Supporting Information:

Annulations of Enantioenriched Allenylsilanes with In Situ Generated Iminium Ions: Stereoselective Synthesis of Diverse Heterocycles

Ryan A. Brawn and James S. Panek*

Department of Chemistry and Center for Chemical Methodology and Library Development, Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

General Information:

All reactions were carried out in oven or flame dried glassware under an atmosphere of argon or nitrogen and using standard techniques for handling air sensitive materials. All solvents were reagent grade. Boron triflouride diethyl etherate was freshly distilled from calcium hydride before use. Trimethylsilyltriflouromethanesulfonate was freshly distilled before use. All other reagents were purchased from Aldrich of Alfa Aesar and used as supplied. All reactions were magnetically stirred and monitored by thin layer chromatography using Macherey-Nagel 0.20 mm silica gel 60 plates. Flash chromatography was performed with silica gel 60 (particle size $0.032-0.063 \mathrm{~mm}$) provided by Sorbent Technologies. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using an internal deuterium lock at ambient temperature on a Varian 400 MHz spectrometer. An internal reference of 7.24 was used for $\delta_{\mathrm{H}} \mathrm{CDCl}_{3}$. Data are presented as follows: chemical shift (on a δ scale relative to $\delta_{\mathrm{TMS}}=0$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet), coupling constant (J / Hz), and integration. Carbon-13 NMR spectra were recorded on a Varian 75 MHz spectrometer. An internal reference of $\delta_{\mathrm{C}} 77.00$ was used for CDCl_{3}. All 2D spectra (Apt, HMBC, HSQC) were recorded on a Varian 400 MHz spectrometer. Infrared spectra were recorded on a Nexus 670 FT-IR spectrophotometer. Optical rotations were recorded on an Autopol III digital polarimeter at 589 nm and reported as follows: $[\alpha]_{\mathrm{D}}^{20}$, concentration (c in $\mathrm{g} / 100 \mathrm{~mL}$) and solvent. High resolution mass spectra were obtained on a Waters Q-TOF mass spectrometer in the Boston University Mass Spectrometry Laboratory.

Experimental Procedures:

Methyl 2-((4S,5S)-3-(dimethyl(phenyl)silyl-4-methyl-5-phenyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2a): A solution of benzaldehyde ($0.064 \mathrm{~g} ., 0.6 \mathrm{mmol}$) and tert-butyl carbamate (0.070 g., 0.6 mmol) in propionitrile (3 mL) was chilled to $-78{ }^{\circ} \mathrm{C}$. Boron triflouride diethyl etherate $(0.15 \mathrm{~mL}$, 1.2 mmol) was added slowly, followed by a solution of S-methyl 3-(dimethyl(phenyl)silyl)hexa-3,4-dienoate ($\boldsymbol{S}_{\boldsymbol{a}} \mathbf{- 1}$) (0.130 g ., 0.5 mmol) in propionitrile (2 mL) and the reaction was immediately warmed to $-40^{\circ} \mathrm{C}$. The reaction was stirred for 3 days at $-40{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated sodium bicarbonate, and extracted with diethyl ether (2 X 5 mL). The combined organic layers were washed with
water, dried with magnesium sulfate, filtered and evaporated. Purification over silica gel (gradient elution 10:1 to 10:3 hexanes: ethyl acetate) yields $\mathbf{2 a}$ (0.122 g ., $0.334 \mathrm{mmol}, 67$ \% yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66$ (m, 2H), 7.42 (m, $3 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}$, $\mathrm{J}=17.2,46.3,2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,157.4,151.3,138.8,136.8,133.9,129.4,128.6,128.2,128.0$, $125.8,106.6,56.0,51.8,35.8,32.4,11.0$, $-1.5,-2.4$; IR (film) $v_{\max } 3253,2952,1724$, $1634,1454 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 366.1889$, found: 366.1910; $[\alpha]_{\mathrm{D}}^{20}+64.8\left(\mathrm{c} 3.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl
2-((4S,5S)-5-(2-bromophenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2b): Same procedure as 2a using 2bromobenzaldehyde (0.111 g., 0.6 mmol) yields $\mathbf{2 b}(0.183 \mathrm{~g}$., $0.412 \mathrm{mmol}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=4.4,1 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=17.2,22.0,2 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 0.56(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H})$, 0.43 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,156.8,151.4,137.8,136.0,134.1$, $133.3,129.6,129.3,128.2,128.0,127.5,122.3,107.8,55.8,51.7,32.9,32.3,12.2,-1.3$, 1.6; IR (film) $v_{\max } 3244,2953,1722,1632,1428 \mathrm{~cm}^{-1}$; HRMS(CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NBrSi}[\mathrm{M}+\mathrm{H}]^{+} 444.0994$, found: 444.0974; $[\alpha]_{\mathrm{D}}^{20}+64.8\left(\mathrm{c} 3.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl
2-((4S,5S)-5-(2,3-dimethoxyphenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H -pyrrol-2-yl)acetate (2c): Same procedure as 2a using 2,3dimethoxybenzaldehyde (0.100 g ., 0.6 mmol) yields 2 c (0.128 g., $0.301 \mathrm{mmol}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $(\mathrm{m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=8.0,1 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}) 3.23(\mathrm{dd}, \mathrm{J}=17.2,42.0,2 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 0.54(\mathrm{~d}$, $\mathrm{J}=6.8,3 \mathrm{H}), 0.51(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.6,157.4,152.5$, 151.4, 146.1, 137.7, 134.0, 130.6, 129.2, 127.8, 124.0, 118.0, 112.1, 107.2, 60.3, 55.7, $51.8,51.7,33.9,32.8,11.4,-1.6,-2.1$; IR (film) $v_{\max } 3248,2951,2838,1722,1633,1480$, $1430 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 426.2101$, found: 426.2074; $[\alpha]_{\mathrm{D}}^{20}+17.2\left(\mathrm{c} 5.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((4S,5S)-5-(2-nitrophenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2d): Same procedure as 2a using 2nitrobenzaldehyde (0.091 g ., 0.6 mmol) yields $2 \mathrm{~d}(0.102 \mathrm{~g}$., $0.248 \mathrm{mmol}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.95(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=4.4,1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 3.34 (dd, J=17.2, 26.4, 2H), 3.21 (m, 1H), 0.59 (s, 3H), 0.53 (d, J=7.2, 3H), 0.42 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,156.0,151.4,148.5,137.5,134.0,133.3,132.3$, $129.3,129.2,128.9,127.8,125.3,109.0,52.6,51.8,33.6,32.9,12.0,-1.7,-2.5$; IR (film)
$v_{\max } 3245,2952,2250,1721,1632,1525,1348,1160 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 411.1740$, found: 411.1750; $[\alpha]_{\mathrm{D}}^{20}+66.6\left(\mathrm{c} 5.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((4S,5S)-3-(dimethyl(phenyl)silyl)-4-methyl-5-p-tolyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2e): Same procedure as 2 a using p-tolylaldehyde (0.072 g ., 0.6 $\mathrm{mmol})$ yields $2 \mathrm{e}\left(0.127 \mathrm{~g} ., 0.335 \mathrm{mmol}, 67 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.02(\mathrm{~d}, \mathrm{~J}=8.0,2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.0,2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=3.2,1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.46 (dd, J=17.2, 46.4, 2H), $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.43$ (s, 3H), 0.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7$, 157.6, 151.1, 138.9, 137.9, 133.9, $133.8,129.4,129.3,128.2,125.8,106.6,55.9,51.8,35.9,32.4,21.0,11.0,-1.6,-2.4$; IR (film) $v_{\text {max }} 3247,2952,1726,1635,1319,1165 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 380.2046$, found: 380.2078; $[\alpha]_{\mathrm{D}}^{20}+71.4$ (c 2.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Methyl (dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2f): Same procedure as 2a using 4chlorobenzaldehyde (0.084 g ., 0.6 mmol) yields 2 f (0.137 g., $0.343 \mathrm{mmol}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H})$, 5.15 (s, 1H), 4.25 (d, J=3.2, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (dd, J=17.2, 59.2, 2H), $2.57(\mathrm{~m}, 1 \mathrm{H})$, $0.70(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6$, 157.1, 151.6, 138.9, 135.3, 133.8, 133.7, 129.4, 128.7, 128.2, 127.2, 106.8, 55.5, 51.8, $35.7,32.3,10.9,-1.6,-2.5$; IR (film) $v_{\max } 3249,2953,1722,1636,1319,1163 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{NClSi}[\mathrm{M}+\mathrm{H}]^{+}$400.1500, found: 400.1500; $[\alpha]_{\mathrm{D}}^{20}+83.3\left(\mathrm{c} 3.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((4S,5S)-5-(3,5-bis(triflouromethyl)phenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H -pyrrol-2-yl)acetate (2g): Same procedure as 2a using 3,5-bis(triflouromethyl)benzaldehyde (0.145 g., 0.6 mmol) yields $2 \mathrm{~g}\left(0.145 \mathrm{~g} ., 0.289 \mathrm{mmol}, 58 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H})$, $7.45(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}$, $\mathrm{J}=17.2,59.6,2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,156.1,151.6,139.7,138.9,133.8,132.1,131.8,129.9,128.5$, $126.4,124.3,122.1,121.6,108.4,55.4,51.9,35.1,32.3,11.0,-1.7,-2.8$; IR (film) $v_{\max }$ $3249,2956,1732,1637,1380,1277,1171,1132 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{NF}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 502.1637$, found: 502.1634; $[\alpha]_{\mathrm{D}}^{20}+69.3$ (c 2.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Methyl 2-((4S,5R)-5-butyl-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2h): Same
procedure as 2a using valeraldehyde ($0.052 \mathrm{~g} ., 0.6 \mathrm{mmol}$) yields $\mathbf{2 h}(0.099 \mathrm{~g} ., 0.211$ $\mathrm{mmol}, 57$ \% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 4.82(\mathrm{~s}$, $1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=17.2,48.8,2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 4 \mathrm{H})$, $0.80(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.70(\mathrm{~m}, 5 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 172.7,158.3,151.3,138.5,133.7,129.3,128.0,105.5,51.8,51.7,32.4,31.9$, $30.5,26.5,22.2,13.9,9.9,-1.7,-2.1$; IR (film) $v_{\max } 3255,2954,2872,1725,1633,1163$ cm^{-1}; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$346.2202, found: 346.2220; $[\alpha]_{\mathrm{D}}^{20}+71.2\left(\mathrm{c} 3.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((4S,5R)-3-(dimethyl(phenyl)silyl)-4-methyl-5-phenethyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2i): Same procedure as 2a using hydrocinnamaldehyde (0.081 g ., 0.6 mmol) yields $\mathbf{2 i}(0.094 \mathrm{~g} ., 0.239 \mathrm{mmol}, 49$ $\%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{J}=17.2$, $43.2,2 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H})$, 0.44 (s, 3H), 0.32 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7$, 158.0, 151.2, 140.3, $138.5,133.7,129.4,128.5,128.2,128.1,126.2,105.8,51.8,51.8,32.6,32.4,32.2,30.8$, $10.0,-1.7,-2.1$; IR (film) $v_{\max } 3253,2950,1724,1633,1161 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 394.2202$, found: 394.2231; $[\alpha]_{\mathrm{D}}^{20}+53.1$ (c 1.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Methyl 2-((4S,5R)-3-(dimethyl(phenyl)silyl)-4-methyl-5-isopropyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2j): Same procedure as 2 a using isobutyraldehyde ($0.043 \mathrm{~g} ., 0.6 \mathrm{mmol}$) yields $2 \mathbf{j}$ (0.054 g ., $0.163 \mathrm{mmol}, 33$ \% yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 3.65$ (s, 3H), 3.37 (dd, 2H), 3.64 (dd, J=17.2, 52.41 H$), 2.55(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~d}$, $\mathrm{J}=6.4,3 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.7,158.2,151.3,138.5,133.7,129.3,128.0,105.4,58.5,51.8$, 51.7, 32.4, 31.7, 28.3, 19.1, 17.5, 10.0, -1.7, -2.1; IR (film) $v_{\max } 3269,2967,2901,1723$, 1633, $1165 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 332.2046$, found: 332.2020; $[\alpha]_{\mathrm{D}}^{20}+62.1\left(\mathrm{c} 2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((4S,5R)-5-cyclohexyl-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2k): Same procedure as 2 a using cyclohexanecarboxaldehyde (0.067 g ., 0.6 mmol) yields 2 k ($0.068 \mathrm{~g} ., 0.183 \mathrm{mmol}, 37 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 5.10$ $(\mathrm{s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=17.2,57.2,2 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}$, $4 \mathrm{H}), 1.00(\mathrm{~m}, 6 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.70(\mathrm{~m}, 5 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,158.3,151.0,138.5,133.8,129.3,128.0,105.5,57.1$, $51.8,37.1,32.3,31.1,29.3,27.3,25.9,25.3,25.2,10.1,-1.7,-2.0$; IR (film) $v_{\max } 2925$,

2851, 1725, 1633, $1157 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$ 372.2359, found: 372.2361 ; $[\alpha]_{D}^{20}+43.7\left(c 2.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-(dimethyl(phenyl)silyl)-3-((4S,5S)-2-methoxy-5-methyl-4-phenyl-4H-1,3-oxazin-6(5H)-ylidene)propanoate (3a): A solution of benzaldehyde ($0.064 \mathrm{~g} ., 0.6 \mathrm{mmol}$), methyl carbamate $(0.045 \quad$ g., 0.6 mmol$)$ and S-methyl 3-(dimethyl(phenyl)silyl)hexa-3,4-dienoate ($\boldsymbol{S}_{a} \mathbf{- 1}$) (0.130 g., 0.5 $\mathrm{mmol})$ in dichloromethane $(1.0 \mathrm{~mL})$ was chilled to $-60{ }^{\circ} \mathrm{C}$. Trimethylsilyltriflouromethanesulfonate ($0.116 \mathrm{~mL}, 0.6 \mathrm{mmol}$) was added slowly, and the reaction was stirred 48 hours at $-60^{\circ} \mathrm{C}$. The reaction was quenched with saturated sodium bicarbonate, and extracted with dichloromethane (2 X 5 mL). The combined organic layers were washed with water, dried with magnesium sulfate, filtered and evaporated. Purification over silica gel ($97: 3$ hexanes: ethyl acetate) yields 3 a (0.133 g ., $0.314 \mathrm{mmol}, 63 \%$ yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~m}$, $2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=2.4,2 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 0.49(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,159.2,150.5,140.8,138.7,133.7,129.2,128.1,127.9$, $126.5,126.4,103.9,57.0,55.0,51.7,35.3,32.1,11.0,-1.5,-2.0$; IR (film) $v_{\max } 3023$, 2951, 1738, 1686, 1643, 1438, 1284, $1166 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 424.1944$, found: 424.1940; $[\alpha]_{\mathrm{D}}^{20}+115.2$ (c 2.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(E)-Methyl

3-((4S,5S)-4-(2-bromophenyl)-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)-ylidene)-3(dimethyl(phenyl)silyl)propanoate (3b): Same procedure as 3a using 2-bromobenzaldehyde (0.111 g ., 0.6 mmol) yields 3b (0.204 g., $0.406 \mathrm{mmol}, 81$ \% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.4,1 \mathrm{H}), 7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,158.4,150.7,139.8,138.0,134.0,132.3,130.3,129.1,128.3$, $127.8,126.8,122.2,105.1,57.5,54.8,51.6,32.6,31.9,12.1,-1.3,-1.4$; IR (film) $v_{\max }$ 3067, 2950, 1738, 1686, 1638, 1439, 1294, $1164 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NBrSi}[\mathrm{M}+\mathrm{H}]^{+} 502.1049$, found: 502.1066; $[\alpha]_{\mathrm{D}}^{20}+115.2\left(\mathrm{c} 2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-((4S,5S)-4-(2,3-dimethoxyphenyl)-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)-ylidene)-3(dimethyl(phenyl)silyl)propanoate (3c): Same procedure as 3a using 2,3-dimethoxybenzaldehyde ($0.100 \mathrm{~g} ., 0.6 \mathrm{mmol}$) yields $3 \mathbf{c}$ (0.130 g., $0.269 \mathrm{mmol}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}$,
$\mathrm{J}=8.01 \mathrm{H}), 6.81(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.85$, ($\mathrm{s}, 3 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H})$,
$0.51(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7$, 159.1, 152.1, 150.6, 146.0, 138.0, 134.6, 134.0, 129.0, 127.7, 123.3, 120.7, 110.9, 104.7, $60.0,55.6,54.8,53.7,51.6,33.5,32.6,11.6,-1.6,-2.0$; IR (film) $v_{\max } 2951,2837,1738$, 1691, 1478, 1438, 1286, $1166 \mathrm{~cm}^{-1}$; HRMS(CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{NSi}$ $[\mathrm{M}+\mathrm{H}]^{+} 484.2155$, found: 484.2137; $[\alpha]_{\mathrm{D}}^{20}+40.0\left(\mathrm{c} \mathrm{1.0}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-(dimethyl(phenyl)silyl)-3-((4S,5S)-2-methoxy-5-methyl-4-(2-nitrophenyl)-4H-1,3-oxazin-6(5H)ylidene)propanoate (3d): Same procedure as 3a using 2nitrobenzaldehyde (0.091 g., 0.6 mmol) yields $2 \mathbf{2 d}(0.135 \mathrm{~g} .$, $0.288 \mathrm{mmol}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ $(\mathrm{m}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H})$, $5.31(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.82$, ($\mathrm{s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=16.8$, $10.0,2 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 0.55(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,157.7,150.9,148.2,137.9,136.0,134.0,132.5,130.9,129.1$, $127.8,127.8,124.5,106.0,54.9,54.4,51.7,33.4,32.6,11.8,-1.7,-2.5$; IR (film) $v_{\max }$ 3070, 2951, 1738, 1691, 1525, 1441, 1295, $1165 \mathrm{~cm}^{-1}$; HRMS(CI, $\left.\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 469.1795$, found: 469.1804; $[\alpha]_{\mathrm{D}}^{20}-50.0$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(E)-Methyl 3-((4S,5S)-4-(4-chlorophenyl)-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)-ylidene)-3(dimethyl(phenyl)silyl)propanoate (3e): Same procedure as 3a using 4-chlorobenzaldehyde (0.084 g., 0.6 mmol) yields 3 e (0.136 g., $0.297 \mathrm{mmol}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.63(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H}), 3.84$, $(\mathrm{s}, 3 \mathrm{H}), 3.69$ (s, 3H), $3.39(\mathrm{~d}, \mathrm{~J}=6.4,2 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 0.47(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,158.8,150.7,139.4,138.8,133.7,132.1,129.3$, $128.1,128.0,127.9,104.2,56.6,55.0,51.8,35.1,32.1,10.9,-1.6,-2.1$; IR (film) $v_{\max }$ 2951, 1738, 1686, 1644, 1490, 1439, 1290, $1166 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NSiCl}[\mathrm{M}+\mathrm{H}]^{+} 458.1554$, found: 458.1547; $[\alpha]_{\mathrm{D}}^{20}+92.5\left(\mathrm{c} 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-((4R,5S)-4-butyl-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)-ylidene)-3-(dimethyl(phenyl)silyl)propanoate (3f): Same procedure as 3a using valeraldehyde (0.052 g., 0.6 $\mathrm{mmol})$ yields $3 \mathrm{f}\left(0.123 \mathrm{~g} ., 0.305 \mathrm{mmol}, 61 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 3.70$, $(\mathrm{s}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=3.2,2 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H})$, $1.35(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~m}, 5 \mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H})$ 0.43 (s, 3H), $0.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9$, 160.1, 149.3, 138.6, 133.7, 129.1, 127.9, 102.8, 54.7, 54.1, 51.7, 33.1, 32.3, 32.2, 27.7, 22.5, 14.0, 10.3, -1.7, 1.8; IR (film) $v_{\max }$ 2953, 2860, 1740, 1687, 1437, 1283, $1166 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 404.2257$, found: 404.2224; $[\alpha]_{\mathrm{D}}^{20}+59.1\left(\mathrm{c} 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-(dimethyl(phenyl)silyl)-3-((4R,5S)-2-methoxy-5-methyl-4-phenethyl-4H-1,3-oxazin-6(5H)ylidene)propanoate (3g): Same procedure as 3a using hydrocinnamaldehyde (0.081 g ., 0.6 mmol) yields $\mathbf{3 g}(0.086$ g., $0.190 \mathrm{mmol}, 38 \%$ yield). $).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 3.72$, $(\mathrm{s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H})$, $2.26(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 0.72(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}) 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,159.8,149.5,142.1,138.6,133.7,129.2,128.3,128.2,127.9$, $125.6,103.1,54.8,53.8,51.7,35.0,32.7,32.2,31.9,10.6,-1.7,-1.8$; IR (film) $v_{\max } 3025$, 2950, 1738, 1686, 1438, 1285, $1164 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NSi}$ $[\mathrm{M}+\mathrm{H}]^{+} 452.2257$, found: 452.2233; $[\alpha]_{\mathrm{D}}^{20}+94.3\left(\mathrm{c} 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-(dimethyl(phenyl)silyl)-3-((4R,5S)-4-isopropyl-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)ylidene)propanoate (3h): Same procedure as 3a using isobutyraldehyde ($0.043 \mathrm{~g} ., 0.6 \mathrm{mmol}$) yields $3 \mathrm{~h}(0.091 \mathrm{~g} ., 0.234$ $\mathrm{mmol}, 48 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 3.71$, ($\mathrm{s}, 3 \mathrm{H}$), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{J}=17.2$, $12.0,2 H), 3.50(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.4,3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.8$, $3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9$, $160.3,149.2,138.6,133.7,129.1,127.9,102.7,60.7,54.7,51.7,32.1,31.3,30.2,20.0$, $18.1,10.4,-1.7,-1.8$; IR (film) $v_{\max } 2956,2872,1740,1691,1438,1287,1200,1167 \mathrm{~cm}^{-}$ ${ }^{1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$390.2101, found: 390.2092; $[\alpha]_{\mathrm{D}}^{20}+93.7\left(\mathrm{c} 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(E)-Methyl 3-(dimethyl(phenyl)silyl)-3-((4R,5S)-4-cyclohexyl-2-methoxy-5-methyl-4H-1,3-oxazin-6(5H)ylidene)propanoate (3i): Same procedure as 3a using cyclohexanecarboxaldehyde ($0.067 \mathrm{~g} ., 0.6 \mathrm{mmol}$) yields $\mathbf{3 i}$ (0.104 g., $0.242 \mathrm{mmol}, 48$ \% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}$, $3 \mathrm{H}), 3.70,(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, \mathrm{J}=17.2,10.8,2 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.25(\mathrm{~d}, \mathrm{~J}=13.2,1 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~m}, 6 \mathrm{H}) 0.66(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.41$ $(\mathrm{s}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,160.3,149.2$, $138.6,133.7,129.1,127.9,102.6,59.3,54.6,51.7,39.3,32.1,30.8,30.2,28.5,26.6,25.9$, $25.9,10.4,-1.7,-1.8$; IR (film) $v_{\max }$ 2925, 2850, 1740, 1689, 1641, 1438, 1286, 1200, $1166 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 430.2414$, found: 430.2440; $[\alpha]_{\mathrm{D}}^{20}+94.5\left(\mathrm{c} 2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-((4S,5S)-3-(dimethyl(phenyl)silyl)-4-methyl-5-phenyl-4,5-dihydro-1H-pyrrol-2-yl)ethanol (4a): A solution of Methyl 2-((4S,5S)-3-(dimethyl(phenyl)silyl-4-methyl-5-phenyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2a) ($0.92 \mathrm{~g} ., 2.52 \mathrm{mmol}$) in DCM (15 mL) was chilled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in DCM, $10.08 \mathrm{~mL}, 10.08 \mathrm{mmol}$) was added dropwise, and the solution was slowly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred 12 hours. The reaction was quenched by pouring onto a rapidly stirring mixture of sat. aqueous Rochelle's salt and DCM. The organics are extracted with DCM (3 X 5 mL), washed with sat. NaHCO_{3}, then water, dried with MgSO_{4}, filtered and concentrated under vacuum. Purification over silica gel ($98: 2 \mathrm{DCM}: \mathrm{MeOH}$) yields $\mathbf{4 a}$ (0.64 g., $1.90 \mathrm{mmol}, 75 \%$ yield) as a viscous clear oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.57(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H})$, $3.69(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 0.67(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H})$, 0.40 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.8,151.7,139.2,137.0,133.7,129.4$, $128.6,128.2,128.0,125.8,110.4,62.5,56.3,35.9,31.1,11.3,-1.0$, -1.9 ; IR (film) $v_{\max }$ $3400,3259,2954,2878,1723,1632,1455,1172 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ONSi}[\mathrm{M}+\mathrm{H}]^{+} 338.1940$, found: 338.1970; $[\alpha]_{\mathrm{D}}^{20}+50.0\left(\mathrm{c} 3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-((4S,5S)-5-(2-bromophenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)ethanol (4b): The same procedure as 4 a using Methyl 2-((4S,5S)-5-(2-bromophenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H -pyrrol-2yl)acetate ($\mathbf{2 b}$) (1.20 g., 2.70 mmol), yields $\mathbf{4 b}(0.75 \mathrm{~g} .1 .80$ $\mathrm{mmol}, 67 \%$ yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.32(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.61(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 0.59(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.1,151.9,138.2,136.1,133.9,133.3,129.6,129.3,128.2,128.0$, $127.5,122.3,111.2,62.2,56.0,32.3,31.6,12.4,-0.9$, -1.1 ; IR (film) $v_{\max } 3400,3253$, 2953, 1721, 1628, 1387, $1171 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ONSiBr}$ $[\mathrm{M}+\mathrm{H}]^{+} 416.1045$, found: 416.1078; $[\alpha]_{\mathrm{D}}^{20}+4.1$ (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

2-((4S,5R)-5-butyl-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1H-pyrrol-2-yl)ethanol (4c): The same procedure as 5a using Methyl 2-((4S,5R)-5-butyl-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H-pyrrol-2-yl)acetate (2 h) ($0.51 \mathrm{~g} ., 1.48$ $\mathrm{mmol})$, yields $4 \mathrm{c}(0.37 \mathrm{~g} ., 1.17 \mathrm{mmol}, 79 \%$ yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 3.65$ $(\mathrm{m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 4 \mathrm{H}), 0.71(\mathrm{~m}$, $8 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.8,151.8,138.8,133.5$, $129.2,128.0,109.0,62.5,52.0,31.9,31.1,30.5,26.5,22.2,13.9,10.1,-1.3,-1.7$; IR (film) $v_{\max } 3400,3259,2955,2872,1725,1631,1391,1177 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{ONSi}[\mathrm{M}+\mathrm{H}]^{+} 318.2253$, found: 318.2265; $[\alpha]_{\mathrm{D}}^{20}+62.5\left(\mathrm{c} 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2S, 3R, 4R)-3-methyl-2,4-diphenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5a): A solution of 2-((4S,5S)-

3-(dimethyl(phenyl)silyl)-4-methyl-5-phenyl-4,5-dihydro-1 H -pyrrol-2-yl)ethanol (4a) (0.048 g., 0.142 mmol$)$ and benzaldehyde (0.030 g ., 0.284 mmol) in DCM (1 mL) was chilled to $-20{ }^{\circ} \mathrm{C}$. Trimethylsilyltriflouromethanesulfonate (33 $\mu \mathrm{L}, 0.171 \mathrm{mmol}$) was added slowly, and the resulting solution was stirred for 12 hours at $-20^{\circ} \mathrm{C}$. The reaction was quenched with saturated sodium bicarbonate, and extracted with dichloromethane (2 X 5 mL). The combined organic layers were washed with water, dried with magnesium sulfate, filtered and evaporated. Purification over silica gel (90:10 DCM: ethyl acetate) yields 5 a (0.037 g., $0.127 \mathrm{mmol}, 89 \%$ yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H})$, 0.76 (d, J=6.8, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8,143.5,141.0,136.8,128.8$, $128.7,128.6,128.1,128.1,125.8,121.9,80.6,67.7,56.2,32.9,30.1,10.4$; IR (film) $v_{\max }$ 3274, 2980, 2892, 1747, 1706, 1455, $1235 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$292.1701, found: 292.1729; $[\alpha]_{\mathrm{D}}^{20}+97.0\left(\mathrm{c} 3.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($2 S, \quad 3 R, \quad 4 R$)-2-(2-bromophenyl)-3-methyl-4-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5b): Same procedue as $\mathbf{5 a}$ using 2-((4S,5S)-5-(2-bromophenyl)-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H -pyrrol-2$\mathrm{yl})$ ethanol ($\mathbf{4 b}$)($0.044 \mathrm{~g} ., 0.106 \mathrm{mmol})$ and benzaldehyde (0.022 g., 0.212 mmol) yields $\mathbf{5 b}(0.037 \mathrm{~g} ., 0.100 \mathrm{mmol}, 94 \%$ yield) as a viscous yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 151.4,143.5,140.6,135.8,133.4,129.7,129.2,128.6,128.3,127.6,127.5$, $122.5,122.1,80.5,67.2,55.6,30.3,29.6,11.7$; IR (film) $v_{\max } 3265,2980,1751,1708$, 1457, $1226 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ONBr}[\mathrm{M}+\mathrm{H}]^{+} 370.0807$, found: 370.0822; $[\alpha]_{\mathrm{D}}^{20}+119.2$ (c 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

($2 R, \quad 3 R, \quad 4 R$)-2-butyl-3-methyl-4-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5c): Same procedure as 5a using 2-((4S,5R)-5-butyl-3-(dimethyl(phenyl)silyl)-4-methyl-4,5-dihydro-1 H -pyrrol-2-yl)ethanol (4c)(0.065 g., 0.205 mmol) and benzaldehyde $(0.041 \mathrm{~g} ., 0.410 \mathrm{mmol})$ yields $5 \mathbf{c}(0.052 \mathrm{~g}$. , $0.192 \mathrm{mmol}, 93 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.28(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{q}, 1 \mathrm{H}), 2.94(\mathrm{~m}$, $2 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}) 0.73,(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9,144.4,140.7,128.7,128.5,127.8,120.5,80.5,67.5$, $51.5,30.2,29.9,28.8,26.5,21.9,13.9,9.4$; IR (film) $v_{\max } 3256,3133,2933,2870,1741$, 1705, 1456, 1387, $1053 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$ 272.2014, found: 272.2054; $[\alpha]_{\mathrm{D}}^{20}+44.2\left(\mathrm{c} 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2S, 3R, 4S)-4-(2-bromophenyl)-3-methyl-2-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5d): Same procedure as 5 a using $4 \mathrm{a}(0.055 \mathrm{~g} ., 0.163 \mathrm{mmol})$ and 2 bromobenzaldehyde ($0.060 \mathrm{~g} ., 0.326 \mathrm{mmol}$) yields $5 \mathrm{e}(0.047$ g., $0.127 \mathrm{mmol}, 78 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=4.4,2 \mathrm{H}), 7.27$ $(\mathrm{m}, 4 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H}), 3.90$ $(\mathrm{m}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $151.6,143.6,139.8,136.7,133.2,130.1,129.9,128.8,128.2,128.0,125.7,124.7,121.6$, $79.2,67.8,56.3,33.2,30.3,10.6$; IR (film) $v_{\max } 3254,2925,1739,1701,1455,1378 \mathrm{~cm}^{-}$ ${ }^{1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ONBr}\left[\mathrm{M}+\mathrm{CO}_{2} \mathrm{H}^{1}\right]^{+}$414.0705, found: 414.0688; $[\alpha]_{\mathrm{D}}^{20}+19.1\left(\mathrm{c} 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2S, $\quad 3 R, \quad 4 R$)-3-methyl-2-phenyl-4-p-tolyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5e): Same procedure as 5a using $4 \mathbf{a}(0.047 \mathrm{~g} ., 0.139 \mathrm{mmol})$ and p-tolualdehyde $(0.033 \mathrm{~g}$., $0.278 \mathrm{mmol})$ yields $5 \mathrm{e}(0.028 \mathrm{~g} ., 0.092 \mathrm{mmol}, 66 \%$ yield) white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~m}, 7 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=7.2$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,143.4,138.5,138.0$, 137.0, 129.5, 128.8, 128.2, 128.1, 125.8, 122.2, 80.5, 67.6, 56.4, 32.8, 30.1, 10.4; IR (film) $v_{\max } 3261,2923,1739,1702,1455,1377 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ON}\left[\mathrm{M}+\mathrm{CO}_{2} \mathrm{H}^{1}\right]^{+} 370.1756$, found: 370.1770; $[\alpha]_{\mathrm{D}}^{20}+28.0\left(\mathrm{c} 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2S, 3R, 4R)-4-(4-chlorophenyl)-3-methyl-2-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5f): Same procedure as 5a using 4 (0.040 g ., 0.119 mmol) and p chlorobenzaldehyde (0.033 g ., 0.238 mmol) yields $5 \mathrm{f}(0.037 \mathrm{~g}$., $0.114 \mathrm{mmol}, 95 \%$ yield) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=4.0,1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}$, $1 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 151.5,143.8,139.5,136.6,134.5,129.5,129.0,128.9,128.3,125.8,121.5$, $79.8,67.7,56.4,33.1,30.0,10.5$; IR (film) $v_{\max } 3264,2933,1739,1702,1455,1378 \mathrm{~cm}^{-}$ ${ }^{1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ONCl}[\mathrm{M}+\mathrm{H}]^{+}$326.1312, found: 306.1348; $[\alpha]_{\mathrm{D}}^{20}+35.5\left(\mathrm{c} 1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[^0]
(2S, $\quad 3 R, \quad 4 R$)-4-butyl-3-methyl-2-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5g): A solution of 2-((4S,5S)-3-(dimethyl(phenyl)silyl)-4-methyl-5-phenyl-4,5-dihydro-1H-pyrrol-2-yl)ethanol (4a) (0.048 g., 0.142 mmol) and valeraldehyde ($0.030 \mathrm{~g} ., 0.284 \mathrm{mmol}$) in $\mathrm{MeCN}(1 \mathrm{~mL})$ was chilled to $-20^{\circ} \mathrm{C}$. Boron triflouride diethyl etherate ($21 \mu \mathrm{~L}$, 0.171 mmol) was added slowly, and the resulting solution was stirred for 12 hours at -20 ${ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated sodium bicarbonate, and extracted with dichloromethane (2 X 5 mL). The combined organic layers were washed with water, dried with magnesium sulfate, filtered and evaporated. Purification over silica gel (90:10 DCM: ethyl acetate) yields $\mathbf{5 g}(0.024 \mathrm{~g} ., 0.088 \mathrm{mmol}, 62 \%$ yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=4.0$, $1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H})$, $1.44(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5$, 141.5, 137.2, 129.1, 128.6, 126.2, 121.8, 77.6, 66.6, 57.5, 34.7, 34.0, 29.7, 28.4, 27.7, $22.7,14.1,11.2$; IR (film) $v_{\max } 3254,2931,2871,1736,1705,1456,1379,1073 \mathrm{~cm}^{-1}$; HRMS(CI, NH_{3}) m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$272.2014, found: 272.2072; $[\alpha]_{\mathrm{D}}^{20}+14.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($2 S, \quad 3 R, \quad 4 R$)-3-methyl-4-phenethyl-2-phenyl-1,2,3,4,6,7-hexahydropyrano[4,3-b]pyrrole (5h): Same procedure as 5g using 4a ($0.040 \mathrm{~g} ., 0.119 \mathrm{mmol}$) and hydrocinnamaldehyde (0.032 g., 0.237 mmol) yields $\mathbf{5 h}(0.022$ g., $0.069 \mathrm{mmol}, 58 \%$ yield) as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ (m, $5 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H}), 4.49(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{q}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=7.2,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5$, 141.7, 137.1, 129.0, 128.6, 128.5, 128.4, 126.1, $126.0,121.5,76.7,66.8,57.4,36.8,33.9,31.8,28.5,11.1$; IR (film) $v_{\max } 3254,2924$, 1738, 1703, 1455, 1379, $1032 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ON}[\mathrm{M}+\mathrm{H}]^{+}$ 320.2014, found: 320.1995; $[\alpha]_{\mathrm{D}}^{20}+13.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 2-((1R, 3S, 4S, 5S)-5-(dimethyl(phenyl)silyl)-4-methyl-3-phenyl-6-oxa-2-azabicyclo[3.1.0]hexan-1$\mathbf{y l})$ acetate (6): A solution of mCPBA (0.390 g . of a 75% solution, 1.30 mmol$)$ in DCM (5 mL) was chilled to $0^{\circ} \mathrm{C}$. A solution of Methyl 2-((4S,5S)-3-(dimethyl(phenyl)silyl-4-methyl-5-phenyl-4,5-dihydro-1H-pyrrol-2-yl)acetate (2a) (0.318 g., 0.870 mmol) in DCM (5 mL) was added dropwise and the resulting solution was stirred 12 hours warming slowly from $0{ }^{\circ} \mathrm{C}$ to room temperature. The reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(3 \mathrm{X} 10 \mathrm{~mL})$. The combined organic layers were washed with water, dried with MgSO_{4}, filtered and concentrated under vacuum. Purification over silica gel (70:30 hexanes: ethyl acetate) yields 6 (0.262 g., 0.687 mmol , 79% yield) as a clear viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}$,
$6 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=3.6,1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=17.2,10.0$, $2 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.49(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 170.5,152.8,136.9,134.7,134.3,130.0,128.6,128.0,127.9,125.8,91.2,61.8$, $54.8,51.6,36.4,35.7,9.1,-3.7,-3.8$; IR (film) $v_{\max } 3256,3138,3070,2953,2248,1731$, $1455,1325,1168 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}$382.1892, found: 382.1838; $[\alpha]_{\mathrm{D}}^{20}+24.0$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Expanded Transition State Analysis:

The antiperiplanar and synclinal transition states proposed in Figure 1 of the manuscript may be in equilibrium with an ester enolate/iminium ion that is stabilized by coordination of the Lewis acid to the oxygen anion. After attack of the allenylsilane on the si face of the iminium ion two different pathways can occur, leading to each of the observed products. If the oxygen from the carbamate carbonyl closes on the initial vinyl cation, the dihydrooxazine product is obtained. If a 1,2 -silyl shift occurs, followed by attack of the nitrogen anion, the dihydropyrrole product is obtained. The pyrrole formation may occur by either by a concerted mechanism, ${ }^{2}$ or by a two step mechanism where the silyl shift precedes the attack of the nitrogen nucleophile. ${ }^{3}$

[^1]Assignment of stereochemistry as illustrated by 2a (see table 1) and 5a (see scheme 1) using NOE measurements:

Annulation product 2a shows a strong NOE between the methyl group and the phenyl group, and between the protons $\mathrm{C} 5-\mathrm{H}_{\mathrm{a}}$ and $\mathrm{C} 4-\mathrm{H}_{\mathrm{b}}$ of the dihydropyrrole ring. This relationship confirms the proposed 4,5-cis confirmation. Pyranopyrrole 5a shows strong NOE between the benzylic H_{c} proton and the methyl group on the dihydropyrrole ring. Strong NOE between H_{b} and the protons on the phenyl ring substituent of the pyran is also evident. No NOE is observed between H_{c} and H_{b}, further confirming the relative configuration of the pryanopyrrole products.

Confirmation of dihydrooxazine formation (instead of protected dihydropyrrole formation):

A series of experiments were run to confirm that the dihydrooxazine products in table 3 were not methyl carbamate protected dihydropyrroles. ${ }^{4}$ After assigning the positions of all of the proton and carbon signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra using APT (Attached proton test) and HSQC (Heteronuclear single quantum coherence), we looked for differences that could be distinguished by HMBC (Heteronuclear multiple bond coorelation) 3-bond coupling.

[^2]The main difference between the two possible products was the 3-bond coupling to the two distinct olefin carbons. Since the benzylic proton ($\delta 4.24 \mathrm{ppm}$) and the protons on the methyl group ($\delta 0.49 \mathrm{ppm}$) both demonstrated strong 3-bond coupling to the olefin carbon at $\delta 161 \mathrm{ppm}$, but did not show any 3-bond coupling to the silylated olefin carbon at $\delta 106 \mathrm{ppm}$, we determined that the oxazine was the correct structure. In the case of the dihydropyrrole, we would expect to see 3 -bond coupling from these two protons to the silylated olefin carbon, but no coupling to the carbon at $\delta 161 \mathrm{ppm}$.

This assignment was further confirmed by the acylation of the enamine nitrogen in dihydropyrroles $\mathbf{2 d}$ and $\mathbf{2 h}$, affording the N-protected dihydropyrrole products.

These new protected dihydropyrroles (7a and 7b) are distinctly different from the dihydrooxazines in the proton and carbon NMR (provided in the second section of supporting information). These protected pyrroles were also used in HPLC to show that the axial chirality of the allenylsilane is fully transferred to central chirality in the product.

(2S, 3S)-methyl 4-(dimethyl(phenyl)silyl)-5-(2-methoxy-2-oxoethyl)-3-methyl-2-(2-nitrophenyl)-2,3-dihydro-1 H -pyrrole-1-carboxylate (7a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.98(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 7.58(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~d}$, $\mathrm{J}=7.6,1 \mathrm{H}), 3,67(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, \mathrm{J}=17.2,26.4,2 \mathrm{H}), 0.61(\mathrm{~s}$, $3 \mathrm{H}), 0.45(\mathrm{~d}, \mathrm{~J}=5.6,3 \mathrm{H}), 0.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.7,154.0$, $152.9,148.2,148.0,136.9,134.7,133.9,133.4,129.5,128.6,127.9,127.4,125.1,112.3$, $58.3,54.4,52.0,35.3,33.2,14.8,-1.9,-2.3$; IR (film) $v_{\max } 2970,1779,1732,1651,1526$, 1437, 1350, $1297 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 469.1795$, found: 469.1795; $[\alpha]_{D}^{20}+110.7$ (c 1.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R, 3S)-methyl 2-butyl-4-(dimethyl(phenyl)silyl)-5-(2-methoxy-2-oxoethyl)-3-methyl-2,3-dihydro-1 H -pyrrole-1carboxylate (7b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54$ (m, $2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H})$, 3.32 (dd, J=6.0, 32.0, 2H), $2.71(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.15$ $(\mathrm{m}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}) 0.78(\mathrm{~m}, 3 \mathrm{H}), 0.59(\mathrm{~m}, 2 \mathrm{H}), 0.43(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,156.1,153.7,147.5,137.9,133.7,129.6,128.2,107.7$, $57.3,54.3,51.9,33.0,32.6,28.8,26.9,22.3,13.9,11.5,-1.8,-2.3$; IR (film) $v_{\max } 2957$,

2873, 1770, 1736, 1644, 1437, 1263, $1171 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+} 404.2257$, found: $404.2271 ;[\alpha]_{\mathrm{D}}^{20}+17.0\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[^0]: ${ }^{1}$ The pyranopyrrole products were reactive with the formic acid used in the mass spec procedure, giving a spectra with a mixture of the pyranopyrrole product and the product plus formate in all cases. In a few of the cases the formate product was the major product, and it is the reported mass in the data.

[^1]: ${ }^{2}$ Fuchibe, K.; Hatemata, R.; Akiyama, T. Tetrahedron Lett. 2005, 46, 8563-8566.
 ${ }^{3}$ Danheiser, R. L.; Stoner, E. J. ; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407-4413.

[^2]: ${ }^{4}$ Danheiser sees both dihydrooxazine and dihydropyrrole products from reactions with acyclic iminium ion precursors: Danheiser, R. L.; Kwasigroch, C. A.; Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233-7235.

