Preparation of cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated fullerenes A typical procedure for the preparation of cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated fullerene by the use of α,ω bis(perfluoro-1-methyl-2-oxapentylated) isocyanatoethyl methacrylate butanone oxime adduct - 1-hydroxy-5-adamantylacrylate cooligomers [R_E- $(IEM-BO)_x$ - $(Ad-HAc)_y$ - R_F ; $R_F = CF(CF_3)OC_3F_7$; x : y = 23 : 77; Mn = 8460] is as follows: To an N,N-dimethylformamide [DMF] (20 ml) solution of R_E-(IEM-BO)_y-(Ad-HAc)_y-R_E cooligomer (1.0 g), which was prepared by the cooligomerization of the corresponding monomers and fluoroalkanoyl peroxide according to our previously reported method^[1], was added C_{60} (0.5 mg). The mixture was stirred at 130 °C for 1 hr. After the solvent was evaporated off under reduced pressure, the crude products were reprecipitated from methanolacetone to give cross-linked fluoroalkyl end-capped cooligomeric nanoparticlesencapsulated fullerenes [cross-linked R_F -(IEM), -(Ad-HAc), - R_F / C_{60} ; R_F = CF(CF₃)OC₃F₇] (0.57 g). This nanoparticle exhibited the following FT-IR spectra characteristic: IR(cm⁻¹) 3395 (OH), 1732 (C=O), 1308 (CF₃), 1257(CF₂). Other R_F -(IEM)_x-(Ad-HAc)_y- R_F nanoparticles-encapsulated fullerene were Cross-linked R_F -(IEM)_x-(Ad-HAc)_y- R_F prepared under similar conditions. nanoparticles were also prepared according to our previously reported method^[1]; however, this nanoparticle exhibited a similar FT-IR spectra characteristic as that of R_F -(IEM)_x-(Ad-HAc)_y- R_F nanoparticles-encapsulated fullerene. These results are as follows: | Run | R_F -(IEM-BO) _x -(Ad-HAc) _y - $R_F^{a)}$ (mmol) | C ₆₀
(mg) | Product
Yield ^{b)}
(%) | | |-----|---|-------------------------|---------------------------------------|--| | 1 | 0.12 | 0.5 | 63 | | | 2 | 0.12 | 1 | 49 | | | 3 | 0.12 | 5 | 47 | | | 4 | 0.12 | 10 | 45 | | | 5 | 0.12 | 30 | 70 | | | 6 | 0.12 | 60 | 61 | | a) $R_F = CF(CF_3)OC_3F_7$ Preparation of cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated fullerenes by the use of fluoroalkyl end-capped isocyanato cooligomers A typical procedure for the preparation of cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated fullerene by the use of fluoroalkyl end-capped isocyanato cooligomers is as follows: Perfluoro-2-methyl-3-oxahexanoyl peroxide (2.4 mmol) in 1 : 1 mixed solvents (AK-225) of 1,1-dichloro-2,2,3,3,3-pentafluoropropane and 1,3-dichloro-1,2,2,3,3-pentafluoropropane (15 g) was added to a mixture of isocyanatoethyl acrylate [IEA] (11.9 mmol), *N*-(1,1-dimethyl-3-oxobutyl)acrylamide [DOBAA] (8.7 mmol) and AK-225 (200 g). The solution was stirred at 45 °C for 1 hr under nitrogen, and to this solution was added a homogeneous toluene solution b) Yield based on R_F -(IEM-BO) $_x$ -(Ad-HAc) $_y$ - R_F and C_{60} containing fluoroalkyl end-capped DOBAA oligomer/C₆₀ nanocomposites, which were prepared by stirring well a toluene solution (5.0 ml) of fluoroalkyl end-capped DOBAA homooligomer $[R_F-(DOBAA)_n-R_F; R_F = CF(CF_3)OC_3F_7;$ Mn = 12100 (20 mg)]^[2] and fullerene (20 mg) with a magnetic stirring bar at room temperature for 2 days. Then, water (50 ml) was added to the solution thus obtained, and this solution was stirred at 45 °C for 4 hr under nitrogen. After the removal of solvent, the obtained crude products were washed well with AK-225, which exhibits a good solubility for IEA, DOBAA and R_F-(DOBAA)_n- $R_{\scriptscriptstyle F}$ homooligomer, to afford directly cross-linked fluoroalkyl end-capped cooligomeric nanoparticles-encapsulated fullerene [cross-linked R_F-(IEA)_x- $(DOBAA)_v - R_F / C_{60}$; $R_F = CF(CF_3)OC_3F_7$] (1.63 g). This nanoparticle exhibited the following FT-IR spectra characteristic: IR(cm⁻¹) 1716, 1651, 1551 (C=O, C=ONH), 1310 $(CF_3),$ 1242 (CF₂).Other R_F -(IEM)_x-(DOBAA)_y- R_F nanoparticles-encapsulated fullerene were prepared under similar conditions. Cross-linked R_F -(IEM)_x-(DOBAA)_y- R_F nanoparticles were also prepared under similar conditions; however, this nanoparticle exhibited a similar FT-IR spectra characteristic as that of R_F-(IEM)_x-(Ad-HAc)_y-R_F nanoparticles-encapsulated fullerene. These results are as follows: | Ru | (R _F COO |) ₂ ^{a)} IEA
) (mmol) | DOBAA
(mmol) | C ₆₀ ^{b)}
(mg) | Nanoparticles
Yield ^{c)}
(%) | | |----|---------------------|--|-----------------|---------------------------------------|---|--| | - | 7 2.4 | 11.9 | 8.7 | 20 | 36 | | | : | 3 4.8 | 23.8 | 17.4 | 300 | 63 | | | Ç | 2.4 | 11.9 | 8.7 | 250 | 24 | | a) $R_F = CF(CF_3)OC_3F_7$ - [1] Mugisawa, M.; Ueno, K.; Hamazaki, K.; Sawada, H. *Macromol. Rapid Commun.* **2007**, 28, 733 ~ 739. - [2] Fluoroalkyl end-capped DOBAA homooligomer was prepared according to our previously reported method: Sawada, H.; Yoshino, Y.; Kurachi, M.; Kawase, T.; Takishita, K.; Tanedani, *Polymer* **2000**, *41*, 397 ~ 400. b) R_F -(DOBAA)_n- R_F homooligomer [R_F = $CF(CF_3)OC_3F_7$, Mn = 12100: 20 mg) was used in each case c) Yield based on R_F -(IEM-BO) $_X$ -(Ad-HAc) $_V$ - R_F and C_{60}