
Kinetically-determined crystal structures of undoped and La^{3+} -doped LnF_3

Cunhai Dong[†], Mati Raudsepp[‡] and Frank C.J.M. van Veggel^{*†}

Department of Chemistry, the University of Victoria, P.O. Box 3065, Victoria, British Columbia,

Canada, V8W 3V6, Department of Earth and Ocean Sciences, the University of British

Columbia, Vancouver, British Columbia, Canada, V6T 1Z4

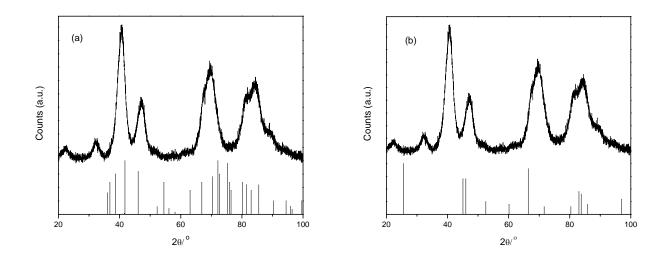


Figure S1. Comparison of XRD patterns of LaF_3 , CeF_3 , and NdF_3 nanoparticles with all the Bragg reflections of LaF_3 (vertical lines at the bottom).

^{*} Corresponding author. E-mail: fvv@uvic.ca

[†] University of Victoria

[‡] University of British Columbia

Figure S2. Comparison of XRD pattern of dysprosium fluoride nanoparticles with all the Bragg reflections of (a) DyF_3 and (b) stoichiometric $NaDyF_4$ (vertical lines at the bottom).

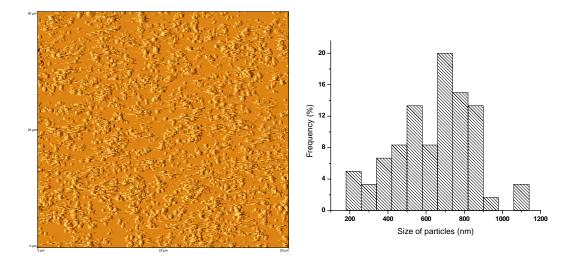
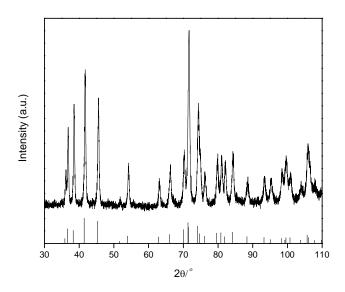



Figure S3. AFM image and size distribution of the submicron-sized GdF₃ particles

Figure S4. XRD pattern of the baked sub-micro GdF₃ particles (vertical bars at bottom are positions of all the Bragg reflections for the orthorhombic GdF₃).

Calculation of the lattice energies of LnF₃

The lattice energies of LnF₃ were calculated using the Born-Haber cycle (Figure S5).

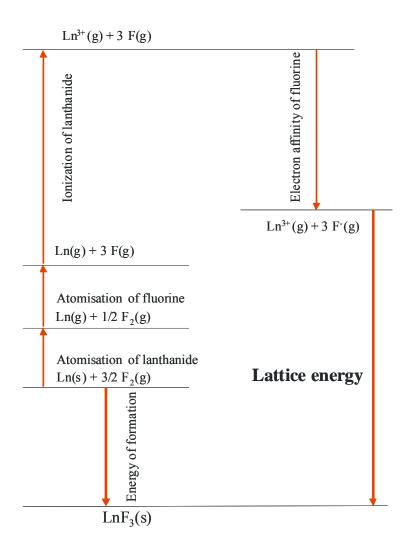


Figure S5. Born-Haber cycle used to calculate the lattice energies of LnF₃

From the above diagram, the following formula is deduced:

$$\Delta H_f = V + \frac{3}{2}B + IE_M - 3EA_X - U_L$$

 $\Delta H_{\rm f}$ is the standard enthalpy of formation

V is the heat of sublimation of Ln metal

 IE_M is the ionization energy of Ln

 EA_x is the electron affinity of F_2

B is the bond energy of F_2

 U_L is the lattice energy

Using this formula, the lattice energies of LnF₃ are calculated and tabulated in Table S1.

	$\Delta H_{\rm f}$	V	IE _M	EA _x	В	UL
	Standard enthalpy of formation	Heat of sublimation of Ln metal	Ionization energy of Ln	electron affinity of F ₂	bond energy of F ₂	Lattice energy
LaF ₃	1701	431	3474	328	159	4861
CeF ₃	1703	423	3549			4930
PrF ₃	1691	356	3650			4952
NdF ₃	1681	328	3719			4983
SmF ₃	1669	207	3904			5035
EuF ₃	1571	175	4055			5056
GdF ₃	1700	398	3769			5122
TbF ₃	1708	389	3810			5162
DyF ₃	1693	290	3927			5165
HoF ₃	1698	301	3949			5203
ErF ₃	1694	317	3953			5219
TmF ₃	1695	232	4046			5228
YbF ₃	1630	152	4215			5252
LuF ₃	1701	428	3924			5308

Table S1. Data from literature¹⁻³ and calculated lattice energies of LnF₃ (unit: kJ/mol)

Data processing for the thermodynamic cycle in Figure 9

Calculations of lattice energies of La^{3+} doped GdF_3 nanoparticles

To calculate the lattice energies of the doped materials, because the trigonal LaF₃ and the orthorhombic GdF₃ have different crystal structures, it is not correct to do a simple weighed average of them. Thus the lattice energies of "trigonal" GdF₃ and "orthorhombic" LaF₃ were calculated by using a least square fit and linearly extrapolating the lattice energies of LaF₃ to SmF₃ and of LuF₃ to EuF₃, respectively. The calculated lattice energies of the "trigonal" GdF₃ and the "orthorhombic" LaF₃ are 5108 kJ/mol, and 4926 kJ/mol, respectively. Specially, the lattice energy of the "trigonal" GdF₃ is very close to that of the orthorhombic GdF₃, 5122 kJ/mol (the difference is < 0.3%), suggesting the possibility of GdF₃ having two phases. To calculate the lattice energies of the doped materials, weighed averaging was applied to the trigonal LaF₃ and the "trigonal" GdF₃ for an assumed trigonal phase, as well as to the "orthorhombic" LaF₃ and the orthorhombic GdF₃ for an assumed orthorhombic phase. The calculated lattice energies are tabulated in Table S2.

Table S2. The calculated	lattice energies of La ³⁻	⁺ doped GdF ₃ . (unit: kJ/mol)

La ³⁺ doping level in GdF ₃	Lattice energies of La ³⁺ doped GdF ₃		
	If orthorhombic structure is taken	If trigonal structure is taken	
5%	5112.2	4873.4	
10%	5102.4	4885.7	
15%	5092.6	4898.1	
20%	5082.8	4910.4	
50%	5024.0	4984.5	
75%	4975.0	5046.3	

In Figure 9a, hydration energy of F^- is -472 kJ/mol, that of La³⁺ is -3155 kJ/mol, and that of Gd³⁺ -3385 kJ/mol.³

Entropies

All the standard entropies are available in the literature,^{1,3} and the following equation was used to calculate the entropy change. The calculated entropy changes are tabulated in Table S3.

 $LnF_3(s)$ ---- $Ln^{3+}(g) + 3F(g)$

Table S3. The standard entropies and the entropy changes of LaF₃ and GdF₃ (unit: J/mol·K)

	Standard Entropy of $LnF_3(s)$	Standard entropy of $La^{3+}(g)$	Standard entropy of F ⁻ (g)	Standard entropy change (ΔS^0)
LaF ₃	107	171	146	502
GdF ₃	117	189		510

A weighed average of the standard entropy changes of LaF₃ and GdF₃ was used for the thermodynamic cycle.

La ³⁺ doping level in GdF ₃	$\Delta G_{reac.}^0$ If orthorhombic	$\Delta G_{reac.}^0$ If trigonal structure
	structure is taken	is taken
5%	-180.7	+68.2
10%	-172.4	+44.3
15%	-174.1	+20.5
20%	-175.8	-3.4
50%	-186.0	-146.0
75%	-194.5	-265.5

Table S4. The calculated Gibbs free energies based on the thermodynamic cycle. (unit: kJ/mol)

The data in Table S4 were used to make the plot in Figure 9b.

References

(1) Handbook on the physics and chemistry of rare earths; Elsevier North-Holland: Amsterdam, 1982;

Vol. 5.

- (2) Lide, D. R. Handbook of Chemistry and Physics; CRC press: Boca Raton, 1996.
- (3) Marcus, Y. Ion Properties; Marcel Dekker: New York, 1997.