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MATERIALS AND METHODS

Graphene Preparation

Graphene samples are synthesized using a mechanical exfoliation technique similar to 
that described in Ref. 1. We start with a highly-doped Si substrate with 300nm of 
thermally-grown SiO2, cleaned with acetone and isopropyl alcohol. Adhesive scotch tape 
is used to extract and exfoliate a starting piece of bulk Kish graphite (Toshiba Ceramics, 
San Jose, CA). After the graphite has been sufficiently thinned, the tape is pressed against 
the SiO2 surface and gently rubbed with the back of a tweezer for approximately 15s. The 
strength with which the tape is rubbed is varied across the sample surface, resulting in 
distinct FLG regions, some structurally pristine and others disordered. FLG regions of 
varying thickness are selected by visual inspection with an optical microscope.

Details of AFM and EFM measurements

Two different kinds of metal-coated SPM tips are used for AFM and EFM 
measurements: Ti-Pt tips (NSC18, Mikromasch) are characterized by force constant k ~ 
3.5N/m, quality factor Q ~ 250, resonant frequency ω0 ~ 75kHz, tip curvature radius ~ 
40nm; Cr-Au tips (NSC15, Mikromasch) are characterized by k ~ 40N/m, quality factor 
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Q ~ 200, resonant frequency ω0 ~ 325kHz, tip curvature radius ~ 50nm. AFM height 
measurements are done using intermittent contact mode.

Identification of Number of Layers

Previous experiments have indicated the possible presence of a “dead layer” between 
the FLG and the SiO2 substrate that causes AFM measurements of the graphene thickness 
to be increased by up to several angstroms (1). If a dead layer were present, accurate 
identification of the number of layers in the FLG would be complicated. However, the 
number of layers present in a FLG region can be accurately measured by AFM if the film 
contains folds or wrinkles. AFM measurements of a folded FLG region prepared on the 
same chip as our samples indicate that the thickness of the dead layer, if there is one, is 
much smaller than the thickness of a single graphene layer (0.34 nm), so we are able to 
accurately determine the number of graphene layers in our FLG films. An example of this 
is shown in fig. S1. 

EFM Measurements

By convention, the EFM phase shift ∆Φ is measured with respect to the bare substrate 
(i.e. ∆Φ = 0 over a SiO2/Si region with no deposited FLG). Each data point of fig. 3A 
(main text) represents the average of ~5-10 different line scans over the same region (or 
the average of 10-20 line scans taken over two different regions of identical thickness –
see the caption of Figure 3). As explained in detail in Ref. 2, conducting samples exhibit 
a negative phase shift, while insulating samples exhibit a positive phase shift that depends 
on the sample dielectric constant. For electrically floating conducting samples such as 
FLGs, changes in Φ(x,y) (given by equation 1 of the main text) result from changes in 
C"(h), a geometric effect, or changes in the local sample surface electrostatic potential 
Vs(x,y). Because the surface roughness of FLG bulk regions is of order 0.1 – 0.5 nm 
(~0.3% of the tip radius (3)), C"(h) is constant to an excellent approximation, and 
changes in ∆Φ reflect changes in Vs (4).

We conducted multiple control experiments to verify the accuracy and reproducibility 
of the surface potential measurement. Height-dependent EFM measurements (fig. S2A) 
of ∆Φ over the same FLG region at fixed Vtip have a power-law form ∆Φ ~ h-1.6, 
characterized by an exponent between that expected for a cone-plane geometry (C"(h) ~ 
h-1) and a sphere-plane geometry (C"(h) ~ h-2), as seen by others (5). EFM measurements 
of the same FLG region were taken using two different lift heights, with the ∆Φ – Vtip

data shown in Fig S2B. The measured value of Vs is verified to be independent of the lift 
height h, as expected. 
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SUPPORTING TEXT

Outline of Thomas-Fermi Theory

The Thomas-Fermi (TF) theory describes the distribution of layer areal number 
densities σ(z) that are in equilibrium with respect to fluctuations δσ(z). The TF theory 
does not treat the effect of quantum coherence between the layers, and it applies in the 
controlled limit that the interlayer tunneling is tuned to zero. It is accurate when the 
variations of the interlayer potential or equivalently, when the local shift of the Fermi 
energies are large compared to the size of the interlayer hopping amplitudes. 

For doped carriers described by the conical dispersion relation kvkE Fh=)( , an excess 
areal carrier density contributes to the kinetic energy (per unit area) of each layer 

3/2 2/3
iFi vK σπh= .  The doped carriers in each layer also interact with a 

compensating density 0σe−  in the substrate and with the charges in each layer. In the 

continuum limit, the grand potential for this system is 
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where 3/2 Fvhπγ =  and µ is the chemical potential. Minimizing Ω and defining 
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and differentiating twice with respect to the observer coordinate z we obtain the equation 
quoted in the text

2
2

2

)(
~

2
zf

ddz

fd β
=      (S3)

with γπβ 3/4
~ 2e= . The boundary conditions can be determined by considering the 

behavior of the first derivative of eq. S2, along with the constraint of charge conservation
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The solutions of eq. S3 are then obtained by using the conservation law
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and then directly integrating df / dz to find f(z). In terms of a dimensionless variable of 
integration )0(/)( fzfu =  we find
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where )0(/)( fDfrD = . Equation (S6) provides a convenient relation between the 

dimensionless coupling parameter Γ and the screening parameter rD.

Once rD is determined (S2) can be used to find the graphene contribution to the surface 
potential
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The first term on the right hand side is the contribution to the surface potential from the 
charge distribution in the graphene. (0)V  is the potential at the graphene/silica interface 
and is offset from the potential deep in the silica because of the charge distribution in the 
charged acceptor layer. Setting the potential to zero in the silica bulk, we have
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for an areal acceptor density σ0 within depth ds of the interface.  
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SUPPORTING FIGURES

Figure S1. AFM across FLG fold. Height histograms acquired across an unfolded 
FLG/substrate edge (top) and a folded FLG/substrate edge (bottom), for neighboring 
pristine regions of the sample shown in figure 4 of the main text. The height difference 
between the bulk region and the SiO2 is ~2.73 nm, while the height difference between 
the folded region and the SiO2 is ~5.3 nm, almost exactly twice as large. We thus 
conclude that the unfolded region consists of 8 layers (~ 2.73 nm / 0.34 nm, 0.34 nm 
being the thickness of a single graphene layer), and that the thickness of the “dead layer” 
(if any) in this experiment is negligible compared to the interlayer spacing.
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Figure S2.  Results of EFM control experiments.  (A) Negative of EFM phase shift (–
∆Φ) measured as a function of the lift height h, over three different FLG regions 
(different colors). The dashed line indicates the functional form – ∆Φ ~ h-1.6. (B) ∆Φ 
versus tip voltage Vtip for the same FLG region of height ~6.1nm (18 layers), for lift 
heights h = 30nm and 50nm. The measured ∆Vs = Vs −Vs

max = 0.02 ± 0.06 V agrees well 
with data in figure 3 of the main text, and confirms that the measured value of Vs is not 
sensitive to the lift height h. 


