Facile Formation of Cyclic Aminals Through a Brønsted Acid Promoted Redox Process

Chen Zhang, Sandip Murarka, and Daniel Seidel ${ }^{*}$Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NewJersey 08854Supporting Information
Table of Contents
General Information S-2
General procedure for the preparation of aminoaldehydes S-2
Characterization data for new aminobenzaldehydes S-2
General procedure A for the reaction between aminoaldehydes and amines S-2
General procedure B for the reaction between aminoaldehydes and amines S-3
General procedure C for the reaction between aminoaldehydes and amines S-3
Characterization data for new compounds S-3
References S-11
Copies of ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra for all new compounds S-12

General Information: Starting materials, reagents and solvents were purchased from commercial sources and were used as received with the exception of aniline and benzylamine which were distilled prior to use. Reactions were run under an atmosphere of nitrogen unless mentioned otherwise. Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 ($230-400$ mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light and permanganate stain, followed by heating. Proton nuclear magnetic resonance spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$)$. Data are reported as app = apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, comp $=$ complex; $\mathrm{br}=$ broad; integration; coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra $\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ spectra are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.0 ppm$)$. The starting materials $\quad 2$-(pyrrolidin-1-yl)benzaldehyde $\quad(6),{ }^{1} \quad 2$-(piperidin-1-yl)benzaldehyde $\quad(8 a),{ }^{1} \quad 2$-(azepan-1yl)benzaldehyde ($\mathbf{8 b}$), ${ }^{3} \quad$ 2-(3,4-dihydroisoquinolin-2(1H)-yl)benzaldehyde (8e), ${ }^{2} \quad$ 2-(2-methylpyrrolidin-1yl)benzaldehyde (8h), ${ }^{1}$ 2-(3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)benzaldehyde (8g), ${ }^{2}$ were prepared according to literature methods.

General procedure for the preparation of aminoaldehydes:

To a solution of 2-fluorobenzaldehyde ($2.48 \mathrm{~g}, 20 \mathrm{mmol}$) and potassium carbonate ($3.18 \mathrm{~g}, 23 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ was added the amine (23 mmol). The resulting reaction mixture was heated under reflux until complete consumption of 2 -fluorobenzaldehyde, as judged by TLC analysis. The reaction mixture was subsequently allowed to cool to room temperature, diluted with water (100 mL), and extracted with ethyl acetate ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with a saturated $\mathrm{NH}_{4} \mathrm{C} 1$ solution ($3 \times 75 \mathrm{~mL}$) and subsequently dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography.

2-(azocan-1-yl)benzaldehyde (8d): The title compound was prepared according to the general procedure and isolated as a liquid in 65% yield. ($\mathrm{R}_{\mathrm{f}}=0.50$ in $80 \% \mathrm{DCM} / \mathrm{Hex}$); IR (film) 2924, 2849, 1681, 1594, 1483, 1449, 1374, 1274, 1186, 1160, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.23(\operatorname{app~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.19($ comp, 4H), $1.87-1.46$ (comp, 10H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.3, 155.8, 134.6, 130.6, 127.7, 119.9, 119.5, 55.5, 27.8, 27.4, 25.2; m/z (ESIMS) $218.6[\mathrm{M}+\mathrm{H}]^{+}$.

2-(dibenzylamino)benzaldehyde (8k): The title compound was prepared according to the general procedure and isolated as a liquid in 25% yield ($\mathrm{R}_{\mathrm{f}}=0.61$ in $\left.80 \% \mathrm{DCM} / H e x\right)$; IR (film) $3062,3028,2938,2840,2733,1686,1595,1494,1481,1452,1384,1365,1276,1254$, $1189,1161,1028,833,749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $10.57(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.24(\mathrm{comp}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{app} \mathrm{dt}, J=$ $9.7,20.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191.3, 154.4, 137.1, 134.4, 129.8, 129.5, 128.6, 128.4, 127.4, 122.9, 122.4, 58.7; m/z (ESIMS) 324.7 [$\mathrm{M}+\mathrm{Na}]^{+}$.

General procedure A for the reaction between aminoaldehydes and amines:

To a stirred solution of aminoaldehyde (1 mmol) in 10 mL of EtOH was added the primary amine $(1.2 \mathrm{mmol})$ and triflic acid $(0.2 \mathrm{mmol})$, followed by heating at reflux. The reaction mixture was monitored by TLC. After the completion of the reaction, 0.3 ml of triethylamine was added. The solution was concentrated in vacuo and the crude product was dissolved in ethyl acetate (20 ml) and washed with 25 ml of 1 M NaOH . The aqueous layer was extracted with ethyl acetate ($20 \mathrm{ml} \times 3$). The combined organic layers were washed with brine (25 ml) and dried with sodium sulfate. The solvent was removed in vacuo and the crude product was purified by column chromatography.

General procedure B for the reaction between aminoaldehydes and amines:

To a stirred solution of aminoaldehyde (1 mmol) in 10 mL of EtOH was added the primary amine (1.2 mmol) and trifluoroacetic acid $(1.2 \mathrm{mmol})$, followed by heating at reflux. The reaction mixture was monitored by TLC. After the completion of the reaction, 1.0 ml of triethylamine was added. The solution was concentrated in vacuo and the crude product was dissolved in ethyl acetate (20 ml) and washed with 25 ml of 1 M NaOH . The aqueous layer was extracted with ethyl acetate ($20 \mathrm{ml} \times 3$). The combined organic layers were washed with brine (25 ml) and dried with sodium sulfate. The solvent was removed in vacuo and the crude product was purified by column chromatography.

General procedure C for the reaction between aminoaldehydes and amines:

To a stirred solution of aminoaldehyde (1 mmol) in 10 mL of EtOH was added the primary amine (1.2 mmol) and triflic acid $(0.2 \mathrm{mmol})$, followed by stirring at room temperature. The reaction mixture was monitored by TLC. After the completion of the reaction, 0.3 ml of triethylamine was added. The solution was concentrated in vacuo and the crude product was dissolved in ethyl acetate (20 ml) and washed with 25 ml of 1 M NaOH . The aqueous layer was extracted with ethyl acetate ($20 \mathrm{ml} \times 3$). The combined organic layers were washed with brine (25 ml) and dried with sodium sulfate. The solvent was removed in vacuo and the crude product was purified by column chromatography.

4-phenyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7a): The reaction was carried out according to the general procedure A $(3 \mathrm{~h})$. The product was obtained as a white solid in 71% yield. ($\mathrm{R}_{\mathrm{f}}=0.34$ in 8% EtOAc/Hex); mp: $82-84{ }^{\circ} \mathrm{C}$; IR (KBr) 3031, 2970, 2937, 2835, 1606, 1596, 1510, 1494, 1477, 1461, 1398, 1363, 1323, 1308, 1256, $1207,1193,774,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.32(\mathrm{app} \mathrm{tt}, J=2.0,3.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.22-7.10$ (comp, 4H), 6.97 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{app} \mathrm{td}, J=$ $3.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.6,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.85(\mathrm{comp}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $150.3,143.5,128.9,127.8,125.9,125.2,124.7,120.8,116.2,111.3,76.7,57.3,47.1,31.9,22.2$; m / z (ESIMS) $251.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-benzyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7b): The reaction was carried out according to the general procedure B (24 h). The product was obtained as a colorless oil in 75% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.24\right.$ in $2 \% \mathrm{EtOAc} / \mathrm{DCM}$); IR (film) 3066, 3025, 2968, 2834, 1606, 1578, 1509, 1483, 1462, 1395, 1369, 1321, 1304, 1160, 1130, 741, 698 cm ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.45-7.26(\mathrm{comp}, 5 \mathrm{H}), 7.11(\mathrm{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 (app td, $J=0.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.30(\mathrm{comp}, 3 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19-$ $2.09(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.86(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.2, 138.3, 129.0, 128.3, 127.6, 127.1, 126.4, 119.4, 115.7, 110.3, 78.4, 56.5, 54.4, 46.6, 31.8, 22.4; m/z (ESIMS) $265.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-ethylphenyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7c): The reaction was carried out according to the general procedure $\mathrm{A}(12 \mathrm{~h})$. The product was obtained as a white solid in 67% yield. ($\mathrm{R}_{\mathrm{f}}=0.34$ in 15% Ether/Hex); mp: $67-$ $69^{\circ} \mathrm{C}$; IR (KBr) 2959, 2851, 1605, 1509, 1457, 1359, 1345, 1194, 1178, 1104, 840, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.20-7.07$ (comp, 5 H), $6.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=5.3,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.34(\mathrm{comp}, 2 \mathrm{H}), 2.64(\operatorname{app~q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.11-1.84(\mathrm{comp}, 3 \mathrm{H}), 1.74$ (app tt, $J=8.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.19$ (comp, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $148.0,143.6,140.9,128.4,127.8,126.1,125.3,121.0,116.2,111.4,76.9,57.6,47.2,32.1,28.4,22.4$, 15.6; m / z (ESIMS) $279.5[\mathrm{M}+\mathrm{H}]^{+}$.

4-(2,6-diisopropylphenyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7d): The reaction was carried out according to the general procedure $A(5 h)$. The product was obtained as a white solid in 71% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.30\right.$ in $\left.20 \% \mathrm{DCM} / \mathrm{Hex}\right) ; \mathrm{mp}: 186-189{ }^{\circ} \mathrm{C}$; IR (KBr) 3049, 3021, 2926, 2863, 2778, 1604, 1578, 1477, 1445, 1395, 1386, 1363, 1319, $1300,1259,1249,1189,1157,1048,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.25(\mathrm{dd}, J=$ $5.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.09(\mathrm{comp}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\operatorname{app} \mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=5.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{app} \mathrm{dt}, J=6.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.35(\mathrm{comp}, 2 \mathrm{H}), 3.11(\mathrm{app} \mathrm{dt}, J=6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-$ $1.85(\mathrm{comp}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{app} \mathrm{dt}, J=8.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{dd}, J=3.3,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.15$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.5,149.3,144.3,141.9,127.1$, $127.0,125.8,124.4,123.7,121.8,116.3,112.7,74.6,54.0,47.5,31.3,28.8,27.3,25.5,25.3,24.3,23.6,22.5$; $\mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 335.2[\mathrm{M}+\mathrm{H}]^{+}$

Product 7d was further characterized by X-ray crystallography:

The requisite CIF file has been submitted to the journal.

4-(4-methoxyphenyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7e): The reaction was carried out according to the general procedure $\mathrm{A}(0.5 \mathrm{~h})$. The product was obtained as a yellow solid in 57% yield. ($\mathrm{R}_{\mathrm{f}}=0.65$ in DCM); mp: 73 $75{ }^{\circ} \mathrm{C}$; IR (KBr) 3040, 2931, 2833, 1606, 1579, 1509, 1482, 1461, 1392, 1362, $1322,1288,1244,1204,1180,1134,1121,1104,1037,1016,992,835,816,772$, $744,713 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.17-7.09(\mathrm{comp}, 3 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.83(\mathrm{comp}, 2 \mathrm{H}), 6.64(\mathrm{apptt}, J=1.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $4.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{app} \mathrm{td}, J=2.8,8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.83(\mathrm{comp}, 3 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.1$, $143.4,143.1,127.7,126.7,126.0,120.8,116.0,114.1,111.2,77.2,57.6,55.4,47.1,31.9,22.3 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $281.2[\mathrm{M}]^{+}$.

4-(1,2,3,3a-tetrahydropyrrolo[1,2-a]quinazolin-4(5H)-yl)benzonitrile (7f): The reaction was carried out according to the general procedure $\mathrm{C}(15 \mathrm{~h})$. The product was obtained as a white solid in 50% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.51\right.$ in DCM$)$; mp: $116-118{ }^{\circ} \mathrm{C}$; IR (KBr) 3048, 2949, 2838, 2213, 1602, 1513, 1461, 1383, 1175, 820, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.58-7.50(\mathrm{comp}, 2 \mathrm{H}), 7.20(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-$ 6.98 (comp, 3H), 6.77 (app t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=$ $5.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.34(\operatorname{app} \mathrm{td}, J=5.3$,
$8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.91(\mathrm{comp}, 2 \mathrm{H}), 1.78(\operatorname{app} \mathrm{dq}, J=8.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $152.8,144.2,133.1,128.2,125.6,122.1,120.1,119.6,118.0,112.2,103.4,75.0,52.6,46.2,31.2$, 21.5; m / z (ESIMS) $276.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-bromophenyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7g): The reaction was carried out according to the general procedure A $(1.5 \mathrm{~h})$. The product was obtained as a white solid in 65% yield. ($\mathrm{R}_{\mathrm{f}}=0.27$ in $50 \% \mathrm{DCM} / \mathrm{Hex}$); mp: $97-$ $99^{\circ} \mathrm{C}$; IR (KBr) 2967, 2831, 1604, 1578, 1508, 1496, 1483, 1461, 1394, 1362, 1322, $1290,1254,1233,1206,1175,1130,1101,1070,1036,1007,992,842,823,805,744$, $716,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.45-7.38$ (comp, 2H), 7.15 (app t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.00(\mathrm{comp}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\operatorname{app~td}, J=0.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=5.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.31$ (comp, 2H), $2.14-1.85$ (comp, 3H), 1.70 (app ddt, $J=8.3,10.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $149.1,143.4,131.9,127.9,126.8,125.9,120.4,117.7,116.4,111.4,76.4,57.0,47.0,31.7,22.2 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $329.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(2-fluorophenyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7h): The reaction was carried out according to the general procedure $\mathrm{A}(6 \mathrm{~h})$. The product was obtained as a white solid in 50% yield. ($\mathrm{R}_{\mathrm{f}}=0.37$ in 10% Ether/Hex); mp: $80-82^{\circ} \mathrm{C}$; IR (KBr) 3064, 3047, 3023, 2978, 2962, 2937, 2847, 2790, 1604, 1576, 1497, 1483, 1461, 1366, 1327, 1262, 1222, 1196, 1172, 1033, 772, $746 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.22 - 7.02 (comp, 5H), $6.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.31$ (comp, $2 \mathrm{H}), 2.12(\mathrm{ddd}, J=2.6,7.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.86(\mathrm{comp}, 2 \mathrm{H}), 1.69(\mathrm{ddd}, J=8.5,11.0,19.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $160.05,158.08,143.62,136.92,136.84,127.68,127.04,127.02,126.17,126.10$, $125.85,124.39,124.36,120.38,116.25,116.18,116.02,111.54,75.80,55.89,46.88,30.80,22.18 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $267.3[\mathrm{M}-\mathrm{H}]^{+}$.

4-(pyridin-2-yl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7i): The reaction was carried out according to the general procedure $\mathrm{A}(24 \mathrm{~h})$. The product was obtained as a yellow liquid in 35% yield. ($\mathrm{R}_{\mathrm{f}}=0.46$ in $2 \% \mathrm{EtOAc} / \mathrm{DCM}$); IR (film) 3043, 2967, 2815, $1591,1561,1497,1479,1460,1436,1379,1320,1213,1158,1047,977,768,749 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.31-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=2.0,7.2,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.64(\mathrm{comp}, 4 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=5.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{app} \mathrm{td}, J=5.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{app}$ td, $J=5.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{app} \mathrm{tdd}, J=3.1,5.4,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-1.93(\mathrm{comp}, 2 \mathrm{H}), 1.81(\mathrm{ddd}, J=9.2$, $12.2,18.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $159.4,147.8,144.8,137.1,127.8,125.6,123.6,117.9,114.7$, 112.3, 111.4, 73.8, 48.6, 46.0, 31.3, 21.3; m/z (ESIMS) $250.3[\mathrm{M} \mathrm{-} \mathrm{H}]^{+}$.

4-(pyrimidin-2-yl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7j): The reaction was carried out according to the general procedure A $(48 \mathrm{~h})$. The product was obtained as a white solid in 36% yield. ($\mathrm{R}_{\mathrm{f}}=0.17$ in 5% EtOAc/DCM); mp: $105-107^{\circ} \mathrm{C}$; IR (film) 3024, 2960, 2825, 1585, 1547, 1486, 1459, 1371, 1350, 1316, 1280, 1227, 1175, 1156, 797, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.34(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (app t, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=4.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=5.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, 1 H), $3.53(\operatorname{app} \operatorname{td}, J=4.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\operatorname{app} \mathrm{td}, J=7.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.90$ (comp, 2H), $1.89-1.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.7, 157.4, 145.8, 128.0, 125.7, 125.5, 119.0, 112.9, 110.1, 72.8, 45.2, 43.6, 30.6, 20.5; m/z (ESIMS) $253.2[\mathrm{M}+\mathrm{H}]^{+}$.

4-(2-methoxyethyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7k): The reaction was carried out according to the general procedure $B(15 \mathrm{~h})$. The product was obtained as a liquid in 70% yield. ($\mathrm{R}_{\mathrm{f}}=0.27$ in $60 \% \mathrm{EtOAc} / \mathrm{Hex}$); IR (film) 2969, 2874, $1666,1607,1581,1509,1483,1462,1392,1369,1307,1196,1159,1119,960,742$, $716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.08(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.53(\mathrm{comp}, 2 \mathrm{H}), 3.43-3.35(\mathrm{comp}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=8.8,16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{app} \mathrm{dt}, J=5.9,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{app} \mathrm{dt}, J=5.9,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=1.9,7.2,12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.75$ (comp, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 143.2, 127.6, 126.4, 119.0, 115.6, $110.3,78.1,71.0,58.8,55.4,50.6,46.4,31.2,22.2 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 233.4[\mathrm{M}+\mathrm{H}]^{+}$.

4-butyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7l): The reaction was carried out according to the general procedure $\mathrm{B}(24 \mathrm{~h})$. The product was obtained as a colorless oil in 65% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.20\right.$ in $\left.5 \% \mathrm{EtOAc} / \mathrm{DCM}\right)$; IR (film) 2955, 2931, 2869, 2755, $1607,1510,1483,1463,1396,1369,1351,1320,1307,1160,1138,741,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.09(\mathrm{appt}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (app td, $J=0.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.87(\mathrm{comp}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{app}$ td, $J=2.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{app} \mathrm{dt}, J=8.1,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=7.0,8.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{app} \mathrm{tdd}$, $J=3.9,7.7,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.94(\operatorname{app} q d d, J=5.5,7.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{app} \mathrm{tt}, J=8.3$, $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.53(\mathrm{comp}, 2 \mathrm{H}), 1.49-1.30(\mathrm{comp}, 2 \mathrm{H}), 0.97(\operatorname{app} \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $143.1,127.5,126.2,119.5,115.5,110.2,78.4,54.5,52.0,46.4,31.7,29.4,22.3,20.7,13.9 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $231.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-cyclopentyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (7m): The reaction was carried out according to the general procedure $\mathrm{B}(24 \mathrm{~h})$. The product was obtained as an oil in 66% yield. ($\mathrm{R}_{\mathrm{f}}=0.26$ in $10 \% \mathrm{EtOAc} / \mathrm{DCM}$); IR (film) 3043, 2957, 2866, 1607, 1510, 1482, 1462, 1394, 1362, 1323, 1305, 1161, 1133, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.06(\operatorname{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{app} \mathrm{td}, J=0.8,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=4.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}$, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\operatorname{app} \mathrm{p}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.26(\mathrm{comp}, 2 \mathrm{H}), 2.24(\mathrm{app} \mathrm{dt}, J=5.7,11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.78($ comp, 3 H$), 1.77-1.46(\mathrm{comp}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.0$, $127.5,126.1,120.1,115.4,110.1,77.6,60.9,47.9,46.2,32.2,30.0,24.6,23.9,23.2,22.4 ; \mathrm{m} / \mathrm{z}$ (ESIMS) 243.2 $[\mathrm{M}+\mathrm{H}]^{+}$.

5-benzyl-2,3,4,4a,5,6-hexahydro-1H-pyrido[1,2-a]quinazoline (9a): The reaction was carried out according to the general procedure $\mathrm{B}(24 \mathrm{~h})$. The product was obtained as a colorless oil in 65% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.21\right.$ in $\left.2 \% \mathrm{EtOAc} / \mathrm{DCM}\right)$; IR (film) 3060, 3019, 2936, 2853, $1601,1493,1453,1441,1341,1236,1125,1007,747,731,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.34(\mathrm{app} \mathrm{dt}, J=7.3,12.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{dd}, J=5.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=4.1$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{app} \mathrm{t}, ~ J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{app} \mathrm{t}, ~ J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-3.97(\mathrm{comp}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=$ $3.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.6,15.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{comp}, 2 \mathrm{H}), 1.62-1.48(\mathrm{comp}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.54, 139.46, 128.91, $128.23,127.54,127.51,126.88,120.60,117.05,112.25,75.37,56.05,49.27,47.63,29.19,24.87,23.59 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $279.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-benzyl-5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinazoline (9b): The reaction was carried out according to the general procedure $\mathrm{B}(2 \mathrm{~h})$. The product was obtained as an oil in 82% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.33\right.$ in $\left.10 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) 3061, 3025, 2926, 2854, 1602, 1574, $1503,1468,1454,1364,1348,1327,1314,1292,1275,1171,1120,1104,1069,1055,910$, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.34(\mathrm{appt} \mathrm{t}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.14$ $(\operatorname{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=4.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$
$-3.83(\mathrm{comp}, 2 \mathrm{H}), 3.69-3.63(\mathrm{comp}, 2 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=5.5$, $10.8,21.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.77(\mathrm{comp}, 2 \mathrm{H}), 1.70-1.51(\mathrm{comp}, 3 \mathrm{H}), 1.50-1.30(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.65,139.07,129.09,128.22,127.53,127.28,126.95,116.56,114.92,108.93,76.32,57.95$, 47.59, 46.86, 35.65, 26.23, 26.21, 24.82; m/z (ESIMS) $293.2[\mathrm{M}+\mathrm{H}]^{+}$.

6-(4-bromophenyl)-5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]quinazoline (9c): The reaction was carried out according to the general procedure $\mathrm{A}(1.5 \mathrm{~h})$. The product was obtained as a white solid in 90% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.5\right.$ in $\left.50 \% \mathrm{DCM} / \mathrm{Hex}\right) ; \mathrm{mp}: 105-108$ ${ }^{\circ} \mathrm{C}$; IR (KBr) 3064, 2933, 2910, 2852, 1605, 1584, 1511, 1493, 1482, 1471, 1459, 1380, $1365,1350,1297,1263,1236,1214,1171,1152,1115,1058,1009,968,812,739,735$, $711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.36-7.29(\mathrm{comp}, 2 \mathrm{H}), 7.11(\mathrm{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86-6.79(\mathrm{comp}, 2 \mathrm{H}), 6.69-6.58(\mathrm{comp}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=4.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=3.3,6.3,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.01$ -1.82 (comp, 2H), 1.69 (app tdt, $J=6.9,13.6,19.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 148.7, 142.3, 131.8, 127.8, 126.4, 118.9, 117.3, 115.7, 111.9, 110.1, 74.9, 47.0, 46.3, 33.0, 26.3, 25.9, 24.6; m/z (ESIMS) $357.3[\mathrm{M}+1]^{+}$.

6-benzyl-6,6a,7,8,9,10,11,12-octahydro-5H-azocino[1,2-a]quinazoline (9d): The reaction was carried out according to the general procedure $\mathrm{B}(1.5 \mathrm{~h})$. The product was obtained as an oil in 85% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.38\right.$ in $\left.10 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) 3061, 3026, 2921, 2849, 1602, $1574,1500,1463,1452,1365,1346,1323,1293,1218,1176,1151,1103,1071,1027,1016$, 995, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.40-7.34$ (comp, 4 H$), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.19(\mathrm{dd}, J=4.2,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=5.0,12.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.34(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{app} \mathrm{dt}, J=4.4,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{comp}, 3 \mathrm{H}), 3.19-3.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.58(\mathrm{comp}, 7 \mathrm{H}), 1.54-1.30(\mathrm{comp}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 142.46, 139.00, 128.95, $128.20,127.42,127.36,126.92,116.78,115.21,110.06,78.18,57.44,52.35,47.71,35.00,28.26,27.78,26.92$, 26.77; m/z (ESIMS) $307.2[\mathrm{M}+\mathrm{H}]^{+}$.

5-phenyl-5,6,12,13-tetrahydro-4bH-isoquinolino[2,1-a]quinazoline (9e): The reaction was carried out according to the general procedure $\mathrm{C}(12 \mathrm{~h})$ at rt . The product was obtained as a white solid in 99% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.58\right.$ in $\left.10 \% \mathrm{EtOAc} / \mathrm{Hex}\right) ; \mathrm{mp}: 139-141$
${ }^{\circ} \mathrm{C}$; IR (KBr) 3059, 3032, 2963, 2911, 1599, 1581, 1492, 1470, 1450, 1427, 1362, 1342, $1288,1253,1221,1200,1137,1061,1035,985,972,948,873,770,757,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-6.85(\operatorname{comp}, 11 \mathrm{H}), 6.70(\mathrm{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ $(\mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{app} \mathrm{dd}, J=16.6,40.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=4.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, J=4.1,12.7,14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=3.7,16.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.7,143.8,137.3$, $136.5,129.2,128.9,127.6,127.4,126.8,126.3,125.9,122.1,120.7,118.4,118.0,113.6,73.8,46.5,45.2,24.9$; m / z (ESIMS) $313.2[\mathrm{M}+\mathrm{H}]^{+}$.

Product $9 \mathbf{e}$ was further characterized by X-ray crystallography:

The requisite CIF file has been submitted to the journal.

5-benzyl-5,6,12,13-tetrahydro-4bH-isoquinolino[2,1-a]quinazoline (9f): The reaction was carried out according to the general procedure $\mathrm{B}(0.5 \mathrm{~h})$. The product was obtained as a white solid in 64% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.30\right.$ in $\left.60 \% \mathrm{DCM} / \mathrm{Hex}\right)$; IR (film) $3061,3026,2895$, $2848,1602,1576,1493,1455,1382,1346,1326,1291,1264,1221,1145,1109,996,932$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.82(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.23(\mathrm{comp}, 6 \mathrm{H}), 7.18$ (dd, $J=7.6,18.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (app t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=4.1,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{app} \mathrm{t}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\operatorname{app} \mathrm{~s}$, $2 \mathrm{H}), 3.28(\mathrm{app} \mathrm{td}, J=3.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) 144.63, 139.81, 136.74, 136.40, 128.71, 128.38, 128.19, 127.73, 127.39, 127.13, 126.83, 126.75, $126.63,121.01,117.76,112.21,74.80,53.37,49.10,43.57,27.37 ; ~ m / z(E S I M S) 327.2[M+H]^{+}$.

Product 9f was further characterized by X-ray crystallography:

The requisite CIF file has been submitted to the journal.

(9g): The reaction was carried out according to the general procedure $\mathrm{B}(1 \mathrm{~h})$. The product was obtained as a solid in 74% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.24\right.$ in $\left.10 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; mp: 86 $-90{ }^{\circ} \mathrm{C}$; IR (film) 3421, 3058, 3028, 2902, 2844, 1602, 1576, 1490, 1453, 1391, 1337, 1315, 1291, 1265, 1240, 1217, 1139, 1103, 980, 957, $943 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{app} \mathrm{dt}, J=6.7,7.2 \mathrm{~Hz}$, $5 \mathrm{H}), 7.31(\mathrm{app} \mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\operatorname{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{app} \mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=4.4,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00-3.74(\mathrm{comp}, 4 \mathrm{H}), 3.33(\mathrm{ddd}, J=4.0,11.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.4, 139.1, 135.9, 132.7, 128.8, 128.3, 127.7, 127.6, 127.2, 127.1, 122.0, 120.5, $119.4,118.4,118.1,113.2,111.8,111.1,72.2,54.3,48.8,45.0,19.6 ; \mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 364.4[\mathrm{M}-\mathrm{H}]^{+}$.

4-(2-methoxyethyl)-3a-methyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (9h): The reaction was carried out according to the general procedure $B(1 \mathrm{~h})$. The product was obtained as an oil in 60% yield. $\left(\mathrm{R}_{\mathrm{f}}=0.25\right.$ in $\left.30 \% \mathrm{EtOAc} / \mathrm{DCM}\right)$; IR (film) 2967, 2927, 2876, 2830, 2770, 1606, 1580, 1508, 1484, 1461, 1308, 1180, 1142, $1119,1092,998,743,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.08(\mathrm{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\operatorname{app} \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{app} \mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.32(\mathrm{comp}, 4 \mathrm{H}), 2.91(\mathrm{app} \mathrm{dt}, J=6.7,13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.83(\mathrm{comp}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.0,127.4,126.3$, $119.0,115.4,111.5,77.6,72.1,58.9,51.9,50.6,46.6,39.4,21.6,15.7 ; \mathrm{m} / \mathrm{z}($ ESIMS $) 247.3[\mathrm{M}+\mathrm{H}]^{+}$.

4-(1-phenylethyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (9i): The reaction was carried out according to the general procedure $B(15 \mathrm{~h})$. The product was obtained as a mixture of diastereomers in 52% yield, $\mathrm{dr}=59: 41$ determined by integration of one set of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals (δ major $1.49-1.45 \mathrm{ppm}$, $\delta_{\text {minor }} 1.67-1.62$ $\mathrm{ppm}) .\left(\mathrm{R}_{\mathrm{f}}=0.28\right.$ in $\left.1 \% \mathrm{EtOAc} / \mathrm{DCM}\right)$; IR (film) 3026, 2970, 2936, 2875, 2828, 1606, $1581,1509,1483,1460,1395,1373,1321,1304,1159,1132,1106,741,714,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) (major diastereomer) $7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.25(\mathrm{comp}, 4 \mathrm{H}), 6.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ $(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{comp}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=4.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=$ $14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.35(\mathrm{comp}, 3 \mathrm{H}), 2.32(\mathrm{app} \mathrm{dt}, J=5.7,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-1.83(\mathrm{comp}, 3 \mathrm{H}), 1.46(\mathrm{app} \mathrm{t}$, $J=12.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR of the diastereomeric mixture $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.2,143.1,142.8,138.9,128.2$, $128.0,127.9,127.7,127.4,127.3,127.2,126.6,126.0,125.9,120.8,120.2,115.3(6), 115.3(3), 110.3,110.0$, $76.2,76.0,57.5,56.3,47.7,46.5,46.4,32.4,32.2,22.3,22.2,19.1,9.8 ; \mathrm{m} / \mathrm{z}\left(\right.$ ESIMS $279.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-bromophenyl)-5-methyl-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (9j): The reaction was carried out according to the general procedure $A(3 \mathrm{~h})$. The product was obtained as a mixture of diastereomers in 65% yield $\mathrm{dr}=66: 34$, determined by integration of one set of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals (δ major $1.43-1.38 \mathrm{ppm}, \delta_{\text {minor }} 1.31-1.27$ $\mathrm{ppm}) .\left(\mathrm{R}_{\mathrm{f}}=0.21\right.$ in $\left.10 \% \mathrm{EtOAc} / \mathrm{Hex}\right)$; IR (film) 3064, 3035, 2969, 2921, 2864, 2839, $2676,2602,1604,1503,1486,1461,1358,1327,1239,1192,1066,1043,1007,837,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ major diastereomer) $7.42-7.33(\mathrm{comp}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96-6.91$ (comp, 2H), $6.70(\operatorname{app} t, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{app} \mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=5.4,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{q}, ~ J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.33(\mathrm{comp}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.75(\mathrm{comp}, 2 \mathrm{H}), 1.71-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR of the diastereomers $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 148.0,147.4,143.3,142.9$, $132.0,131.5,128.3,128.0,127.6,127.5,126.4,126.0,125.5,124.6,118.4,116.9,116.7,115.8,111.2,111.0$, $77.0(3), 68.8,59.9,58.3,46.6(2), 46.5(9), 32.2,31.0,22.0,21.6,21.4,19.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 343.2[\mathrm{M}+\mathrm{H}]^{+}$.

1,3-dibenzyl-2-phenyl-1,2,3,4-tetrahydroquinazoline (9k): The reaction was carried out according to the general procedure $\mathrm{B}(12 \mathrm{~h})$. The product was obtained as a white solid in 27% yield. $\quad\left(\mathrm{R}_{\mathrm{f}}=0.23\right.$ in $5 \% \mathrm{EtOAc} / \mathrm{Hex}$); mp: $118-120^{\circ} \mathrm{C}$; IR (film) 3083, 3060, 3027,
$2920,2844,1651,1602,1575,1499,1464,1451,1403,1339,1323,1277,1199,1146,1104,1027,951,769$, $742,698,645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.21(\mathrm{comp}, 15 \mathrm{H}), 7.14(\mathrm{appt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{appt}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{comp}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.81$, $141.11,139.02,138.97,128.95,128.58,128.33,128.26,127.79,127.64,127.39,127.25,127.05,127.04$, $126.79,118.26,116.06,109.61,78.05,57.94,51.77,46.97 ; ~ m / z(E S I M S) 391.4[M+\mathrm{H}]^{+}$.

4-(2-(1H-indol-3-yl)ethyl)-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinazoline (10): The reaction was carried out according to the general procedure $\mathrm{B}(12 \mathrm{~h})$. The product was obtained as a white solid in 13% yield. $\quad\left(R_{f}=0.31\right.$ in 50% EtOAc/Hex); mp: $75-78^{\circ} \mathrm{C}$; IR (film) 3409, 3043, 2968, 2856, 1660, 1606, 1572, $1509,1482,1458,1368,1269,1228,1152,1129,1101,1047,1000,960,925 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.03(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.07(\mathrm{comp}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=4.7,20.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.62(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06(\mathrm{dd}, J=5.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=8.8,16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-3.00(\mathrm{comp}, 3 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{app} \mathrm{dt}, J=6.1,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-$ 1.79 (comp, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) 143.2, 136.2, 127.8, 127.4, 126.5, 122.0, 121.6, 119.4, 119.3, $118.7,115.8,114.3,111.1,110.4,78.4,54.7,53.0,46.6,31.8,23.6,22.4 ; \mathrm{m} / \mathrm{z}(\mathrm{ESIMS}) 318.2[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-(pyrrolidin-1-yl)phenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (11): The reaction was carried out according to the general procedure $\mathrm{B}(12 \mathrm{~h})$. The product was obtained as a yellow solid in 21% yield. ($\mathrm{R}_{\mathrm{f}}=0.20$ in $\left.10 \% \mathrm{MeOH} / \mathrm{EtOAc}\right) ; \mathrm{mp}: 184-$ $186^{\circ} \mathrm{C}$; IR (film) $3397,3054,2936,2840,1666,1596,1484,1448,1351,1308,1264$, 1188, 1138, 1096, 1006, 954, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.73 (s, 1H), 7.53 $(\mathrm{dd}, J=2.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{comp}, 2 \mathrm{H}), 7.15-7.07(\mathrm{comp}, 4 \mathrm{H}), 6.90(\mathrm{app} \mathrm{td}, J$ $=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.27(\mathrm{comp}, 2 \mathrm{H}), 3.26-3.19(\mathrm{comp}, 2 \mathrm{H}), 3.17-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.79(\mathrm{comp}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 2.00-1.90(\mathrm{comp}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $149.48,135.74,135.70,134.25,129.74,128.47,127.46,122.09,121.40,119.20,118.44,118.03,110.73$, 109.99, 53.15, 52.94, 43.09, 24.81, 22.70; m/z (ESIMS) $318.2[\mathrm{M}+\mathrm{H}]^{+}$.

Product 11 was further characterized by X-ray crystallography:

The requisite CIF file has been submitted to the journal.

References:

(1) Nijhuis, W. H. N.; Verboom, W.; Abuelfadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 199-209.
(2) Nijhuis, W. H. N.; Leus, G. R. B.; Egberink, R. J. M.; Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1989, 108, 172 - 178.
(3) D'yachenko, E. V.; Glukhareva, T. V.; Nikolaenko, E. F.; Tkachev, A. V.; Morzherin, Yu. Yu. Russ. Chem. Bull. 2004, 53, 1240 - 1247.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{8 d}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{8 k}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 7 a :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 b}$:

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	$\stackrel{90}{\mathrm{f} 1(\mathrm{pPm})}$	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 c}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $7 \mathbf{d}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $7 \mathbf{e}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 f}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 g}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 h}$:

[^0]${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 7 i :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $7 \mathbf{j}$:

1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1
170	160	150	140	130	120	110	100	$\stackrel{90}{90}(\mathrm{pPm})$	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{7 k}$:

1	1	T	1	1	1	T	T	1	1	1	1	1	1	1	1	1		
180	170	160	150	140	130	120	110	100	$\mathrm{f}_{1}(\mathrm{ppm})$	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ NIMR $n \mathrm{f} 7 \mathrm{II}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 7 m :

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 9a:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 b}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 c}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 9d:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $9 \mathbf{e}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 f}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $9 \mathbf{g}$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 h}$:

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}-$ NMR of $9 \mathbf{i}(\mathrm{dr}=59: 41)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 j}(\mathrm{dr}=66: 34)$:

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{9 k}$ (TMS containing CDCl_{3} was used):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 0}$:

1	1	1	1	1	I	1	1	1	1	1	1	1	1	1	1	1	
170	160	150	140	130	120	110	100	${ }^{90}$	80	70	60	50	40	30	20	10	

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 1}$ (TMS containing CDCl_{3} was used):

[^0]:

