Potent Ligands for Prokaryotic UDP-Galactopyranose Mutase That Exploit an Enzyme Subsite

Emily C. Dykhuizen ${ }^{1}$ and Laura L. Kiessling ${ }^{1,2}$
Departments of Chemistry ${ }^{1}$ and Biochemistry ${ }^{2}$, University of Wisconsin-Madison, Madison, Wisconsin, 53706

Kiessling@chem.wisc.edu

Supporting Information

Contents Page
General synthetic procedures S2
Synthesis and characterization of UDP-fluorescein conjugates S2-S15
$\mathbf{3 a - 3 e}$ and 4a-4bSynthesis and characterization of compounds 5 and $\mathbf{6}$S15-S16
Synthesis and characterization of thiazole-fluorescein conjugate $\mathbf{1 0}$ S16-S17
UGM binding data S18-S24
UGM activity data S25-S27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ specta S28-S41

General Synthetic Procedures

All reagents were purchased from Sigma-Aldrich Co., except for octanolamine and decanolamine, which were purchased from TCI America. All compounds were used as received. Methanol (MeOH) was distilled from magnesium, methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and diisopropylethylamine (DIEA) were distilled from calcium hydride, and dimethyl formamide (DMF) was used as biotech grade (Sigma-Aldrich Co.).

Flash chromatography was performed using silica gel 60, 230-450 mesh (Sorbent Technologies). Analytical thin-layer chromatography (TLC) was carried out on EM Science TLC plates precoated with silica gel 60 F254 ($250-\mu$ m layer thickness). Visualization of TLC was accomplished using a UV lamp.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR specta were obtained at 300 or 500 MHz and 75 or 125 MHz , respectively, using a or Varian MercuryPlus 300 or a Varian UNITY 500 spectrometer. Chemical shifts are reported relative to residual solvent signals $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}: \delta 7.27,{ }^{13} \mathrm{C}$: $\delta 77.23 ;\left(\mathrm{CD}_{3} \mathrm{OD}\right):{ }^{1} \mathrm{H}: \delta 3.31,{ }^{13} \mathrm{C}: \delta 49.15$; (DMF- $\left.d_{7}\right):{ }^{1} \mathrm{H}: \delta 2.92,{ }^{13} \mathrm{C}: \delta 34.89 ;\left(\mathrm{D}_{2} \mathrm{O}\right)$: ${ }^{1} \mathrm{H}: \delta 4.79 .{ }^{1} \mathrm{H}$ NMR data are assumed to be first order with apparent doublets and triplets reported as d and t, respectively. Multiplets are reported as m and resonances that appear broad are designated as br s.

High-resolution electrospray ionization mass spectra (HRESI-MS) were obtained on a Micromass LCT. LC-MS (ESI) were obtained using a Shimadzu LCMS-2010 (Columbia, MD) equipped with two pumps (LC-10Advp), controller (SCL-10Avp), autoinjector (SIL-10Advp), UV diode array detector (SPD- M10Avp), and single quadrupole analyzer (by electrospray ionization, ESI). The LC-MS is interfaced with a PC running the Shimadzu LCMS solution software package (Version 2.04 Su2-H2). A Supelco (Bellefonte, PA) $15 \mathrm{~cm} \times 2.1 \mathrm{~mm}$ C-18 wide pore reverse phase column was used for all LC-MS analyses. Standard reverse phase HPLC conditions were used as follows: flow rate $=200 \mathrm{~mL} / \mathrm{min}$; mobile phase $\mathrm{A}=0.1 \%$ formic acid; mobile phase $\mathrm{B}=0.1 \%$ formic acid in acetonitrile, $50-95 \%$ B over 7 min . UV spectra were recorded using an HP-8452 UV-Vis spectrometer running UV Visible Chemstation software. High performance liquid chromatography (HPLC) was performed on a C18 reverse phase column using water (A) and acetonitrile (B) (both buffered with 0.02% trifluoroacetic acid) as the elution solvents at $10 \mathrm{~mL} / \mathrm{min}$. Compound elution was detected by UV absorbance at range $200-600 \mathrm{~nm}$.

Cation-exchange resin Dowex 50WX8-200 (H+ form, strongly acidic) was purchased from Aldrich and converted to the appropriate salt form prior to use. Uridine 5'monophosphate (5^{\prime}-UMP) disodium salt was purchased from Sigma and converted to the triethylammonium salt (1.4 eq by ${ }^{1} \mathrm{H}$ NMR) prior to coupling reactions by stirring with Dowex 50WX8-200 ($\mathrm{NEt}_{3} \mathrm{H}^{+}$form) overnight. The resin was removed by filtration and washed with $\mathrm{H}_{2} \mathrm{O}$. Combined filtrates were lyophilized to produce the UMP-Et NH^{+}salt as a fluffy white solid.

General Procedure I: Formation of the trifluoracetamide.

A solution of amino alcohol (1.0 eq) and triethylamine (2.5 eq) in MeOH was cooled to 0 ${ }^{\circ} \mathrm{C}$. Trifluoroacetic anhydride (1.4 eq) was added dropwise under an argon atmosphere and the reaction was allowed to warm to room-temperature. The solution was stirred 4 h , concentrated, and the product was purified by silica gel chromatography to afford the trifluoroacetamide.

2-Trifluoroacetamido-1-ethanol: Following general procedure I, ethanolamine (2.0 g , 32.74 mmol) was combined with triethylamine ($11.4 \mathrm{~mL}, 81.86 \mathrm{mmol}$) and trifluoroacetic anhydride ($6.47 \mathrm{~mL}, 45.84 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$. Purification by silica gel chromatography ($2: 3$ hexanes/EtOAc) yielded 4.86 g (94\%) of 2-trifluoroacetamido1 -ethanol as a white solid. ${ }^{1}$

4-Trifluoroacetamido-1-butanol: Following general procedure I, butanolamine (2.0 g , 22.44 mmol) was combined with triethylamine ($7.82 \mathrm{~mL}, 56.09 \mathrm{mmol}$) and trifluoroacetic anhydride ($4.44 \mathrm{~mL}, 24.10 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$. Purification by silica gel chromatography ($2: 3$ hexanes/EtOAc) yielded $4.03 \mathrm{~g}(97 \%)$ of 4-trifluoroacetamido-1-butanol as a pale yellow oil. ${ }^{1}$

6-Trifluoroacetamido-1-hexanol: Following general procedure I, hexanolamine (2.0 g , 17.06 mmol) was combined with triethylamine ($5.95 \mathrm{~mL}, 42.67 \mathrm{mmol}$) and trifluoroacetic anhydride ($3.37 \mathrm{~mL}, 23.89 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$. Purification by silica gel chromatography ($2: 3$ hexanes/EtOAc) yielded 3.35 g (92%) of 6-trifluoroacetamido-1-hexanol as a white solid. ${ }^{2}$

8-Trifluoroacetamido-1-octanol: Following general procedure I, octanolamine (2.5 g , 17.21 mmol) was combined with triethylamine ($6.0 \mathrm{~mL}, 43.04 \mathrm{mmol}$) and trifluoroacetic anhydride ($3.4 \mathrm{~mL}, 24.10 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$. Purification by silica gel chromatography ($2: 3$ hexanes/EtOAc) yielded 4.09 g (98\%) of 8-trifluoroacetamido-1octanol as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.61(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.34(\mathrm{t}, 2 \mathrm{H}, J$ $=7.2), 1.63(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 158.61(\mathrm{q}, J=81.5 \mathrm{~Hz})$, 117.58 ($\mathrm{q}, ~ J=284.6 \mathrm{~Hz}$), 63.02, 40.79, 33.88, 30.51, 30.48, 30.30, 29.85, 27.79, 28.88; ESI-MS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 264.1197$ found 264.1186.

10-Trifluoroacetamido-1-decanol: Following general procedure I, decanolamine (0.50 g , 2.89 mmol) was combined with triethylamine ($1.0 \mathrm{~mL}, 7.21 \mathrm{mmol}$) and trifluoroacetic anhydride ($0.57 \mathrm{~mL}, 4.04 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$. Purification by silica gel chromatography ($2: 3$ hexanes/EtOAc) yielded $0.722 \mathrm{~g}(99 \%)$ of 10-trifluoroacetamido-1decanol as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.55(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.28(\mathrm{t}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 82.99,40.74,33.83$, $30.62,30.54,30.25,29.78,27.77,26.92$; ESI-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 292.1500 found 292.1507 .

[^0]

8-Trifluoroacetamido-3,6-dioxa-1-octanol: 8-azido-3,6-dioxa-1-octanol ${ }^{3}$ ($0.7 \mathrm{~g}, 4.0$ mmol) was synthesized from triethylene glycol following the reported procedure. ${ }^{4}$ The azide was combined with $\mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$ in $\mathrm{MeOH}(8.0 \mathrm{~mL})$ and stirred 12 h under $\mathrm{H}_{2}(1$ $\mathrm{atm})$. The suspension was filtered over celite, and the filtrate was concentrated to afford the amine ($0.590 \mathrm{~g}, 4.0 \mathrm{mmol}$) in quantitative yields. ${ }^{5}$ Following general procedure I, 2-[2-(2-aminoethoxy)ethoxy]ethanol ($0.590 \mathrm{~g}, 3.95 \mathrm{mmol}$) was combined with triethylamine ($1.378 \mathrm{~mL}, 9.89 \mathrm{mmol}$) and trifluoroacetic anhydride $(0.782 \mathrm{~mL}, 5.54$ mmol) in MeOH (5 mL). Purification by silica gel chromatography (EtOAc) yielded $0.576 \mathrm{~g}(60 \%)$ of 8 -trifluoroacetamido-3,6-dioxa-1-octanol as a white solid. ${ }^{1} \mathrm{H}(300$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 7.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 10 \mathrm{H}), 3.55(\mathrm{t}, 2 \mathrm{H}, J=4.5$ $\mathrm{Hz}), 3.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 157.6(\mathrm{q}, \mathrm{J}=36.6 \mathrm{~Hz}), 116.1(\mathrm{q}, \mathrm{J}=286.1$ $\mathrm{Hz}), 72.68,70.35,70.24,68.90,61.52,39.84$; ESI-MS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$: 244.0797 found 244.0795 .

11-Trifluoroacetamido-3,6,9-trioxa-1-undecanol: 11-azido-3,6,9-trioxa-1-undecane (0.6 $\mathrm{g}, 2.7 \mathrm{mmol}$) was synthesized from tetraethylene glycol following the reported procedure. ${ }^{4}$ The azide was combined with $\mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$ in $\mathrm{MeOH}(7.0 \mathrm{~mL})$ and stirred 12 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. The suspension was filtered over celite and the filtrate was concentrated to afford the amine ($0.520 \mathrm{~g}, 2.7 \mathrm{mmol}$) in quantitative yields. ${ }^{6}\{$ Xie, 2005 \#12\} Following general procedure I, 2-[2-(2-[2-aminoethoxy]ethoxy)ethoxy]ethanol $(0.50 \mathrm{~g}, 2.59 \mathrm{mmol})$ was combined with triethylamine $(0.902 \mathrm{~mL}, 6.48 \mathrm{mmol})$ and trifluoroacetic anhydride ($0.51 \mathrm{~mL}, 3.62 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$. Purification by silica gel chromatography (EtOAc) yielded $0.343 \mathrm{~g}(46 \%)$ of 11-trifluoroacetamido-3,6,9-trioxa-1-undecanol as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.69(\mathrm{t}, 2 \mathrm{H}, J=3.9 \mathrm{~Hz})$, $3.64(\mathrm{~m}, 12 \mathrm{H}), 3.57(\mathrm{t}, 2 \mathrm{H}, J=3.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 157.7(\mathrm{q}, \mathrm{J}=37.1 \mathrm{~Hz})$, 118.1 (q, J = 285.8 Hz), 72.56. 70.78, 70.46, 70.15, 69.82, 69.56, 61.34, 39.95; ESI-MS calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}: 288.1059$ found 288.1060.

General Procedure II: Coupling to dibenzyl phosphate.

Dibenzyl phosphate (1.5 eq) was dissolved in DMF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Oxalyl chloride (3.0 eq) was added dropwise under an argon atmosphere. The solution was allowed to warm to room-temperature, and was stirred for 1 h . The solvent was removed in vacuo and the remaining material was azeotroped with toluene. The resulting viscous liquid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added dropwise to a flask containing the trifluoroacetamide and $4 \AA$ molecular sieves (ca. 5-10) in pyridine at $0^{\circ} \mathrm{C}$. The solution was stirred under an argon atmosphere for 1 h at $0^{\circ} \mathrm{C}$ and then for 3 h at room-temperature. The solvent was removed in vacuo and the product was purified by silica gel chromatography $(1: 1 \rightarrow 1: 2$ Hexane/EtOAc $)$ to afford the phosphotriester.

[^1]

1-O-(Dibenzyl phosphoryloxy)-2-trifluoroacetamido-1-ethanol: Following general procedure II, dibenzyl phosphate ($1.79 \mathrm{~g}, 6.45 \mathrm{mmol}$) was dissolved in DMF ($10 \mu \mathrm{~L}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and combined with oxalyl chloride ($1.13 \mathrm{~mL}, 12.9 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 2-trifluoroacetamido-1-ethanol ($675 \mathrm{mg}, 4.3 \mathrm{mmol}$) in pyridine (10 mL) and $4 \AA$ molecular sieves to yield $621 \mathrm{mg}(35 \%)$ of the product as an off-white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.35(\mathrm{~m}, 10 \mathrm{H}), 5.03\left(\mathrm{ABX}\right.$ system, $\left.4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7 \mathrm{~Hz}\right), 4.04$ (pentet, $2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.50(\mathrm{q}, 2 \mathrm{H}, J=5.1) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 135.45,129.00$, 128.12, 70.02, 65.7, 40.49. ESI-MS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 418.1031$ found 418.1019 .

1-O-(Dibenzyl phosphoryloxy)-4-trifluoroacetamido-1-butanol: Following general procedure II, dibenzyl phosphate ($1.79 \mathrm{~g}, 6.45 \mathrm{mmol}$) was dissolved in DMF $(10 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and combined with oxalyl chloride ($1.13 \mathrm{~mL}, 12.9 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 4-trifluoroacetamido-1-butanol ($796 \mathrm{mg}, 4.3 \mathrm{mmol}$) in pyridine (10 mL) and $4 \AA$ molecular sieves to yield $777 \mathrm{mg}(41 \%)$ of product as a clear oil. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~m}$, $10 \mathrm{H}), 5.01\left(\mathrm{ABX}\right.$ system, $\left.4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7 \mathrm{~Hz}\right), 3.97(\mathrm{q}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, $3.28(\mathrm{q}, 2 \mathrm{H}, J=6), 1.70(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 135.90,128.84,128.16,116.54$ (q, $J=284.6 \mathrm{~Hz}$), 69.60, 67.42, 39.97, 27.49, 25.08; ESI-MS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}$ [M $+\mathrm{Na}]^{+}: 468.1164$ found 468.1160 .

1-O-(Dibenzyl phosphoryloxy)-6-trifluoroacetamido-1-hexanol: Following general procedure II, dibenzyl phosphate ($1.79 \mathrm{~g}, 6.45 \mathrm{mmol}$) was dissolved in DMF $(10 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and combined with oxalyl chloride ($1.13 \mathrm{~mL}, 12.9 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 6-trifluoroacetamido-1-hexanol ($917 \mathrm{mg}, 4.3 \mathrm{mmol}$) in pyridine (10 mL) and $4 \AA$ molecular sieves to yield $884 \mathrm{mg}(43 \%)$ of product as a clear oil. ${ }^{2}$

1-O-(Dibenzyl phosphoryloxy)-8-trifluoroacetamido-1-octanol: Following general procedure II, dibenzyl phosphate ($1.73 \mathrm{~g}, 6.22 \mathrm{mmol}$) was dissolved in DMF $(10 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and combined with oxalyl chloride ($1.08 \mathrm{~mL}, 12.4 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 8-trifluoroacetamido-1-octanol ($1.00 \mathrm{~g}, 4.15 \mathrm{mmol}$) in pyridine (10 mL) and $4 \AA$ molecular sieves to yield $966 \mathrm{mg}(46 \%)$ of product as a clear oil. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~m}$, $10 \mathrm{H}), 5.00\left(\mathrm{ABX}\right.$ system, $\left.4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7 \mathrm{~Hz}\right), 3.96(\mathrm{q}, 2 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 3.31(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta$
135.92, 128.63, 127.96, 69.33, 67.98, 39.99, 30.09, 28.91, 26.58, 25.29; ESI-MS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 524.1790$ found 524.1802.

1-O-(Dibenzyl phosphoryloxy)-10-trifluoroacetamido-1-decanol: Following general procedure II, dibenzyl phosphate ($775 \mathrm{mg}, 2.78 \mathrm{mmol}$) was dissolved in DMF ($10 \mu \mathrm{~L}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and combined with oxalyl chloride ($0.50 \mathrm{~mL}, 5.57 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 10-trifluoroacetamido-1-decanol ($500 \mathrm{mg}, 1.86 \mathrm{mmol}$) in pyridine (5 mL) and $4 \AA$ molecular sieves to yield $578 \mathrm{mg}(59 \%)$ of product as a clear oil. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~m}$, $10 \mathrm{H}), 5.01\left(\mathrm{ABX}\right.$ system, $\left.4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7 \mathrm{~Hz}\right), 3.97(\mathrm{q}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, $3.33(\mathrm{q}, 2 \mathrm{H}, J=6.6), 1.70(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 135.99$, 128.62, 127.98, 69.33, 66.18, 40.09, 30.25, 29.44, 29.30, 29.19, 29.02, 28.97, 26.10, 25.37; ESI-MS calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 552.2103$ found 552.2094.

1-O-(Dibenzyl phosphoryloxy)-8-trifluoroacetamido-3,6-dioxa-1-octanol: Following general procedure II, dibenzyl phosphate ($981 \mathrm{mg}, 3.53 \mathrm{mmol}$) was dissolved in DMF (20 $\mu \mathrm{L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and combined with oxalyl chloride ($0.62 \mathrm{~mL}, 7.05 \mathrm{mmol}$). After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 8-trifluoroacetamido-3,6-dioxa-1-octanol ($500 \mathrm{mg}, 2.35 \mathrm{mmol}$) in pyridine (5 mL) and $4 \AA$ molecular sieves to yield $623 \mathrm{mg}(53 \%)$ of product as a clear oil. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.34(\mathrm{~m}, 10 \mathrm{H}), 5.04\left(\mathrm{ABX}\right.$ system, $\left.4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7 \mathrm{~Hz}\right), 4.12-4.09$ $(\mathrm{m}, 2 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}), 3.61-3.54(\mathrm{~m}, 6 \mathrm{H}), 3.47(\mathrm{q}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}(75$ $\left.\mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 157.5(\mathrm{q}, \mathrm{J}=36.5 \mathrm{~Hz}), 135.9(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 135.8,128.7,128.0,116.0$ (q, J = 286.4 Hz), 70.7, 70.4, $70.0(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 69.4(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}), 68.8,66.9(\mathrm{~d}, \mathrm{~J}=$ 5.9 Hz), 39.94; ESI-MS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}-\mathrm{H}]{ }^{-}: 504.1399$ found 504.1420.

1-O-(Dibenzyl phosphoryloxy)-11-trifluoroacetamido-3,6,9-trioxa-1-undecanol:
Following general procedure II, dibenzyl phosphate ($433 \mathrm{mg}, 1.56 \mathrm{mmol}$) was dissolved in DMF $(10 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and combined with oxalyl chloride $(0.27 \mathrm{~mL}, 3.11$ $\mathrm{mmol})$. After concentration, the compound was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and added to 11-trifluoroacetamido-3,6,9-trioxa-1-undecanol ($300 \mathrm{mg}, 1.04 \mathrm{mmol}$) in pyridine (5 $\mathrm{mL})$ and $4 \AA$ molecular sieves to yield $499 \mathrm{mg}(87 \%)$ of product as a clear oil. ${ }^{1} \mathrm{H}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~m}, 10 \mathrm{H}), 5.04\left(\mathrm{ABX}\right.$ system, $4 \mathrm{H}, J_{\mathrm{AB}}=15 \mathrm{~Hz}, J_{\mathrm{AP}}=J_{\mathrm{BP}}=11.7$ $\mathrm{Hz}), 4.14(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.62-3.55(\mathrm{~m}, 10 \mathrm{H}), 3.50(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 157.5(\mathrm{q}, \mathrm{J}=37.2 \mathrm{~Hz}), 136.0(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 128.7,128.1,116.1$ (q, J = 286.3 Hz), 70.8, 70.7, 70.6, 70.4, 70.1 (d, J = 6.8 Hz), 68.8, 66.9 (d, J = 5.9 Hz), 39.9; ESI-MS calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 572.1637$ found 572.1654 .

General Procedure III: Hydrogenolysis of phosphotriester.
The phosphotriester (1 eq) was dissolved in 3:2 MeOH/EtOAc with triethylamine (1 eq). Pd / C was added and the suspension was stirred under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 12 h . The suspension
was filtered through celite and the filtrate was concentrated to yield phosphate $\mathbf{1}$ as the triethylammonium salt.

2-Trifluoroacetamido-ethanol-1-phosphate (1a): Following general procedure III, 1-O(dibenzyl phosphoryloxy)-2-trifluoroacetamido-1-ethanol ($367 \mathrm{mg}, 0.88 \mathrm{mmol}$) was dissolved in 3:2 MeOH/EtOAc (15 mL) and triethylamine (0.12 mL), and combined with with $\mathrm{Pd} / \mathrm{C}(184 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt of $\mathbf{1 a}(290 \mathrm{mg}, 97 \%)$ as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 3.98(\mathrm{q}, 2 \mathrm{H}, J=6.9), 3.52(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.18$ $(\mathrm{q}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.31(\mathrm{t}, 9 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 63.78,47.52$, 41.93, 9.10; ESI-MS calcd for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}: 235.9936$ found 235.9947.

4-Trifluoroacetamido-butanol-1-phosphate (1b): Following general procedure III, 1-O(dibenzyl phosphoryloxy)-4-trifluoroacetamido-1-butanol ($392 \mathrm{mg}, 0.88 \mathrm{mmol}$) was dissolved in $3: 2 \mathrm{MeOH} / \mathrm{EtOAc}(15 \mathrm{~mL})$ and triethylamine $(0.12 \mathrm{~mL})$, and combined with with $\mathrm{Pd} / \mathrm{C}(196 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt of $\mathbf{1 b}(339 \mathrm{mg}, 97 \%)$ as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.85(\mathrm{q}, 2 \mathrm{H}, J=6.3), 3.25-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{q}$, $6 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.74-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, 9 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 64.35, 46.31, 39.26, 27.76, 25.24, 7.89; ESI-MS calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-}$: 264.0249 found 264.0240.

6-Trifluoroacetamido-hexanol-1-phosphate (1c): Following general procedure III, 1-O(dibenzyl phosphoryloxy)-6-trifluoroacetamido-1-hexanol ($441 \mathrm{mg}, 0.93 \mathrm{mmol}$) was dissolved in 3:2 MeOH/EtOAc (15 mL) and triethylamine (0.13 mL), and combined with with $\mathrm{Pd} / \mathrm{C}(220 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt of $\mathbf{1 c}(351 \mathrm{mg}, 96 \%)$ as a clear oil. ${ }^{2}$

8-Trifluoroacetamido-octanol-1-phosphate (1d): Following general procedure III 1-O(dibenzyl phosphoryloxy)-8-trifluoroacetamido-1-octanol ($400 \mathrm{mg}, 0.80 \mathrm{mmol}$) was dissolved in 3:2 MeOH/EtOAc (12 mL) and triethylamine (0.11 mL), and combined with with $\mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt of $\mathbf{1 d}(320 \mathrm{mg}, 95 \%)$ as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 3.92(\mathrm{q}, 2 \mathrm{H}, J=6.6), 3.26(\mathrm{t}, 2 \mathrm{H}, J=7.5), 3.20(\mathrm{q}$, $6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 67.23$, 47.74, 40.70, 30.17, 29.79, 27.71, 26.64, 18.78, 17.30, 9.18; ESI-MS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-}: 320.0875$ found 320.0883 .

10-Trifluoroacetamido-decanol-1-phosphate (1e): Following general procedure III, 1-O(dibenzyl phosphoryloxy)-10-trifluoroacetamido-1-decanol ($554 \mathrm{mg}, 1.02 \mathrm{mmol}$) was dissolved in 3:2 MeOH/EtOAc (15 mL) and triethylamine (0.15 mL), and combined with
with $\mathrm{Pd} / \mathrm{C}(270 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt of $\mathbf{1 e}(460 \mathrm{mg}, 98 \%)$ as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.77(\mathrm{q}, 2 \mathrm{H}, J=6.6), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.09$ $(\mathrm{q}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.59-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $66.22,47.48,40.74,30.63,30.53,30.50,30.45,30.29,29.80,27.79,26.94,9.09$; ESI-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$: 348.1188 found 348.1198 .

8-trifluoroacetamido-3,6-dioxa-octanol-1-phosphate: Following general procedure III, 1-O-(dibenzyl phosphoryloxy)-11-trifluoroacetamido-3,6,9-trioxa-1-undecanol (550 mg , 1.09 mmol) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and triethylamine (0.15 mL), and combined with with $\mathrm{Pd} / \mathrm{C}(275 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt ($462 \mathrm{mg}, 99 \%$) as a white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.81(\mathrm{td}, 2 \mathrm{H}, \mathrm{J}=6.1,4.4 \mathrm{~Hz}), 3.50-3.40(\mathrm{~m}, 8 \mathrm{H})$, $3.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}), 3.00(\mathrm{q}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.35(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}(75 \mathrm{mHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 159.2(\mathrm{q}, \mathrm{J}=36.2 \mathrm{~Hz}), 117.7(\mathrm{q}, \mathrm{J}=285.1 \mathrm{~Hz}), 72.2(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}), 71.7$, $71.5,69.9,65.6(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}), 47.5,40.9,9.3$; ESI-MS calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{P}[\mathrm{M}-$ $\mathrm{H}]^{-}: 324.0460$ found 324.0471 .

11-trifluoroacetamido-3,6,9-trioxa-undecanol-1-phosphate: Following general procedure III, 1-O-(dibenzyl phosphoryloxy)-11-trifluoroacetamido-3,6,9-trioxa-1undecanol ($450 \mathrm{mg}, 0.82 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(9 \mathrm{~mL})$ and triethylamine (0.12 $\mathrm{mL})$, and combined with with $\mathrm{Pd} / \mathrm{C}(225 \mathrm{mg})$ and H_{2} to yield the triethylammonium salt $(397 \mathrm{mg}, 99 \%)$ as a pasty, white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 3.92-2.90(\mathrm{~m}, 2 \mathrm{H})$, $3.60-3.47(\mathrm{~m}, 12 \mathrm{H}), 3.37(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}), 3.08(\mathrm{q}, 6 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 1.21(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 117.7(\mathrm{q}, \mathrm{J}=284.9 \mathrm{~Hz}), 72.0,71.7,71.6,71.5,69.9,66.0$, 47.8, 40.9, 9.3; ESI-MS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{P}[\mathrm{M}-\mathrm{H}]$: 368.0722 found 368.0721.

General Procedure IV: Coupling of phosphate to uridine 5'-monophosphate (UMP) and trifluoracetamide removal.
5'-UMP (triethylammonium salt, 1.0 eq) was suspended in acetonitrile (3 mL) and cooled to $0^{\circ} \mathrm{C}$. Dimethylaniline (4 eq) and triethylamine (2 eq) were added under an argon atmosphere. A pre-cooled solution of trifluoroacetic anhydride (6 eq) in acetonitrile (1 mL) was added dropwise over several minutes to yield a transparent, pink solution. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 15 min and the solvent was removed in vacuo. The residue was resuspended in acetonitrile (3 mL) and stirred at $0^{\circ} \mathrm{C}$ with $4 \AA$ molecular sieves (ca. 5-10) under an argon atmosphere. Triethylamine (5 eq) and 1-methyl imidazole (5.3 eq) were added dropwise and the solution turned bright yellow. Phosphate $\mathbf{1}(0.63 \mathrm{eq})$ was dissolved in acetonitrile (1 mL) and added dropwise to the solution. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and room-temperature for 3 h . The reaction was quenched with $15 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was extracted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and the combined aqueous layers were combined and concentrated, and the product was purified by silica gel chromatography. The resulting product was treated with 3 M ammonium hydroxide to deprotect the trifluoroacetamide moiety. The solvent was evaporated in vacuo and the product was lyophilized to yield diphosphate 2 as the ammonium salt.

Uridine 5'-diphosphoethanolamine (2a): Following general procedure IV, UMP•Et ${ }_{3} \mathrm{NH}^{+}$ ($102 \mathrm{mg}, 0.238 \mathrm{mmol}$) was activated with dimethyl aniline ($120 \mu \mathrm{~L}, 0.952 \mathrm{mmol}$), triethylamine ($50 \mu \mathrm{~L}, 0.476 \mathrm{mmol}$) and trifluoroacetic anhydride ($200 \mu \mathrm{~L}, 1.428 \mathrm{mmol}$). The activated UMP was then reacted with 1 -methylimidazole ($100 \mathrm{~mL}, 1.26 \mathrm{mmol}$), triethylamine ($130 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) and phosphate $\mathbf{1 a}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$. The product was purified by silica gel chromatography ($5: 4: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / 1 \mathrm{M}$ ammonium acetate) to yield the ammonium salt of the diphosphate as an off white solid. The diphosphate was stirred with 3 M ammonium hydroxide $(10 \mathrm{~mL})$ for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of uridine 5^{\prime}-diphosphoethanolamine $\mathbf{2 a}(33 \mathrm{mg}, 45 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.42$ $(\mathrm{m}, 2 \mathrm{H}), 4.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30-4.22(\mathrm{~m}, 5 \mathrm{H}), 3.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.92(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}(75$ $\left.\mathrm{mHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 152.1,141.7,102.8,88.8,83.3(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 73.9,69.8,65.1(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}), 62.5,36.8,23.5$; ESI-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{2}[\mathrm{M}-\mathrm{H}]^{-}: 446.0366$ found 446.0348.

Uridine 5'-diphosphobutanolamine (2b): Following general procedure IV, UMP•Et ${ }_{3} \mathrm{NH}^{+}$ ($102 \mathrm{mg}, 0.238 \mathrm{mmol}$) was activated with dimethyl aniline ($120 \mu \mathrm{~L}, 0.952 \mathrm{mmol}$), triethylamine ($50 \mu \mathrm{~L}, 0.476 \mathrm{mmol}$) and trifluoroacetic anhydride ($200 \mu \mathrm{~L}, 1.428 \mathrm{mmol}$). The activated UMP was then reacted with 1-methylimidazole ($100 \mathrm{~mL}, 1.26 \mathrm{mmol}$), triethylamine $(130 \mu \mathrm{~L}, 1.19 \mathrm{mmol})$ and phosphate $\mathbf{1 b}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$. The product was purified by silica gel chromatography ($5: 4: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / 1 \mathrm{M}$ ammonium acetate) to yield the ammonium salt of the diphosphate as an off white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of uridine 5'-diphosphobutanolamine $\mathbf{2 b}(46 \mathrm{mg}, 58 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}), 6.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 4.39$ (br s, 2H), $4.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.31-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.96(\mathrm{~s}$, $4 \mathrm{H}), 1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 165.1,150.6,140.1,101.2,87.1,81.7,72.2$, $68.2,63.5,62.1,37.8,25.2(d, J=6.6 \mathrm{~Hz}), 22.2$; ESI-MS calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 498.0655$ found 498.0648.

Uridine 5 '-diphosphohexanolamine (2c): Following general procedure IV, UMP•Et ${ }_{3} \mathrm{NH}^{+}$ ($102 \mathrm{mg}, 0.238 \mathrm{mmol}$) was activated with dimethyl aniline ($120 \mu \mathrm{~L}, 0.952 \mathrm{mmol}$), triethylamine ($50 \mu \mathrm{~L}, 0.476 \mathrm{mmol}$) and trifluoroacetic anhydride ($200 \mu \mathrm{~L}, 1.428 \mathrm{mmol}$). The activated UMP was then reacted with 1-methylimidazole ($100 \mathrm{~mL}, 1.26 \mathrm{mmol}$), triethylamine ($130 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) and phosphate $1 \mathrm{c}(6 \mathrm{mg}, 0.15 \mathrm{mmol})$. The product was purified by silica gel chromatography $\left(5: 4: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ to yield the triethylammonium salt of the diphosphate as an off-white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of uridine 5^{\prime}-diphosphohexanolamine $\mathbf{2 c}(56 \mathrm{mg}, 71 \%)$ as an off-white solid. ${ }^{7}$

Uridine 5 '-diphosphooctanolamine (2d): Following general procedure IV, UMP•Et ${ }_{3} \mathrm{NH}^{+}$ ($102 \mathrm{mg}, 0.238 \mathrm{mmol}$) was activated with dimethyl aniline ($120 \mu \mathrm{~L}, 0.952 \mathrm{mmol}$), triethylamine ($50 \mu \mathrm{~L}, 0.476 \mathrm{mmol}$) and trifluoroacetic anhydride ($200 \mu \mathrm{~L}, 1.428 \mathrm{mmol}$). The activated UMP was then reacted with 1-methylimidazole ($100 \mathrm{~mL}, 1.26 \mathrm{mmol}$), triethylamine ($130 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) and phosphate $1 \mathbf{d}(65 \mathrm{mg}, 0.15 \mathrm{mmol})$. The product was purified by silica gel chromatography ($5: 4: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) to yield the triethylammonium salt of the diphosphate as an off-white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of uridine 5^{\prime}-diphosphooctanolamine $\mathbf{2 d}(78 \mathrm{mg}, 89 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, $\mathrm{D}_{2} \mathrm{O}$): $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.0-5.97(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.29$ $(\mathrm{m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}), 4.29-4.18(\mathrm{~m}, 3 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 2.75(\mathrm{~s}, 4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 168.8$, 154.4, 144.3, 137.5, 125.5, 122.0, 105.3, 91.0, 85.8 (d, J = 5.4 Hz), 76.4, 72.1, 69.6 (d, J $=3 \mathrm{~Hz}), 67.5,42.1,41.3,38.0,32.2(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 30.5,29.2$, 27.9, 27.2; ESI-MS calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 554.1281$ found 554.1257.

Uridine 5 '-diphosphodecanolamine (2e): Following general procedure IV, UMP•Et ${ }_{3} \mathrm{NH}^{+}$ $(102 \mathrm{mg}, 0.238 \mathrm{mmol})$ was activated with dimethyl aniline ($120 \mu \mathrm{~L}, 0.952 \mathrm{mmol}$), triethylamine $(50 \mu \mathrm{~L}, 0.476 \mathrm{mmol})$ and trifluoroacetic anhydride $(200 \mu \mathrm{~L}, 1.428 \mathrm{mmol})$. The activated UMP was then reacted with 1-methylimidazole ($100 \mathrm{~mL}, 1.26 \mathrm{mmol}$), triethylamine ($130 \mu \mathrm{~L}, 1.19 \mathrm{mmol}$) and phosphate $\mathbf{1 e}(70 \mathrm{mg}, 0.15 \mathrm{mmol})$. The product was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 12 / 6 / 1\right)$ to yield the triethylammonium salt of the diphosphate as an off-white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of

[^2]uridine 5 '-diphosphodecanolamine $\mathbf{2 e}$ ($66 \mathrm{mg}, 76 \%$) as an off-white solid. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, $\mathrm{D}_{2} \mathrm{O}$): $\delta 8.77$ (br s, 1H, 8.11, (d, 1H, J = 8.0 Hz), 7.57 (br s, 2H), 6.09-6.04 (m, 2H), 4.47$4.42(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 4 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.78(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}), 1.69(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, 10: 1 \mathrm{D}_{2} \mathrm{O} / d_{6}\right.$-acetone $): \delta 165.9$, $151.8,142.1,102.9,88.8,83.6(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 74.3,70.1,66.9(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 65.3$, 39.9, 35.7, 29.2, 29.1, 28.8, 27.2, 26.2, 25.6; ESI-MS calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 560.1774 found 560.1777 .

Uridine 5'-diphospho-3,6-dioxa-octanolamine: Following general procedure IV, UMP $\cdot \mathrm{Et}_{3} \mathrm{NH}^{+}(150 \mathrm{mg}, 0.35 \mathrm{mmol})$ was activated with dimethyl aniline ($177 \mu \mathrm{~L}, 1.40$ mmol), triethylamine ($98 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$) and trifluoroacetic anhydride ($297 \mu \mathrm{~L}, 2.10$ $\mathrm{mmol})$. The activated UMP was then reacted with 1 -methylimidazole ($171 \mathrm{~mL}, 1.86$ mmol), triethylamine ($244 \mu \mathrm{~L}, 1.75 \mathrm{mmol}$) and 8-trifluoroacetamido-3,6-dioxa-octanol-1phosphate ($94 \mathrm{mg}, 0.22 \mathrm{mmol}$). The product was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 12 / 6 / 1\right)$ to yield the triethylammonium salt of the diphosphate as an off-white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the the ammonium salt of uridine 5'-diphospho-3,6-dioxa-octanolamine ($98 \mathrm{mg}, 78 \%$) as an off-white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2$ $\mathrm{Hz}), 5.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{J}=6.0 \mathrm{~Hz}), 3.56(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 3.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 166.3,151.9$, $141.8,102.8,88.7,83.3(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 73.9,70.2$, 70.2, 69.8, 69.6, 66.6, 65.3, 65.1 (d, J $=7.7 \mathrm{~Hz}$), 39.3; ESI-MS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 536.1047$ found 536.1060.

Uridine 5'-diphospho-3,6,9-trioxa-undecanolamine: Following general procedure IV, UMP $\cdot \mathrm{Et}_{3} \mathrm{NH}^{+}(147 \mathrm{mg}, 0.344 \mathrm{mmol})$ was activated with dimethyl aniline ($174 \mu \mathrm{~L}, 1.376$ $\mathrm{mmol})$, triethylamine ($96 \mu \mathrm{~L}, 0.688 \mathrm{mmol}$) and trifluoroacetic anhydride ($292 \mu \mathrm{~L}, 2.064$ $\mathrm{mmol})$. The activated UMP was then reacted with 1-methylimidazole ($168 \mathrm{~mL}, 1.823$ $\mathrm{mmol})$, triethylamine ($240 \mu \mathrm{~L}, 1.770 \mathrm{mmol}$) and 11-trifluoroacetamido-3,6,9-trioxa-undecanol-1-phosphate ($102 \mathrm{mg}, 0.220 \mathrm{mmol}$). The product was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 12 / 6 / 1\right)$ to yield the triethylammonium salt of the diphosphate as an off-white solid. The diphosphate was stirred with 3 M ammonium hydroxide (10 mL) for 2 h under N_{2}, the solvent was removed in vacuo and the product was lyophilized to yield the ammonium salt of uridine 5^{\prime} 'diphospho-3,6,9-trioxaundecanolamine ($95 \mathrm{mg}, 70 \%$) as an off-white solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): ~ \delta 7.93(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=8.1 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2 \mathrm{~Hz}), 5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 4.39-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 3.72(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 3.23(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 166.2,151.8,141.8,102.7,88.8,73.8,70.2,69.7,69.6,69.5,66.5$,
65.3 (d, $\mathrm{J}=7.5 \mathrm{~Hz}$), 39.3; ESI-MS calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{P}_{2}[\mathrm{M}-\mathrm{H}]: 578.1152$ found 578.1130.

General Procedure V: Conjugation of uridine 5'-diphospho (UDP)-alcoholamine 2 to fluorescein-5-isothiocyanate (FITC).

UDP-alcoholamine $2(1.0 \mathrm{eq})$ was was combined with FITC (1.5 eq) in $2: 1 \mathrm{DMF} / 0.1 \mathrm{M}$ NaHCO_{3}. The reaction mixture was stirred for 2 h and concentrated. The product was purified by silica gel chromatography ($12: 10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) to yield the sodium salt of UDP-fluorescein conjugate $\mathbf{3}$ as a yellow solid.

UDP-ethanolamine-fluorescein conjugate (3a): Following general procedure V, UDPethanolamine 2a ($5 \mathrm{mg}, 9.6 \mu \mathrm{~mol}$) was combined with FITC ($5.6 \mathrm{mg}, 14.4 \mu \mathrm{~g}$) in 2:1 DMF/0.1M NaHCO $3(150 \mu \mathrm{~L})$ to yield the sodium salt of UDP-ethanolamine-fluorescein conjugate 3a ($5.3 \mathrm{mg}, 64 \%$) as a yellow solid. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): $\delta 7.94$ $(\mathrm{m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 5 \mathrm{H}), 5.92-5.90(\mathrm{~m}$, $2 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 5 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7^{-}}\right.$ DMF): $\delta 171.1,164.4,155.7,150.1,140.5,140.2,130.1,118.7,112.9,101.8,101.2$, 87.3, 81.8, 72.5, 68.3, 63.7, 63.2, 53.1, 41.2; ESI-MS calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{~S}$ [M $2 \mathrm{H}]^{-2}: 417.0323$ found 417.0313 .

UDP-butanolamine-fluorescein conjugate (3b): Following general procedure V, UDPbutanolamine 2b ($10 \mathrm{mg}, 20 \mu \mathrm{~mol}$) was combined with FITC ($12 \mathrm{mg}, 30 \mu \mathrm{~mol}$) in 2:1 DMF/0.1 M NaHCO $(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-ethanolamine-fluorescein conjugate $\mathbf{3 b}(11 \mathrm{mg}, 62 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): $\delta 7.96$ (br s, 1H), 7.88 (d, 1H, J = 8.6 Hz), $7.65(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz})$, $6.63(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=1.8 \mathrm{~Hz}), 6.60(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.87-5.82(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.13$ (br s, 3H), 3.93 (br s, 2H), 3.52 (br s, 2H), 1.63 (br s, 4 H); ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}-\right.$ DMF): $\delta 182.8,174.0,168.0,158.5,154.0,144.3,133.5,121.0,115.7,105.6,105.1$, 91.0, 86.0, 76.4, 72.8, 68.7, 67.5, 56.9, 45.1, 30.2, 27.5; ESI-MS calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M}-2 \mathrm{H}]^{-2}: 431.0479$ found 459.0502 .

UDP-hexanolamine-fluorescein conjugate (3c): Following general procedure V, UDPhexanolamine 2c ($20 \mathrm{mg}, 38 \mu \mathrm{~mol}$) was combined with FITC ($22 \mathrm{mg}, 57 \mu \mathrm{~mol}$) in 2:1 DMF/0.1 M NaHCO $3(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-hexanolaminefluorescein conjugate 3 c $(13.7 \mathrm{mg}, 40 \%)$ as a yellow solid. ${ }^{8}$

UDP-octanolamine-fluorescein conjugate (3d): Following general procedure V, UDPoctanolamine 2d (3.0 mg , $5.4 \mu \mathrm{~mol}$) was combined with FITC ($3.2 \mathrm{mg}, 8.1 \mu \mathrm{~mol}$) in $2: 1$ DMF/0.1 M NaHCO $3(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-octanolamine-fluorescein conjugate $\mathbf{3 d}(4.7 \mathrm{mg}, 90 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): $\delta 8.14-$ $8.10(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz})$, $6.79(\mathrm{~m}, 4 \mathrm{H}), 6.10-6.06(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.70$ (br s, 2H), 1.73-1.68 (m, 4H), 1.47 (br s, 8 H); ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): $\delta 156.1$, $150.6,140.9,130.3,119.5,112.1,102.2,101.7,87.4,82.7,73.0,69.1,65.5,64.1,53.4$, 41.6, 28.0, 27.6, 25.6, 24.4; ESI-MS calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M}-2 \mathrm{H}]^{-2}: 459.0792$ found 459.0776 .

UDP-decanolamine-fluorescein conjugate (3e): Following general procedure V, UDPdecanolamine $\mathbf{2 e}(5 \mathrm{mg}, 8.4 \mu \mathrm{~mol})$ was combined with FITC ($5 \mathrm{mg}, 12.6 \mu \mathrm{~mol}$) in $2 / 1$ DMF/0.1 M NaHCO $3(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-decanolaminefluorescein conjugate $3 \mathrm{e}(6.6 \mathrm{mg}, 81 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}-\right.$ DMF): $\delta 8.13$ (br s, 1H), $7.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$), 7.63 (br s, 1H), $7.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.73$ (m, 2H), $6.66(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.84(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.15$ (br s, 3H), 3.83 (br s, 2H), $3.39(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.44(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.13(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.03(\mathrm{~s}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}(125$

[^3]$\mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}$-DMF): $\delta 179.2,169.6,164.3,153.0,150.4,140.6,128.9,121.8,116.9$, $114.5,110.6,101.8,101.5,87.4,82.4,72.9,68.8,65.5,64.0,53.3,43.3,41.5,28.2,28.1$, 27.9, 27.4, 25.5, 24.4; ESI-MS calcd for $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M} \mathrm{-} \mathrm{2H}]^{-2}: 473.0949$ found 473.0965 .

UDP-3,6-dioxa-octanolamine-fluorescein conjugate (4a): Following general procedure V, UDP-3,6-dioxa-octanolamine ($5 \mathrm{mg}, 8.8 \mu \mathrm{~mol}$) was combined with FITC (5.1 mg , $13.2 \mu \mathrm{~mol})$ in $2: 1 \mathrm{DMF} / 0.1 \mathrm{M} \mathrm{NaHCO}_{3}(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-3,6-dioxa-octanolamine-fluorescein conjugate $\mathbf{4 a}(5.6 \mathrm{mg}, 66 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}(500$ $\mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}$-DMF): $\delta 8.25$ (br s, 1 H), 7.81 (br s, 1 H), $7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$), 6.91$6.66(\mathrm{~m}, 9 \mathrm{H}), 5.90(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.80-3.66$ $(\mathrm{m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): 181.8, 168.7, 153.2, 151.4, 143.0, 141.0, $130.4,127.8,119.2,116.9,114.6,102.6,102.5,88.7,84.8,83.6,74.0,70.6,70.3,69.1$, 66.7, 53.9, 44.0, 42.1, 17.9, 16.6, 12.1δ ESI-MS calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{19} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M}-2 \mathrm{H}]^{-2}$: 461.0574 found 461.0590 .

UDP-3,6,9-trioxa-undecanolamine-fluorescein conjugate (4b): Following general procedure V, UDP-3,6,9-trioxa-undecanolamine ($2 \mathrm{mg}, 3.3 \mu \mathrm{~mol}$) was combined with FITC ($2.0 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$) in 2:1 DMF/0.1 M NaHCO ${ }_{3}(200 \mu \mathrm{~L})$ to yield the sodium salt of UDP-3,6,9-trioxa-undecanolamine-fluorescein conjugate $\mathbf{4 b}(2.5 \mathrm{mg}, 76 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.65(\mathrm{dd}$, $1 \mathrm{H}, 8.3,2.1 \mathrm{~Hz}), 7.32(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.3,4.0 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.78(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=$ 9.1, 2.2 Hz), 6.72 (s, 2H), 5.95-5.91 (m, 2H), 4.38-4.31 (m, 2H), 4.24 (br s, 3H), 4.15 (br $\mathrm{s}, 2 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): ~ \delta 167.4,160.4,160.0,154.1,144.1$, $143.0,141.6,134.3,133.4,123.6,120.4,117.4,113.2,105.8,105.1,91.1,85.6$ (d, J = 4.8 Hz), 76.4, 72.6, 72.5, 72.3, 72.1, 71.4, 68.8, 67.8, 67.5; ESI-MS calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{20} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M}-2 \mathrm{H}]^{-2}: 483.0705$ found 483.0720 .

Synthesis of octanolamine-fluorescein conjugate 5: 8-amino-1-octanol ($11.2 \mathrm{mg}, 0.077$ mmol) was combined with FITC ($10 \mathrm{mg}, 0.026 \mathrm{mmol}$) in $\mathrm{MeOH}(0.3 \mathrm{~mL})$ and stirred at room-temperature for 1 h . The product was purified by silica gel chromatography (4:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ containing $1 \% \mathrm{H}_{2} \mathrm{O}$) to yield compound 5 ($13.6 \mathrm{mg}, 98 \%$) as an orange solid. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}), 7.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.3,1.6 \mathrm{~Hz})$, $7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.77(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 6.56(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}$ $=8.8,2.2 \mathrm{~Hz}), 3.60-3.52(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 171.8,155.2,142.6,131.0,115.3,112.6,103.8,63.2,63.1$, 33.8, 30.7, 30.6, 30.1, 28.2, 27.1); ESI-MS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M} \mathrm{-} \mathrm{H}]{ }^{-}: 533.1825$ found 533.1846.

Synthesis of UDP-octanolamine-naphthyl conjugate 6: UDP-octanolamine 2d (25 mg , $50 \mu \mathrm{~mol}$) was combined with 2-naphthyl isothiocyanate ($20 \mathrm{mg}, 100 \mu \mathrm{~mol}$) in 3:1 DMF/0.1 M NaHCO $3(200 \mu \mathrm{~L})$. The reaction was stirred 1 h and concentrated. The product was purified by silica gel chromatography ($12: 10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$) to yield the sodium salt of UDP-octanolamine-naphthyl conjugate 6 ($30.9 \mathrm{mg}, 83 \%$) as an offwhite solid: ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF): $\delta 8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.00-7.91(\mathrm{~m}$, $2 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 5 \mathrm{H}), 5.98-5.93(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}$, 2 H), $3.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.24-1.15(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}(125$ $\mathrm{mHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}$-DMF): $\delta 164.4,160.4,150.8,141.3,133.9,128.0,127.5,126.5,126.3$, $125.5,125.1,112.8,117.6,115.1,101.9,87.4,83.1,73.3,69.4,65.4,64.3,44.1,28.4$, 28.3, 28.1, 25.8, 24.7; ESI-MS calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S}[\mathrm{M}-2 \mathrm{H}]^{-2}: 357.0763$ found 357.0776.

Synthesis of the aminothiazole-fluorescein conjugate 10:

2-Bromo,4'-(8-azido-octyl) acetophenone (8): Aluminum chloride ($3.25 \mathrm{~g}, 24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. To the pre-cooled solution, 8-phenyl-1-octanol (0.50 $\mathrm{g}, 2.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. Upon dropwise addition of acetyl chloride ($0.343 \mathrm{~mL}, 4.8 \mathrm{mmol}$), the solution turned yellow. The solution was stirred for 12 h at room-temperature, after which it was poured into a mixture of ice and concentrated HCl . The mixture was stirred for 2 h until all salts were dissolved. The organic layer was separated, washed with saturated NaHCO_{3} and brine, dried and
concentrated. The product was purified by silica gel chromatography ($10 \% \rightarrow 30 \%$ ethyl acetate in hexanes) to yield the acetophenone $(0.352 \mathrm{~g}, 1.42 \mathrm{mmol})$ as an off-white solid in 59% yield. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz})$, $3.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}$, $4 \mathrm{H}), 1.20(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 197.9,148.6,134.7,128.4,128.3,62.4,35.8$, $32.5,30.9,29.3,29.2,29.0,26.3,25.7$; EI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\bullet]: 248.1776$ found 248.1777 .
Triethylamine ($0.296 \mathrm{~mL}, 2.12 \mathrm{mmol}$) was added to a solution of acetophenone (0.262 g , 1.06 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Mesyl chloride ($0.165 \mathrm{~mL}, 2.12 \mathrm{mmol}$) was added dropwise, and the solution was stirred 1 h under N_{2}. The pink solution was washed with brine, dried, filtered and concentrated. The crude product was combined with sodium azide in DMF (8 mL) and stirred for 12 h at $80^{\circ} \mathrm{C}$. A solution of 10% EtOAc in hexanes $(100 \mathrm{~mL})$ was added to the reaction, which was washed twice with brine $(50 \mathrm{~mL})$, filtered and evaporated. The product was purified by silica gel chromatography ($5 \% \rightarrow 10 \%$ ethyl acetate in hexanes) to yield the azide ($0.243 \mathrm{~g}, 0.889 \mathrm{mmol}$) as an oil in 84% yield. ${ }^{1} \mathrm{H}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, 2H, J = 8.1 Hz), $7.15(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), 3.13 (t, 2H, J = $6.8 \mathrm{~Hz}), 2.55(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 4 \mathrm{~h}), 1.22(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}(75$ $\left.\mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 197.6,148.6,135.0,128.6,128.5,51.4,39.9,31.0,29.3,29.1,29.0,28.8$, 26.7, 26.5; ESI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 296.1739$ found 296.1753.

A solution of $\mathrm{CuBr}_{2}(76.3 \mathrm{mg}, 0.342 \mathrm{mmol})$ in $\mathrm{EtOAc}(1 \mathrm{~mL})$ was heated to reflux. A solution of acetophenone in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added dropwise. The solution was stirred at reflux until all CuBr_{2} appeared to be consumed (precipitate turns white). The solution was filtered, concentrated, and the product purified by silica gel chromatography ($2 \% \rightarrow 4 \%$ EtOAc in hexanes) to yield 2-bromo,4'-(8-azido-octyl) acetophenone 8 in 43% yield ($32.7 \mathrm{mg}, 0.093 \mathrm{mmol}$). ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.28(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{t}, 2 \mathrm{H}, 4.8 \mathrm{~Hz}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~m}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 191.2,150.0,148.9,129.1,128.7,77.1,36.2,31.2,31.1$, 29.5, 29.3, 23.2, 29.0, 26.9; ESI-MS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}: 374.0844$ found 374.0854.

3-(4-Chlorophenyl)-2-[4-(8-azido-octyl-phenyl)-thiazol-2-ylamino]-propionic acid (9): Thiourea ${ }^{9}$ ($26.4 \mathrm{mg}, 0.102 \mathrm{mmol}$) and α-bromoketone $\mathbf{8}(32.7 \mathrm{mg}, 0.093 \mathrm{mmol})$ were combined in DMF ($300 \mu \mathrm{~L}$). The reaction was stirred under nitrogen for 2 h and concentrated. The product was purified by silica gel chromatography (3:1 hexanes/EtOAc $\rightarrow 2: 1$ hexanes/EtOAc containing 2\% AcOH) to yield $9(17 \mathrm{mg}, 0.033$ mmol) as a white solid in 36% yield. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz})$, $7.17(\mathrm{~m}, 6 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}) 3.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.2,5.3 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.7 \mathrm{~Hz}), 3.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.3,6.2 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{mHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,169.9,143.8,135.7,132.9,131.2,129.0,128.8$,

[^4]Supporting Information
126.3, 99.4, 61.9, 51.7, 37.7, 35.9, 31.4, 29.5, 29.4, 29.3, 29.0, 26.9: ESI-MS calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}]{ }^{-}: 510.1730$ found 510.1741.

10
Aminothiazole-fluorescein conjugate (10): Azide $9(12 \mathrm{mg}, 23 \mu \mathrm{~mol})$ was combined with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(6 \mathrm{mg})$ in $4: 1 \mathrm{MeOH} / \mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ and stirred 12 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. The suspension was filtered over celite and the filtrate was concentrated to yield the amine as a white solid ($11.3 \mathrm{mg}, 23 \mu \mathrm{~mol}$) in quantitative yields. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 7.47$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.27(\mathrm{~m}, 7 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.3,3.9 \mathrm{~Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.3$, $8.7 \mathrm{~Hz}), 2.86(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ($75 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 170.5,170.3,145.5,140.2,134.9,133.2,131.0,129.1,128.7$, $126.4,125.8,60.4,39.7,39.6,36.8,35.4,31.2,29.1,29.0,27.4,26.3$; ESI-MS calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 486.1982$ found 486.1969 .
The amine ($11.3 \mathrm{mg}, 23 \mu \mathrm{~mol}$) was combined with fluorescein isothiocyanate (10.4 mg , $35 \mu \mathrm{~mol})$ and DIEA $(12 \mu \mathrm{~L}, 69 \mu \mathrm{~mol})$ in DMF $(400 \mu \mathrm{~L})$. The solution was stirred 1.5 h and concentrated. The product was purified using HPLC (gradient $50-70 \% \mathrm{ACN} / \mathrm{H}_{2} \mathrm{O}$) to yield 10 as an orange solid ($16.2 \mathrm{mg}, 18.5 \mu \mathrm{~mol}$) in 80% yield. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: δ $8.11(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.20(\mathrm{~s}, 4 \mathrm{H}), 7.15(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.5 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz})$, $6.54(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.8,2.4 \mathrm{~Hz}), 4.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,5.0 \mathrm{~Hz}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=14.4,5.0 \mathrm{~Hz}), 3.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.0,8.2 \mathrm{~Hz}), 2.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 1.60-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.31$ (br s, 8 H); ${ }^{13} \mathrm{C}\left(125 \mathrm{mHz}, \mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 182.5,173.4,170.4,170.1,154.6,136.5$, 133.6, 131.8, 130.5, 129.6, 129.3, 126.9, 126.0, 114.1, 144.0, 103.2, 60.4, 60.3, 37.7, 36.3, 32.1, 30.1, 30.0, 29.8, 29.6, 27.6; LC/MS (ESI) (m/z) $[\mathrm{M}+\mathrm{H}]^{+}$calcd 875.3, found 875.3.

UGM Binding

Fluorescence polarization binding assay:

Serial dilutions of dialyzed UGM (maximum concentration was typically $30 \mu \mathrm{M}$) was incubated with 15 nM of fluorescent compounds $\mathbf{5 a - 5 f}, \mathbf{6}$ or $\mathbf{1 1}$ in 50 mM sodium phosphate buffer, pH 7.0 at $25^{\circ} \mathrm{C}$. Final volumes were $30 \mu \mathrm{~L}$ in 384 well black microtiter plates (Costar). Fluorescence polarization was analyzed using a Wallac EnVision plate reader. Data were fit to $y=m 1+\left((m 2-m 1)^{*} x^{\wedge} m 3\right) /\left(m 4 \wedge m 3+x^{\wedge} m 3\right) ; m 2=$ maximum $F P$ signal, $\mathrm{m} 1=$ minimum FP signal, $\mathrm{m} 3=$ slope, $\mathrm{m} 4=$ binding constant (KaleidaGraph, Synergy Software).

Fluorescence polarization inhibition assay:

The fluorescence polarization inhibition assay was performed as previously described. ${ }^{8}$ Reactions contained 580 nM UGM $_{\text {myco }}$ or 500 nM UGM $_{\text {kleb }}$ and 15 nM of the fluorescent probe $3 \mathbf{c}$ in 50 mM sodium phosphate buffer, pH 7.0 at $25^{\circ} \mathrm{C}$. Final volumes were $30 \mu \mathrm{~L}$ in 384 well black microtiter plates (Costar). Serial dilutions of UDP, 2d or $\mathbf{6}$ were added to the wells. Fluorescence polarization was analyzed using a Wallac EnVision plate reader. Data were fit to $y=m 1+\left((m 2-m 1)^{*} x^{\wedge} m 3\right) /\left(m 4 \wedge m 3+x^{\wedge} m 3\right) ; m 2=$ maximum $F P$ signal, $\mathrm{m} 1=$ minimum FP signal, $\mathrm{m} 3=$ slope, $\mathrm{m} 4=$ apparent binding constant (KaleidaGraph, Synergy Software). To determine K_{d} values, the apparent binding constant was then subjected to $K_{\text {app }}=K_{\mathrm{d}}\left(1+(\mathrm{I}) / K_{\mathrm{I}}\right)$ where I = concentration of the fluorescent probe and K_{I} = binding affinity of the fluorescent probe to UGM. For $\mathrm{UGM}_{\text {myco }} \mathrm{I}=15 \mathrm{nM}$ and $K_{\mathrm{I}}=160 \mathrm{nM}$. For $\mathrm{UGM}_{\text {kleb }} \mathrm{I}=15 \mathrm{nM}$ and $K_{\mathrm{I}}=100 \mathrm{nM}$.

$K_{d}>30 \mu \mathrm{M}$

$K_{d}>30 \mu \mathrm{M}$

Supporting Information

$$
K_{d}=1.9 \pm 0.2 \mu \mathrm{M}
$$

$$
K_{d}=2.5 \pm 0.3 \mu \mathrm{M}
$$

Supporting Information

$$
K_{\mathrm{d}}=0.045 \pm 0.002 \mu \mathrm{M}
$$

$$
K_{d}=0.070 \pm 0.002 \mu \mathrm{M}
$$

$K_{\mathrm{d}}=0.064 \pm 0.004 \mu \mathrm{M}$

Supporting Information

4a with UGM ${ }_{\text {kleb }}$

$$
K_{\mathrm{d}}=0.77 \pm 0.02 \mu \mathrm{M}
$$

4a with UGM

$K_{\mathrm{d}}=0.58 \pm 0.02 \mu \mathrm{M}$

$K_{\mathrm{d}}=1.1 \pm 0.1 \mu \mathrm{M}$

Supporting Information

$$
K_{\mathrm{d}}=38 \pm 2 \mu \mathrm{M}
$$

$K_{d}=32 \pm 3 \mu \mathrm{M}$

Supporting Information

$K_{\mathrm{d}}=26 \pm 2 \mu \mathrm{M}$
$K_{d}=15 \pm 2 \mu \mathrm{M}$

$K_{d}=0.58 \pm 0.04 \mu \mathrm{M}$

$K_{d}=0.61 \pm 0.09 \mu \mathrm{M}$

Supporting Information

UGM Activity Assays:

UGM $_{\text {myco }}$ inhibition was assessed using a previously described HPLC assay to measure the extent of enzymatic conversion of UDP-galactofuranose to UDP-galactopyranose. ${ }^{8}$ The relative activity of $\mathrm{UGM}_{\text {myco }}$ was compared to that in the presence of varying concentrations of the UDP-fluorescein conjugates 3b, 3c, and 3d. Enzymatic reaction conditions follow: $20 \mu \mathrm{M}$ UDP-Galf, 20 nM UGM $_{\text {myco }}$ and 20 mM sodium dithionite in 50 mM sodium phosphate buffer pH 7.0 . Final reaction volumes were $60 \mu \mathrm{~L}$. Reactions were performed at $37^{\circ} \mathrm{C}$ for 30 s , and quenched with $60 \mu \mathrm{~L}$ of 1:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. The relative activity of $\mathrm{UGM}_{\text {myco }}$ in the presence of DMSO alone was compared to that in the presence of aminothiazole-fluorescein conjugate 10. Enzymatic reaction conditions follow: $20 \mu \mathrm{M}$ UDP-Galf, 20 nM UGM $_{\text {myco }}$ and 20 mM sodium dithionite in 5% DMSO v / v in 50 mM sodium phosphate buffer, pH 7.0 . Final reaction volumes were $60 \mu \mathrm{~L}$. Reactions were performed at $37^{\circ} \mathrm{C}$ for 40 s , and quenched with $60 \mu \mathrm{~L}$ of 1:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$.
Conversion is the amount of UDP-Gal p formed divided by the amount of total UDP-Gal (UDP-Gal $p+$ UDP-Gal f).
The data were fit to the equation as described. ${ }^{8}$

Supporting Information

$$
\mathrm{IC}_{50}=6 \pm 1 \mu \mathrm{M}
$$

$\mathrm{IC}_{50}=1.9 \pm 0.3 \mu \mathrm{M}$

Supporting Information

$\mathrm{IC}_{50}=3.5 \pm 0.5 \mu \mathrm{M}$

Supporting Information
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF):

Supporting Information

Supporting Information
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF):

Supporting Information
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF):

${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF):

Supporting Information

Supporting Information
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$:

${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$:

Supporting Information

${ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$:

Supporting Information
${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, 5: 1 \mathrm{D}_{2} \mathrm{O}: d_{7}\right.$-DMF):

Supporting Information

Supporting Information
${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

Supporting Information
${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$

Supporting Information
${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$

Supporting Information
${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):$

[^5]

Supporting Information
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right):$

[^0]: ${ }^{1}$ Lokhov, S. G.; Podyminogin, M. A.; Sergeev, D. S.; Silnikov, V. N.; Kutyavin, I. V.; Shishkin, G. V.; Zarytova, V. P. Bioconjugate Chem. 1992, 3, 414-419.
 ${ }^{2}$ Vincent, S. P.; Gastinel, L. N. Carbohydr. Res. 2002, 337, 1039-1042.

[^1]: ${ }^{3}$ Amvamzollo, P. H.; Sinay, P. Carbohydr. Res. 1986, 150, 199-212.
 ${ }^{4}$ Bertozzi, C. R.; Bednarski, M. D. J. Org. Chem. 1991, 56, 4326-4329.
 ${ }^{5}$ Sato, H.; Hayashi, E.; Yamada, N.; Yatagai, M.; Takahara, Y. Bioconjugate Chem. 2001, 12, 701-710.
 ${ }^{6}$ Xie, H. Z.; Braha, O.; Gu, L. Q.; Cheley, S.; Bayley, H. Chem. Biol. 2005, 12, 109-120.

[^2]: ${ }^{7}$ Barker, R.; Shaper, J. H.; Hill, R. L.; Olsen, K. W. J. Biol. Chem. 1972, 247, 7135.

[^3]: ${ }^{8}$ Soltero-Higgin, M.; Carlson, E. E.; Phillips, J. H.; Kiessling, L. L. J. Am. Chem. Soc. 2004, 126, 1053210533.

[^4]: ${ }^{9}$ Dykhuizen, E. C.; May, J. F.; Tongpenyai, A.; Kiessling, L. L. J. Am. Chem. Soc. 2008, XX, XXXX.

[^5]: ${ }^{\mathrm{r}} \mathrm{C}$ (75 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$:

