was washed sequentially with water (20 ml), 5% aqueous $\mathrm{HCl}(2 \times 20 \mathrm{ml})$, saturated aqueous sodium bicarbonate ($2 \times 20 \mathrm{ml}$), brine (20 ml) followed by drying over magnesium sulfate. The solvent was evaporated off and the crude reaction mixture was purified by either by triturating with methanol or by column chromatography.

diethyl 2-(2-(pyrrolidin-1-yl)benzylidene)malonate (1b): The reaction was carried out according to the general procedure (12 h). The product was obtained as a yellow liquid in 90% yield. ($\mathrm{R}_{\mathrm{f}}=0.49$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2979, 2873, 2834, 1732, 1620, 1597, 1481, 1451, 1373, 1349, 1257, 1207, 1163, 1096, 1066, 1025, $955,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99(\mathrm{~d}, \mathrm{~J}=6.1,1 \mathrm{H}), 7.28-7.17(\mathrm{comp}, 2 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 6.75(\mathrm{app}$ $\mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H}), 4.29(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.85$ $(\mathrm{m}, 4 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.20($ app q, J = 7.1, 3 H$) . ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $166.68,164.70,150.07,144.73,130.55,129.68,123.58,122.71,118.40,114.41,61.28,61.25,52.26,25.62$, 14.17, 13.87; m/z (ESIMS) $656.9[2 \mathrm{M}+\mathrm{Na}]^{+}$.

diisopropyl 2-(2-(pyrrolidin-1-yl)benzylidene)malonate (1c): The reaction was carried out according to the general procedure (24 h). The product was obtained as a yellow solid in 94% yield. ($\mathrm{R}_{\mathrm{f}}=0.40$ in $\left.15 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; mp: $90-91^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 2980$, 2932, 2967, 2935, 1728, 1709, 1612, 1599, 1495, 1484, 1467, 1452, 1375, 1357, 1275, 1210, 1193, $1108,1096,1063,929,911,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.91(\mathrm{~s}, 1 \mathrm{H}), 7.27$ (d, J $=7.7,1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7,1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.3,1 \mathrm{H}), 6.72(\mathrm{t}, J=7.5,1 \mathrm{H}), 5.20-5.08$ (comp, 2H), $3.27(\mathrm{t}, J=6.3,4 \mathrm{H}), 1.90(\operatorname{app} \mathrm{dd}, J=5.0,7.7,4 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3,6 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3,6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 165.98, 163.97, 149.80, 143.57, 130.27, 129.52, 124.35, 122.67, 118.20, 114.29, 68.54, 68.50, 52.03, 25.38, 21.63, 21.30.; m/z (ESIMS) $346.2[\mathrm{M}+\mathrm{H}]^{+}$.

di-tert-butyl 2-(2-(pyrrolidin-1-yl)benzylidene)malonate (1d): The reaction was carried out according to the general procedure (12 h). The product was obtained as a yellow liquid in 95% yield. ($\mathrm{R}_{\mathrm{f}}=0.47$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2976, 2873, 1712, 1622, 1597, 1481, 1451, 1392, 1367, 1272, 1158, 1096, 1067, 1031, 849, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=$ $8.3,1 \mathrm{H}), 6.74(\operatorname{app} \mathrm{t}, J=7.4,1 \mathrm{H}), 3.28(\mathrm{t}, J=6.6,4 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H})$,
$1.50-1.43$ (s, 9H).; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 165.97, 163.95, 149.76, 142.35, 130.07, 129.82, 126.85, $123.13,118.16,114.27,81.64,81.41,52.04,28.11,27.88,27.82,27.78,25.54 . ; m / z(E S I M S) 374.2[M+H]^{+}$.

dibenzyl 2-(2-(pyrrolidin-1-yl)benzylidene)malonate (1e): The reaction was carried out according to the general procedure (12h). The product was obtained as a yellow liquid in 95% yield. ($\mathrm{R}_{\mathrm{f}}=0.48$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 3064, 3032, 2955, 2872, 1732, 1597, 1496, 1486, 1453, 1378, 1354, 1256, 1191, 1096, 1062, 1028, 955, 911, 749, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.06 (s, 1H), 7.41 - 7.29 (comp, 5 H), 7.29 - 7.11 (comp, 7H), $6.79(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{t}, \mathrm{J}=6.5,4 \mathrm{H})$, $1.94-1.80(\mathrm{~m}, 4 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.59, 164.63, 150.36, 146.24, 135.98, 135.46, 130.98, 129.93, 128.74, 128.66, 128.62, 128.38, 128.36, 128.12, 123.12, 122.78, 118.78, 114.74, 67.38, 67.08, 52.53, 25.81; m/z (ESIMS) $464.2[\mathrm{M}+\mathrm{Na}]^{+}$.

(E)-ethyl 3-oxo-2-(2-(pyrrolidin-1-yl)benzylidene)butanoate (1f): The reaction was carried out according to the general procedure (2 h). The product was obtained as a yellow liquid in 91% yield. $\mathrm{dr}=47: 53$, determined by integration of one set of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals (δ minor 1.31 ppm , δ major 1.17 ppm). ($\mathrm{R}_{\mathrm{f}}=0.31$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2974, 1715, 1663, 1596, 1480, 1450, 1250, 1193, 1061, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereoisomer) $7.83(\mathrm{~d}, J=6.9,1 \mathrm{H}), 7.24-7.21(\mathrm{comp}, 2 \mathrm{H}), 6.74(\mathrm{app} \mathrm{dd}, J=7.8,15.6$, $2 \mathrm{H}), 4.22(\mathrm{dd}, J=7.2,14.3,2 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.93(\operatorname{app} \mathrm{~d}, J=6.6,4 \mathrm{H}), 1.17(\mathrm{t}, J=7.1$, $3 \mathrm{H})$. $;{ }^{13} \mathrm{C}$ NMR of diastereomeric mixture ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 202.31, 194.94, 167.80, 165.04, 150.15, 149.94, $143.87,143.08,131.87,130.84,130.73,130.70,130.49,129.60,122.92,122.39,118.67,118.56,114.71,114.52$, 61.19, 61.16, 52.33, 52.08, 30.85, 26.86, 25.54, 25.52, 14.14, 13.79; m/z (ESIMS) $288.1[\mathrm{M}+\mathrm{H}]^{+}$.

3-(2-(pyrrolidin-1-yl)benzylidene)penatane-2,4-dione (1g): The reaction was carried out according to the general procedure $(1 \mathrm{~h})$. The product was obtained as a yellow liquid in 95% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.23\right.$ in $\left.15 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) 2968 , 2871, 1709, 1683, 1657, 1595, $1479,1450,1354,1281,1239,1163,971,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.84 (s, $1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.5,7.7,1 \mathrm{H}), 6.86(\mathrm{dd}, J=0.7,8.3,1 \mathrm{H}), 6.81-6.75$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.63,196.37,150.06,142.40,139.78,131.29,130.69,122.65,119.08,114.99$ 52.27, 31.15, 27.15, 25.54.; m/z (ESIMS) 258.3 [$\mathrm{M}+\mathrm{H}]^{+}$.

1,3-diphenyl-2-(2-(pyrrolidin-1-yl)benzylidene)propane-1,3-dione (1h): The reaction was carried out according to the general procedure (6 h). The product was obtained as a yellow solid in 92% yield. ($\mathrm{R}_{\mathrm{f}}=0.25$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $134-136^{\circ} \mathrm{C}$; IR (KBr) 2974, 2945, 1671, 1627, 1594, 1477, 1446, 1368, 1342, 1284, 1230, 1210, 1175, 875, 761, 725, $691 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.93 - 7.88 (comp, 2H), 7.87 - 7.82 (comp, 2H), 7.78 (s, 1H), 7.54 (ddd, $J=1.3,2.5,8.7,1 \mathrm{H}), 7.50-7.42(\mathrm{comp}, 3 \mathrm{H}), 7.36(\mathrm{dd}, J=4.8,10.7,2 \mathrm{H}), 7.17$ (dd, $J=1.3,7.7,1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.62(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.5,4 \mathrm{H}), 2.01-1.75(\operatorname{app} \mathrm{t}, J=6.5$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 196.27, 195.28, 150.15, 145.96, 137.74, 136.96, 136.63, 133.18, 132.32, $130.75,130.68,129.39,129.08,128.50,128.40,123.12,118.81,114.81,52.08,25.44 . ; \mathrm{m} / \mathrm{z}$ (ESIMS) 404.1 [M + $\mathrm{Na}]^{+}$.

dimethyl 2-(2-(piperidin-1-yl)benzylidene)malonate (1j): The reaction was carried out according to the general procedure (12 h). The product was obtained as a yellow solid in 85% yield. ($\mathrm{R}_{\mathrm{f}}=0.48$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $78-80^{\circ} \mathrm{C}$; IR (film) 2936, 2862, 2792, $1735,1621,1598,1485,1450,1435,1379,1358,1290,1258,1214,1101,1069,763 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=4.6,12.8,2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.9,1 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.84(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) 167.27, 164.96, 154.16, 142.45, 131.16, 128.78, 127.33, 124.08, 121.89, 118.43, 54.33, 52.43, 52.40, 26.38, 24.20; m / z (ESIMS) $628.9[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 2-(2-morpholinobenzylidene)malonate (1k): The reaction was carried out according to the general procedure (4 h). The product was obtained as a yellow liquid in 98% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.11\right.$ in $\left.20 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) $3037,2954,2885,2852,1716,1624$, 1597, 1485, 1448, 1362, 1332, 1266, 1165, 1117, 1069, 1042, 936, 920, 765, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.30(\mathrm{comp}, 2 \mathrm{H}), 7.02(\mathrm{app} \mathrm{t}, \mathrm{J}=8.1,2 \mathrm{H})$, $3.95-3.81(\mathrm{comp}, 7 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.05-2.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) 166.92, 164.64, 152.46, 141.89, 131.29, 129.00, 127.46, 125.01, 122.84, 118.25, 67.09, 53.06, 52.50, 52.42; m/z (ESIMS) $306.1[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 2-(2-(azepan-1-yl)benzylidene)malonate (11): The reaction was carried out according to the general procedure $(1.5 \mathrm{~h})$. The product was obtained as a yellow liquid in 95% yield. ($\mathrm{R}_{\mathrm{f}}=0.49$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2929, 2854, 1735, 1620, 1595, 1486, 1448, 1361, 1259, 1215, 1163, 1104, 1069, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.09 (s, $1 \mathrm{H}), 7.28(\operatorname{app} \mathrm{t}, \mathrm{J}=7.8,2 \mathrm{H}), 7.06(\operatorname{app} \mathrm{t}, \mathrm{J}=10.0,1 \mathrm{H}), 6.89(\operatorname{app} \mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.12(\mathrm{comp}, 4 \mathrm{H}), 1.86-1.66(\mathrm{comp}, 8 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $167.20,164.83,155.06,144.04,130.75,128.93,126.64,123.51,120.84,118.96$, $56.06,52.34,52.31,29.20,27.04 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $657.0[2 \mathrm{M}+\mathrm{Na}]^{+}$.

dimethyl 2-(2-(azocan-1-yl)benzylidene)malonate (1m): The reaction was carried out according to the general procedure (3 h). The product was obtained as a yellow liquid in 95% yield. ($\mathrm{R}_{\mathrm{f}}=0.37$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2924, 2847, 1735, 1617, 1595, 1462, 1435, 1257, 1211, 1069, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.24$ (comp, 2H), 7.14 (d, $J=8.2,1 \mathrm{H}), 6.89(\operatorname{app~t}, J=7.5,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.35$ $-3.09(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{app} \mathrm{s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 167.22, 164.84, 154.48, $144.31,130.96,129.13,127.16,123.64,121.06,119.85,55.21,52.37,28.13,27.58$, 25.01.; m / z (ESIMS) $332.2[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)benzylidene)malonate (1n): The reaction was carried out according to the general procedure (1 h). The product was obtained as a yellow liquid in 86% yield. ($\mathrm{R}_{\mathrm{f}}=0.48$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 3060, 3024, 2951, 2839, 1735, 1622, 1598, 1488, 1455, 1433, 1380, 1358, 1259, 1215, $1165,1102,1069,936,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.13(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J$ $=4.5,11.3,2 \mathrm{H}), 7.23-7.18(\mathrm{comp}, 3 \mathrm{H}), 7.17-7.10(\mathrm{comp}, 2 \mathrm{H}), 7.03(\mathrm{app} \mathrm{t}, \mathrm{J}=7.5$, $1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=5.8,2 \mathrm{H}), 3.03(\mathrm{t}, J=5.7,2 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $167.00,166.80,164.68,152.34,142.30,134.40,134.28,131.06,129.00,128.93$, $127.23,126.30,125.84,124.71,122.19,118.24,53.11,52.74,52.42,52.39,52.36 . ; \mathrm{m} / \mathrm{z}$ (ESIMS) $231.1[\mathrm{M}+$ $\mathrm{H}]^{+}$.

dimethyl 2-(2-(2-methylpyrrolidin-1-yl)benzylidene)malonate (10): The reaction was carried out according to the general procedure (4 h). The product was obtained as a yellow liquid in 95% yield. ($\mathrm{R}_{\mathrm{f}}=0.28$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2953, 1735, 1620, $1596,1474,1352,1260,1214,1057,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.97(\mathrm{~s}, 1 \mathrm{H})$, $7.31-7.21(\mathrm{comp}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1,1 \mathrm{H}), 6.82(\operatorname{app} \mathrm{t}, J=7.5,1 \mathrm{H}), 3.85(\mathrm{~d}, J=4.4$, 3 H), $3.81-3.73$ (comp, 4H), $3.63-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{app} \mathrm{td}, J=2.7,8.9,1 \mathrm{H}), 2.25-$
$2.13(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=7.2,9.6,11.7,1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64(\operatorname{app} \mathrm{dq}, J=8.0,11.9,1 \mathrm{H}), 1.10(\mathrm{~d}, J$ $=6.0,3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.28,165.17,149.85,144.68,130.56,129.19,125.23,122.92$, $119.52,116.41,55.50,55.33,52.42,52.37,34.25,24.50,19.09 ; \mathrm{m} / \mathrm{z}\left(\right.$ ESIMS $304.2[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 2-(2-(dibenzylamino)benzylidene)malonate (1p): The reaction was carried out according to the general procedure $(1.5 \mathrm{~h})$. The product was obtained as a yellow liquid in 95% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.25\right.$ in $\left.15 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) $3035,2958,2831,1734,1623,1595$, $1489,1452,1435,1363,1262,1214,109,764,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.47(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=4.8,9.8,4 \mathrm{H}), 7.29-7.22(\mathrm{comp}, 7 \mathrm{H}), 7.02$ $(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1,1 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 166.82, 164.53, 150.66, 142.95, 137.31, 130.45, 128.86, 128.52, $128.43,128.23,127.04,125.24,122.63,121.58,57.20,52.34,52.21 . ; \mathrm{m} / \mathrm{z}($ ESIMS $) 438.2[\mathrm{M}+\mathrm{Na}]^{+}$.

dimethyl 2-(2-(benzyl(methyl)amino)benzylidene)malonate (1q): The reaction was carried out according to the general procedure $(1.5 \mathrm{~h})$. The product was obtained as a yellow solid in 96% yield. ($\mathrm{R}_{\mathrm{f}}=0.40$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $93-95{ }^{\circ} \mathrm{C}$; IR (film) $3060,3019,2949,2844,2792,1727,1618,1596,1487,1436,1364,1298,1266,1071$, 947, 768, 737, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.21$ (comp, $7 \mathrm{H}), 7.09-6.93(\mathrm{comp}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 167.01, 164.68, 152.87, 143.03, 137.69, 130.92, 129.02, 128.35, $128.27,127.45,127.17,124.78,122.09,119.23,61.95,52.38,52.36,40.61 ; \mathrm{m} / \mathrm{z}\left(\right.$ ESIMS $340.3[\mathrm{M}+\mathrm{H}]^{+}$.

General procedure for the hydride shift reaction of alkylidenemalonates with gadolinium triflate:

To a stirred solution of the alkylidenemalonate (1 mmol) in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added gadolinium triflate (0.05 mmol) followed by stirring at room temperature. The reaction was monitored by TLC and, after completion, the solvent was evaporated off. The crude product was dissolved in dichloromethane (20 ml) and the resulting solution washed with 25 ml of 1 M NaOH . The aqueous layer was extracted with dichloromethane ($20 \mathrm{ml} \times 3$). The combined organic layers were washed with brine $(25 \mathrm{ml})$ and dried with sodium sulfate. The solvent was evaporated off and the crude product was purified by column chromatography.

dimethyl 1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)-dicarboxylate
(2a): The reaction was carried out according to the general procedure (15 min). The product was obtained as a white solid in 90% yield. ($\mathrm{R}_{\mathrm{f}}=0.30$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $85-86^{\circ} \mathrm{C}$; IR (KBr) 2952, 2844, 1753, 1731, 1606, 1506, 1460, 1436, 1292, 1266, 1244, 1209, 1162, 1103, 1062, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.10($ app t, $J=$ $7.7,1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.62(\operatorname{app} \mathrm{t}, J=7.4,1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.1,1 \mathrm{H}), 3.85-3.76(\mathrm{comp}, 4 \mathrm{H}), 3.59(\mathrm{~d}, J$ $=0.9,3 \mathrm{H}), 3.44-3.23(\mathrm{comp}, 4 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.04(\mathrm{comp}, 2 \mathrm{H}), 2.03-1.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 171.35, 168.94, 143.70, 128.37, 127.43, 118.56, 115.88, 110.84, 62.02, 53.13, 52.55, 52.01, 47.30, 36.79, 27.77, 23.40.; m/z (ESIMS) $290.1[\mathrm{M}+\mathrm{H}]^{+}$.

diethyl 1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)-dicarboxylate (2b): The reaction was carried out according to the general procedure (15 mins). The product was obtained as an oil in 82% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.19\right.$ in $\left.50 \% \mathrm{DCM} / \mathrm{Hex}\right)$; IR (film) 3060,2979 , $2897,2833,1731,1605,1504,1461,1366,1355,1339,1296,1266,1237,1161,1099$, $1058,1042,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.08(\mathrm{app} \mathrm{t}, \mathrm{J}=7.7,1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=$ $7.4,1 \mathrm{H}), 6.60(\mathrm{app} \mathrm{td}, \mathrm{J}=0.9,7.4,1 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 4.33-4.20(\mathrm{comp}, 2 \mathrm{H}), 4.12-3.95(\mathrm{comp}, 2 \mathrm{H})$, $3.79(\mathrm{dd}, \mathrm{J}=6.9,9.0,1 \mathrm{H}), 3.33(\operatorname{app~ddt}, \mathrm{~J}=10.0,25.1,32.2,4 \mathrm{H}), 2.50(\operatorname{app} d t d, \mathrm{~J}=8.7,10.3,12.3,1 \mathrm{H}), 2.24-$ $1.87(\mathrm{comp}, 3 \mathrm{H}), 1.31(\mathrm{dd}, \mathrm{J}=5.1,9.2,3 \mathrm{H}), 1.06(\mathrm{dd}, \mathrm{J}=5.0,9.2,3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.96$, $168.48,143.88,128.44,127.41,118.80,115.82,110.78,62.24,61.38,60.66,53.10,47.43,37.00,27.84,23.54$, 14.02, 13.78; m/z (ESIMS) $318.2[\mathrm{M}+\mathrm{H}]^{+}$.

diisopropyl 1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)-dicarboxylate (2c):
The reaction was carried out according to the general procedure (10 min). The product was obtained as a yellow solid in 87% yield. ($\mathrm{R}_{\mathrm{f}}=0.31$ in $50 \% \mathrm{DCM} / \mathrm{Hex}$); mp: $82-86$ ${ }^{\circ} \mathrm{C}$; IR (film) 2979, 29332, 2868, 2833, 1727, 1605, 1505, 1461, 1385, 1374, 1357, 1266, 1243, 1201, 1182, 1162, 1109, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.07 (app t, J = $7.7,1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.4,1 \mathrm{H}), 6.57(\mathrm{appt} \mathrm{t}, \mathrm{J}=7.1,1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 5.13$ (hept, J = 6.3, 1H), 4.88 (hept, $\mathrm{J}=6.2,1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=6.7,9.2,1 \mathrm{H}), 3.40(\operatorname{app} \mathrm{td}, \mathrm{J}=2.7,8.5,1 \mathrm{H}), 3.26(\mathrm{ddd}, \mathrm{J}=15.7,21.9,22.4$, 3 H), $2.59-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.03(\mathrm{comp}, 2 \mathrm{H}), 2.02-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{dd}, \mathrm{J}=1.6,6.2,6 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=$ $6.3,3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.62, 167.99, 143.90, 128.50, 127.48, 118.71, $115.66,110.66,69.00,68.01,62.42,52.64,47.53,37.20,27.79,23.69,21.60,21.56,21.42,21.31 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $713.1[2 \mathrm{M}+\mathrm{Na}]^{+}$.

di-tert-butyl 1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)-dicarboxylate (2d):
The reaction was carried out according to the general procedure $(0.5 \mathrm{~h})$. The product was obtained as a white solid in 70% yield. ($\mathrm{R}_{\mathrm{f}}=0.60$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $64-$ $65^{\circ} \mathrm{C}$; IR (KBr) 2975, 1724, 1638, 1605, 1504, 1477, 1460, 1392, 1368, 1277, 1250, $1158,849,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.07 (app t, $J=7.7,1 \mathrm{H}$), $7.01(\mathrm{~d}, J=$ $7.3,1 \mathrm{H}), 6.57(\operatorname{app} \mathrm{t}, J=7.3,1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.1,1 \mathrm{H}), 3.74(\mathrm{dd}, J=6.9,9.0,1 \mathrm{H}), 3.39(\operatorname{app} \mathrm{td}, J=2.7,8.4$, 1 H), $3.25(\mathrm{dd}, J=8.9,15.7,2 \mathrm{H}), 3.13(\mathrm{~d}, J=15.5,1 \mathrm{H}), 2.53(\mathrm{app} \mathrm{dt}, J=10.3,20.5,1 \mathrm{H}), 2.21-2.04$ (comp, $2 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.47, 167.75, 144.04, $128.44,127.32,119.25,115.52,110.46,81.75,80.84,62.51,53.77,47.48,37.47,27.91,27.82,27.63,23.76 . ;$ m / z (ESIMS) $396.1[\mathrm{M}+\mathrm{Na}]^{+}$.

dibenzyl 1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)-dicarboxylate (2e): The reaction was carried out according to the general procedure (2 h). The product was obtained as colorless oil in 57% yield. ($\mathrm{R}_{\mathrm{f}}=0.70$ in $50 \% \mathrm{DCM} / \mathrm{Hex}$); IR (film) 3064, 3033, 2958, 2848, 1732, 1605, 1577, 1500, 1459, 1372, 1356, 1339, 1325, 1265, 1227, 1161, 1120, 1099, 1055, 1041, 990, 909, 745, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.41 - 7.28 (comp, 5H), 7.27 - 7.18 (comp, 3H), 7.10 (app t, J = 7.7, 1H), 7.01 (ddd, J = 2.9, 4.9, 7.2, 3H), 6.61 (app td, J = 0.9, 7.4, 1H), $6.45(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=12.4,1 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=12.5,1 \mathrm{H}), 3.81$ (dd, J = 6.9, 8.9, 1H), $3.44(\mathrm{~d}, \mathrm{~J}=15.9,1 \mathrm{H}), 3.31(\mathrm{app} \mathrm{dt}, \mathrm{J}=9.7,22.9,2 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=8.3,15.8,1 \mathrm{H}), 2.50-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.80(\mathrm{comp}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.73, 168.38, $143.88,135.50,135.39,128.59,128.57,128.34,128.32,128.04,127.92,127.83,127.54,118.77,116.06$, $111.05,67.21,66.64,62.29,53.57,47.35,36.95,27.83,23.44 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $464.3[\mathrm{M}+\mathrm{Na}]^{+}$.

ethyl 4-acetyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4-carboxylate (2f): The reaction was carried out according to the general procedure (5 min). The product was obtained as a pink solid in 55% yield as a mixture of diastereomers ($\mathrm{dr}=36: 64$), determined by integration of one set of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals (δ minor 1.31 ppm , δ major 1.17 $\mathrm{ppm}) .\left(\mathrm{R}_{\mathrm{f}}=0.21\right.$ in $50 \% \mathrm{DCM} /$ Hex $)$; IR (film) 2977, 2864, 1738, 1712, 1604, 1577, $1505,1478,1460,1355,1337,1297,1260,1203,1161,1101,1042,745,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereoisomer) $7.10(\mathrm{dd}, \mathrm{J}=8.5,16.7,1 \mathrm{H}), 7.05-7.00(\mathrm{comp}, 1 \mathrm{H}), 6.65-6.57(\mathrm{comp}, 1 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}$ $=8.0,1 \mathrm{H}), 4.14-4.00(\mathrm{comp}, 2 \mathrm{H}), 3.70(\mathrm{dd}, \mathrm{J}=6.7,9.1,1 \mathrm{H}), 3.44-3.23(\mathrm{comp}, 3 \mathrm{H}), 3.10(\mathrm{~d}, \mathrm{~J}=15.5,1 \mathrm{H})$, $2.43-2.24$ (comp, 4H), $2.20-1.87$ (comp, 3H), 1.07 (app t, J = 7.1, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 204.74, $203.51,171.56,169.77,143.94,143.74,128.39,128.36,127.86,127.33,118.95,117.59,115.78,115.76,110.98$, $110.71,62.34,61.86,61.36,60.81,59.07,57.10,47.33,47.01,36.42,36.05,28.04,27.68,27.64,27.56,23.52$, 23.46, 13.98, 13.74; m/z (ESIMS) $288.2[\mathrm{M}+\mathrm{H}]^{+}$.

1,1'-(1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4,4-diyl)diethanone (2g): The reaction was carried out according to the general procedure (3 h). The product was obtained as an oil in 76% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.31\right.$ in $\left.15 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) 2083, 1715, $1689,1643,1604,1503,1442,1352,1184 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.12 (app t, $J=7.7,1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.65(\mathrm{app} \mathrm{t}, J=7.4,1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.1,1 \mathrm{H}), 3.64$ (app dt, $J=7.7,15.2,1 \mathrm{H}$), $3.36-3.23$ (comp, 3H), 3.15 (d, $J=16.5,1 \mathrm{H}$), $2.27-2.16$ (comp, 4H), $2.06-1.88$ (comp, 6H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 207.51, 205.57, 144.06, 128.57, 127.86, 118.09, 116.24, 111.25, 63.81, 61.19, 46.77, 34.52, 29.09, 27.56, 27.43, 23.11.; m/z (ESIMS) $258.2[\mathrm{M}+\mathrm{H}]^{+}$.

(1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4,4-diyl)bis(phenylmethanone) (2h): The reaction was carried out according to the general procedure (3 h). The product was obtained as yellow oil in 92% yield. ($\mathrm{R}_{\mathrm{f}}=0.44$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 3064, 2961, 2848, 1680, 1658, 1604, 1578, 1504, 1460, 1446, 1353, 1337, 1297, 1230, 1203, 1180, $1160,941,909,732,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.94-7.89$ (comp, 2H), 7.67 - 7.62 (comp, 2H), $7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.34(\mathrm{comp}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.5,2 \mathrm{H}), 7.11(\mathrm{t}, J=7.7,1 \mathrm{H}), 6.81$ $(\mathrm{d}, J=7.3,1 \mathrm{H}), 6.61-6.50(\mathrm{comp}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=6.3,9.7,1 \mathrm{H}), 3.49(\mathrm{appq}, J=16.0,2 \mathrm{H}), 3.42-3.33$ (comp, 2H), 2.19 (app dq, $J=9.9,14.0,1 \mathrm{H}), 1.99($ app dt, $J=6.1,10.9,1 \mathrm{H}), 1.93-1.83(\mathrm{comp}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $198.80,197.52,144.68,138.01,137.05,132.85,132.26,129.21,128.84,128.56,128.23$, 128.16, 127.51, 119.51, 116.35, 111.21, 64.38, 63.26, 47.45, 38.73, 28.78, 23.77.; m/z (ESIMS) $404.2[\mathrm{M}+$ $\mathrm{Na}]^{+}$.

dimethyl 2,3,4,4a-tetrahydro-1H-pyrido[1,2-a]quinoline-5,5(6H)-dicarboxylate (2j): The reaction was carried out according to the general procedure (3 h). The product was obtained as an oil in 91% yield. ($\mathrm{R}_{\mathrm{f}}=0.76$ in $50 \% \mathrm{DCM} / \mathrm{Hex}$); IR (film) 3072, 2996, 2927, 2855, 1735, 1602, 1502, 1456, 1352, 1209, 1144, 1025, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.09(\mathrm{app} \mathrm{t}, \mathrm{J}=7.9,1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.2,1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.3,1 \mathrm{H}), 6.66$ (app t, J = 7.3, 1H), $4.07-3.97(\mathrm{comp}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=15.8,1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=16.0$, $1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=13.1,1 \mathrm{H}), 1.81-1.56(\mathrm{comp}, 2 \mathrm{H}), 1.55-1.41(\mathrm{comp}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.64,169.34,143.54,128.83,127.39,120.47,116.91,112.09,59.75,56.79,52.62,52.45$, 48.43, 29.79, 25.74, 25.23, 22.47; m/z (ESIMS) $628.9[2 \mathrm{M}+\mathrm{Na}]^{+}$.

dimethyl 1,2,4,4a-tetrahydro-[1,4]oxazino[4,3-a]quinoline-5,5(6H)-dicarboxylate ($2 \mathbf{k}$): The reaction was carried out according to the general procedure ($12 \mathrm{~h}, 40^{\circ} \mathrm{C}$). The product was obtained as a solid in 78% yield. ($\mathrm{R}_{\mathrm{f}}=0.25$ in $20 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $104-$ $106{ }^{\circ} \mathrm{C}$; IR (film) 2954, 2854, 1736, 1604, 1496, 1436, 1339, 1256, 1224, 1175, 1123 , 1068, 1036, 955, 753, $665 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.16 - 7.09 (m, 1H), 7.03 (d, J = 6.9, 1H), $6.79-6.71$ (comp, 2H), $3.99-3.80$ (comp, 3H), $3.77-3.62$ (comp, 9H), 3.18 (ddd, J = 8.8, $12.3,20.0,3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.80, 168.81, 144.50, 128.66, 127.69, 121.69, 118.67, 112.66, $67.51,65.97,58.54,55.47,52.94,52.63,48.07,33.33 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $632.8[2 \mathrm{M}+\mathrm{Na}]^{+}$.

dimethyl 6a,7,8,9,10,11-hexahydroazepino[1,2-a]quinoline-6,6(5H)-dicarboxylate (21): The reaction was carried out according to the general procedure (20 mins). The product was obtained as a white solid in 82% yield. ($\mathrm{R}_{\mathrm{f}}=0.23$ in $50 \% \mathrm{DCM} / \mathrm{Hex}$); mp: $111-114^{\circ} \mathrm{C}$; IR (film) 2949, 2855, 1739, 1603, 1497, 1457, 1435, 1341, 1236, 1162 , 1139, 1070, 1030, 999, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.06(\mathrm{app} \mathrm{t}, \mathrm{J}=7.2,2 \mathrm{H}$), $6.65-6.53(\mathrm{comp}, 2 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=7.8,1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=1.4,3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=1.4,3 \mathrm{H})$, $3.43(\mathrm{~d}, \mathrm{~J}=17.0,1 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=17.0,1 \mathrm{H}), 3.26-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.37(\mathrm{comp}, 7 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.65, 169.47, 142.36, 128.98, 127.28, 116.90, 115.30, 109.72, 60.26, 55.37, $52.53,49.69,30.59,28.47,27.22,25.98,25.61,25.45 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $318.1[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 7,8,9,10,11,12-hexahydro-5H-azocino[1,2-a]quinoline-6,6(6aH)dicarboxylate (2m): The reaction was carried out according to the general procedure (5 $\mathrm{min})$. The product was obtained as an oil in 81% yield. ($\mathrm{R}_{\mathrm{f}}=0.34$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 3023, 2924, 2849, 1733, 1603, 1574, 1500, 1450, 1434, 1350, 1236, 1148, $1061,1020,947,908,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.07(\mathrm{dd}, J=8.1,17.4$, $2 \mathrm{H}), 6.69-6.57(\mathrm{comp}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=3.9,9.8,1 \mathrm{H}), 3.88-3.73(\mathrm{comp}, 4 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.44-3.24(\mathrm{comp}, 3 \mathrm{H}), 1.95-1.29(\mathrm{comp}, 10 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.15, 169.75, 142.81, $129.28,127.34,117.87,115.77,111.56,60.38,55.79,54.44,52.84,52.65,30.65,28.57,27.67,27.63,27.38$, 25.96.; m/z (ESIMS) $332.2[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 11b,13-dihydro-6H-isoquinolino[2,1-a]quinoline-12,12(7H)-dicarboxylate (2n): The reaction was carried out according to the general procedure (5 mins). The product was obtained as a yellow solid in 87% yield. ($\mathrm{R}_{\mathrm{f}}=0.30$ in $60 \% \mathrm{DCM} / \mathrm{Hex}$); mp: $124-127^{\circ} \mathrm{C}$; IR (KBr) 3048, 3019, 2951, 2827, 1735, 1602, 1494, 1456, 1433, 1382, $1356,1250,1070,960,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.23-7.10(\mathrm{comp}, 6 \mathrm{H})$, $6.82(\mathrm{~d}, \mathrm{~J}=8.1,1 \mathrm{H}), 6.78(\mathrm{app} \mathrm{t}, \mathrm{J}=7.4,1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.76-$ $3.69(\mathrm{comp}, 4 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=11.9,3 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=16.5,1 \mathrm{H}), 3.34-3.18(\mathrm{comp}, 2 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 170.74, 169.56, 145.27, 136.81, 134.83, 128.79, 128.52, 126.88, 126.79, 125.83, $125.60,121.38,118.08,112.01,61.23,59.39,52.79,52.41,43.75,34.04,28.08 ; \mathrm{m} / \mathrm{z}\left(\right.$ ESIMS $352.2[\mathrm{M}+\mathrm{H}]^{+}$.

dimethyl 3a-methyl-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-4,4(5H)dicarboxylate (20): The reaction was carried out according to the general procedure (5 $\mathrm{min})$. The product was obtained as a liquid in 82% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.37\right.$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$; IR (film) 2950, 2132, 1732, 1646, 1606, 1499, 1459, 1359, 1272, 1237, 1161, 1060, 745 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.12(\mathrm{app} \mathrm{t}, J=7.7,1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3,1 \mathrm{H}), 6.61$ $(\mathrm{td}, J=1.0,7.3,1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.9,1 \mathrm{H}), 3.86-3.77(\mathrm{comp}, 3 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{comp}$, $4 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=17.2,1 \mathrm{H}), 2.65(\mathrm{app} \mathrm{td}, J=8.8,12.0,1 \mathrm{H}), 2.21-2.04(\mathrm{comp}, 2 \mathrm{H}), 1.95$ (ddd, $J=1.5,7.3,12.4,1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.01,169.11,142.81,128.58,127.52$, $116.52,115.14,111.51,62.52,56.15,52.33,52.09,47.74,35.76,32.65,24.19,22.21 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 304.2[\mathrm{M}+$ $\mathrm{H}]^{+}$.

dimethyl 1-benzyl-2-phenyl-1,2-dihydroquinoline-3,3(4H)-dicarboxylate (2p): The reaction was carried out according to the general procedure ($24 \mathrm{~h}, 40^{\circ} \mathrm{C}$). The product was obtained as a white solid in 70% yield. ($\mathrm{R}_{\mathrm{f}}=0.25$ in $15 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $149-$ $151^{\circ} \mathrm{C}$; IR (KBr) 2941, 2365, 1760, 1719, 1605, 1498, 1453, 1265, 1229, 1203, 1179, $1170,1057,955,748,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.28$ (comp, 7H), 7.25 (ddd, $J=3.8,7.5,15.0,1 \mathrm{H}), 7.20(\mathrm{app} \mathrm{dt}, J=3.8,7.6,2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4,1 \mathrm{H})$, $7.07(\mathrm{t}, J=7.8,1 \mathrm{H}), 6.71(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.2,1 \mathrm{H}), 5.36(\mathrm{~d}, J=1.5,1 \mathrm{H}), 4.53(\mathrm{~d}, J=17.2,1 \mathrm{H}), 4.37$ $(\mathrm{d}, J=17.3,1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.34(\mathrm{comp}, 2 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.57, $168.65,144.30,139.74,138.42,129.16,128.35,128.31,128.22,128.00,127.95,126.76,126.70,117.75$, $116.55,111.02,64.71,57.47,55.00,52.91,52.50,28.59 . ; \mathrm{m} / \mathrm{z}($ ESIMS $) 416.2[\mathrm{M}+\mathrm{H}]^{+}$.

Product 2p was further characterized by X-ray crystallography:

The requisite CIF file has been submitted to the journal.

dimethyl 1-methyl-2-phenyl-1,2-dihydroquinoline-3,3(4H)-dicarboxylate (2q): The reaction was carried out according to the general procedure (2 h). The product was obtained as a white solid in 94% yield. ($\mathrm{R}_{\mathrm{f}}=0.74$ in DCM); mp: $126-129^{\circ} \mathrm{C}$; IR (film) 3054, 3031, 2952, 2827, 2792, 1740, 1605, 1506, 1453, 1433, 1342, 1292, 1261, 1233, $1176,1147,1060,1001,748,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.27 (dd, J = 5.9, $9.3,3 \mathrm{H}), 7.23-7.13(\mathrm{comp}, 3 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.1,1 \mathrm{H}), 6.71-6.59(\mathrm{comp}, 2 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=1.1,1 \mathrm{H}), 3.62(\mathrm{~s}$, 6 H), $3.37-3.21$ (comp, 2H), 2.94 (s, 3H).; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 169.63, 168.74, 144.13, 139.50, $128.75,128.20,128.08,128.01,127.50,117.12,115.71,109.25,65.58,57.00,52.78,52.36,37.42,28.62 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $700.8[2 \mathrm{M}+\mathrm{Na}]^{+}$.

Procedure for the catalytic enantioselective 1,5-hydride shift reaction:

To a flask containing $\operatorname{Mg}(\mathrm{OTf})_{2}\left(22 \mathrm{mg}, 69 \mathrm{mmol}, 0.2\right.$ equiv.) and ($1 \mathrm{~S}, 2 R$)-dimethyl-inda-box ${ }^{5}(27 \mathrm{mg}, 76$ mmol, 0.22 equiv.) was added 3.5 ml of anhydrous CHCl_{3} and the mixture was stirred for 2 h . Subsequently, malonate 1a ($100 \mathrm{mg}, 0.346 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature until the complete consumption of malonate 1a as judged by TLC analysis. After completion of the reaction (12 h) the reaction mixture was adsorbed onto silica gel and purified by column chromatography using EtOAc/hexanes (1:9) as eluent to afford analytically pure $2 \mathbf{a}$ as a white solid in 74% yield. The IR, Mass, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data were in agreement with that of the racemic compound (2a). $[\alpha]_{\mathrm{D}}-32.5^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}, 30 \%$ ee); Chiral HPLC condition: Daicel Chiralpak OJ-H, hexanes $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=15.5 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=17.1 \mathrm{~min}$ (minor).

References:

(1) Nijhuis, W. H. N.; Verboom, W.; Abuelfadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 199-209.
(2) Verboom, W.; Reinhoudt, D. N.; Visser, R.; Harkema, S. J. Org. Chem. 1984, 49, 269 - 276.
(3) D'yachenko, E. V.; Glukhareva, T. V.; Nikolaenko, E. F.; Tkachev, A. V.; Morzherin, Yu. Yu. Russ. Chem. Bull. 2004, 53, 1240 - 1247.
(4) Nijhuis, W. H. N.; Leus, G. R. B.; Egberink, R. J. M.; Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1989, 108, 172-178.
(5) Kurosu, M.; Porter, J. R.; Foley, M. A. Tetrahedron Lett. 2004, 45, 145 - 148.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{3 m}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $3 \mathbf{p}$:

1	1	1	1	1	1		1		1	,	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	${\left.\underset{f}{1(\mathrm{pem})}{ }^{110}\right)}^{2}$	100	90	80	70	60	50	40	${ }^{30}$	20	${ }^{10}$	0

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $3 \mathbf{q}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 b}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 c}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 1d:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 e}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 f}:(\mathrm{dr}=47: 53)$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 g}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 h}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 j}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 k}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 1}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}^{130}-\mathrm{NMR}^{180}$ of $\mathrm{Im}^{100}{ }^{150}{ }^{15}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 n}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 0}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 p}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 q}:$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{130} \mathrm{C}-\mathrm{NMR}^{180}$ of ${ }^{180}{ }^{180}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 b}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of ${ }^{15 d}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 2e:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $2 \mathrm{f}:(\mathrm{dr}=36: 64)$

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR of $\mathbf{2 g}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 h}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 n}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 o}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 p}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 q}$:

HPLC profile of 2a

