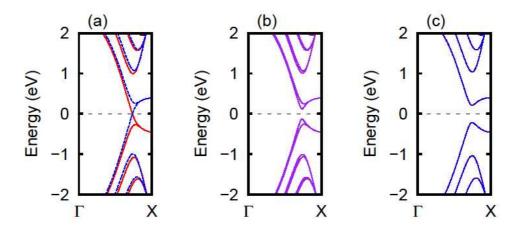
Supporting Information

Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism

Keisuke Sawada¹, Fumiyuki Ishii^{1, 2}, Mineo Saito^{1*},

Susumu Okada^{3, 4}, and Takazumi Kawai⁵


¹Division of Mathematical and Physical Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

²Reserach Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
³Institute of Physics and Center for Computational Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan

⁴Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

⁵Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan

*e-mail: m-saito@cphys.s.kanazawa-u.ac.jp

Figure S1. Band structures of collinear and noncollinear magnetic states in ZGNR. (a), (b) and (c) show the band structure of PIES ($\theta = 0^{\circ}$), CIES ($\theta = 90^{\circ}$) and APIES ($\theta = 180^{\circ}$) states, respectively. In (a) and (b), the red solid and blue dashed lines denote the up and down spin states, respectively. The Fermi level is located at $E_{\rm F} = 0$.