Synthesis of Optically Active Arylaziridines by Regio and Stereospecific Lithiation of N-BusPhenylaziridine

Biagia Musio, ${ }^{\text {t, }}$ Guy J. Clarkson, ${ }^{\dagger}$ Michael Shipman, ${ }^{\text {t,* }}$ Saverio Florio ${ }^{\ddagger, *}$ and Renzo Luisi ${ }^{\ddagger}$
Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Dipartimento Farmaco-Chimico, Università di Bari, Consorzio Interuniversitario Nazionale Metodologie e Processi Innovativi di Sintesi C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 - Bari, Italy.

Content

General p. S2
Preparation of aziridine (\pm)-1 p. S3
Preparation of aziridine (R)-1 p. S3
Representative procedure for the lithiation - trapping sequence of aziridines (\pm)-1 and (R)-1 p. S4
Procedure for the preparation of aziridine 4 p. S8
Procedure for the preparation of aziridine 7 p. S8
Procedure for the lithiation - trapping of aziridine (\pm)-5c p. S9
Procedure for the eliminative dimerization of aziridine $(R)-5 \mathbf{c}$ p. S10
General procedure for the ring-opening reaction with amines p. S10
Cleavage of the Bus group p. S11
Procedure for the preparation of imidazolidinone derivative $\mathbf{1 2}$ p. S12
Copy of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and NOESY 1D spectra pp. S13-S33
${ }^{1} \mathrm{H}$ NMR analysis of the enantiomeric purity Pp S31-S35
Ortep view of aziridine $\mathbf{5 a}$ and $\left(1 R^{*}, 2^{\prime} R^{*}\right)-5 \mathbf{g}$ p. S36

Experimental

General

All reactions involving air-sensitive reagents were performed in oven-dried glassware under an atmosphere of nitrogen using syringe-septum cap technique. Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were freshly distilled under a nitrogen atmosphere over sodium / benzophenone.

Column chromatography was performed using the solvent systems indicated. Petroleum ether refers to the fraction that boils at $30-40^{\circ} \mathrm{C}$. The stationary phase used was silica gel 60 unless otherwise indicated.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $300,400,500,600 \mathrm{MHz}$ and 75 , $100,125,200 \mathrm{MHz}$ respectively with CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ as solvent. Data are expressed as chemical shifts in parts per million (ppm) relative to residual chloroform CDCl_{3} $\left({ }^{1} \mathrm{H} \delta 7.27\right),\left({ }^{13} \mathrm{C} \delta 77.0\right)$. The multiplicity of each signal is designated by the following abbreviations: s , singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; ddt, doublet of doublet of triplets; t, triplet; br, broad. Coupling constants J are given in Hz . Infra-red spectra of the compounds were recorded neat, as a film, or KBr disc as indicated. High resolution mass spectra were obtained by a double focusing (BE) mass spectrometer using electrospray ionisation techniques ($\mathrm{M}+\mathrm{NH}_{4}{ }^{+}$, $\left.\mathrm{M}+\mathrm{H}^{+}, \mathrm{M}+\mathrm{Na}^{+}\right)$. Low resolution mass spectra were obtained by GC-MS analysis using a gas chromatography with a BPX_{5} column- HP 6890 plus ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ i.d.) equipped with a 5973 mass selective detector operating at 70 eV (flow rate $(\mathrm{He})=1$ $\mathrm{mL} / \mathrm{min}$). HRMS data for Sn -containing compounds are quoted for the most abundant Sn isotope, i.e. ${ }^{120} \mathrm{Sn}$. Specific rotations $[\alpha]^{\mathrm{T}}{ }_{\mathrm{D}}$ were measured using a polarimeter with a cell of path length 1.0 cm , at $\mathrm{T}^{\circ} \mathrm{C}$ and are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Concentrations (c) are given in $\mathrm{g} / 100 \mathrm{~mL}$. Melting points were uncorrected. TLC was performed on Merck silica gel plates with F-254 indicator; detection was accomplished by UV light (254 nm), by exposing to I_{2} vapours and spraying a solution of ($5 \% \mathrm{~W} / \mathrm{V}$) ammonium molibdate and 0.2% W/V cerium(III)sulphate in $100 \mathrm{ml} 17.6 \%$ aq. sulphuric acid and heating to $200^{\circ} \mathrm{C}$ for some time until blue spots appear.
$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) was distilled over finely powdered CaH_{2}. Commercial solutions of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ hexane solution) and sec-BuLi $(1.3 \mathrm{M}$ cyclohexane solution) were tritated by using N-pivaloyl-o-toluidine prior use. ${ }^{1}$

[^0]R-(-)- and (\pm)- N-tert-butyl-sulphonyl-2-phenylaziridine were prepared following reported procedures. ${ }^{2}$ All other chemicals were of commercial grade and used without further purification.

Preparation of aziridine (\pm)-1. ${ }^{2 \mathrm{a}, \mathrm{b}}$

The aziridination of styrene ($104.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) with Bus-NCINa Salt ($294 \mathrm{mg}, 1.2$ mmol) catalyzed by $10 \% \mathrm{~mol}$ of phenyltrimethylammonium tribromide (PTAB$)^{3}$ was carried out in acetonitrile $(7.0 \mathrm{ml})$ at room temperature. The mixture was stirred for 12 h, filtered and concentrated under reduced pressure. Purification of the residue by SiO_{2} flash chromatography (petroleum ether : $\mathrm{Et}_{2} \mathrm{O} 9: 1$) afforded (\pm)-1 (208 mg, 87 $\%$).

Preparation of aziridine (\boldsymbol{R})-1. ${ }^{2 \mathrm{c}, \mathrm{d}}$

Aziridine (\boldsymbol{R})- $\mathbf{1}$ is readly available from enantiomerically pure $(R)-(-)$-phenylglycinol via activation of the primary alcohol group with in situ aziridine ring closure. The enantiomeric purity of aziridine $(\boldsymbol{R})-\mathbf{1}\left([\alpha]^{25}=-184.5, \mathrm{c}=1, \mathrm{CHCl}_{3}\right)$ was determined by ${ }^{1} \mathrm{H}$-NMR resolution in presence of the chiral solvating agent $(R)-(-)-1$-(9 -Anthryl)-2,2,2-trifluoroethanol and found to be $>98 \%$ ee.

To a solution of $(R)-(-)$-phenylglycinol ($500 \mathrm{mg}, 3.64 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5$ mL) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equiv, 9.1 mmol) was added dropwise tert-butylsulfinyl chloride (1 equiv, 3.64 mmol) and the reaction stirred at room temperature for 12 hours. The mixture was then washed with water ($3 \times 10 \mathrm{~mL}$) and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give the corresponding N-sulfinyl- $(R)-$

[^1]phenylglycinol (99%). To a solution of sulfinamide ($880 \mathrm{mg}, 3.64 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(54 \mathrm{~mL})$ was added $m-\mathrm{CPBA}(1.2$ equiv, $751.3 \mathrm{mg}, 4.37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 2 hours, the mixture was warmed to room temperature and stirred for a further 1 hour. Then the mixture was diluted with a mixture of saturated aqueous $\mathrm{NaHSO}_{3}(25 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by SiO_{2} flash chromatography (Petroleum ether:Et $\mathrm{O}_{2} \mathrm{O} 7: 3$) to afford the corresponding sulfonamide as a white solid (89\%). p-Toluenesulfonyl chloride (1 equiv, $615.9 \mathrm{mg}, 3.23 \mathrm{mmol}$)) was added portionwise to a solution of the obtained N-protected-(R)-phenylglycinol (1 equiv, $833 \mathrm{mg}, 3.23 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2$ equiv, 6.46 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 12 h then diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to give the crude aziridine which was purified by SiO_{2} flash chromatography (petroleum ether : $\mathrm{Et}_{2} \mathrm{O} 7: 3$) to afford the pure compound as a white solid ($486 \mathrm{mg}, 63 \%$).

Representative procedure for the lithiation - trapping sequence of aziridines (\pm) -

 1 and (R)- 1:n-BuLi (1.6 M in hexane, $525 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$) was added dropwise to a stirred solution of aziridine $(\pm) \mathbf{- 1}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and TMEDA ($125.8 \mu \mathrm{~L}, 0.84 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 5 minutes at $-78^{\circ} \mathrm{C}$ the electrophile $(0.84 \mathrm{mmol})$ was added. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, the mixture was allowed to warm slowly to room temperature. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure. Purification by SiO_{2} flash chromatography gave the substituted aziridines $5 \mathbf{a - i}$.

[^2]2959, 1302, 1113, 940, 844, 695. Anal calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SSi}: \mathrm{C}, 57.84 ; \mathrm{H}, 8.09 ; \mathrm{N}$, 4.49; S, 10.29\%. Found: C, 57.95; H, 8.17; N, 4.21; S, 10.35\%.
 $1.47(\mathrm{~s}, 9 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.39(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 24.1,34.6,59.4,70.0,126.3,128.3,128.7,135.1 ;$ HR-MS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{DNO}_{2} \mathrm{~S},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 258.1381$. Found: 258.1383. FT-IR cm${ }^{-1}: 2988,1454$, 1298, 1126, 906, 698. Anal calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{DNO}_{2} \mathrm{~S}: \mathrm{C}, 59.97$; H, 7.55; N, 5.83; S, 13.34. Found: C, $59.64 ;$ H, 7.56 ; N, $5.80 ;$ S, 12.94. The enantiomeric purity of $(\boldsymbol{R})-5 \mathbf{b}$ $\left([\alpha]^{25}{ }_{\mathrm{D}}=-164.3, \mathrm{c}=1, \mathrm{CHCl}_{3}\right)$ was determined by HPLC analysis (AD chiral column; hexane: $i \operatorname{PrOH} 98: 2$; flow: $0.5 \mathrm{ml} / \mathrm{min}$; for $\mathbf{5 b}$ resulted $\mathrm{t}_{1}=22.8 \mathrm{~min}, \mathrm{t}_{2}=27.0 \mathrm{~min}$; for $(\boldsymbol{R}) \mathbf{- 5 b}$ resulted $\mathrm{t}=27.0)$.
 $1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.9,24.2,43.5$, 49.2, 61.0, 126.4, 127.7, 128.4, 141.6; HR-MS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 271.1475$. Found: 271.1477. FT-IR cm ${ }^{-1}: 2985,1303,1114,724$. Anal calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 61.63 ; \mathrm{H}, 7.56$; N, 5.53; S, 12.65. Found: C, 61.79; H, 7.87; $\mathrm{N}, 5.33$; S, 12.67. The enantiomeric purity of $(\boldsymbol{R})-5 \mathbf{c}\left([\alpha]^{25}{ }_{\mathrm{D}}=-142.5, \mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ resolution in presence of the chiral solvating agent $(R)-(-$)-1-(9-Anthryl)-2,2,2-trifluoroethanol and found to be $>98 \%$ ee.

1-(tert-Butylsulfonyl)-2-benzyl-2-phenylaziridine (5e). Colourless oil,
$36 \%{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42$ (s, 9 H), 2.67 (br s, 1H), 2.98 (br s, 1 H), $3.38(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.18(\mathrm{~m}$, $8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1,41.1,41.9,54.1,61.0,126.7,127.8,127.84$, 128.1, 128.6, 129.8, 137.0; HR-MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 347.1788. Found: 347.1786. FT-IR cm ${ }^{-1}: 2962,2905,1412,1260,1096,798,467$.

2-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-propan-2-ol (5f). White solid, mp $122-124{ }^{\circ} \mathrm{C}, 56 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.039$ (s, $3 \mathrm{H}), 1.39$ (s, 3H), 1.41 (s, 9H), 2.84 (s, 1H), 2.97 (s, 1H), $7.24-7.28$ (m, 3H), 7.54 7.56 (m, 2); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,24.9,27.2,39.2,61.3,71.3,127.5$, 128.7, 131.3, 133.7; HR-MS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 298.1471$. Found: 298.1473. FT-IR cm ${ }^{-1}: 3525,2975,1308,1122,947,760,705$. The enantiomeric purity of $(\boldsymbol{R})-\mathbf{5 f}\left([\alpha]^{25}{ }_{\mathrm{D}}=+139.2, \mathrm{c}=1, \mathrm{CHCl}_{3}\right)$ was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ resolution in presence of the chiral solvating agent (R)-(-)-1-(9-Anthryl)-2,2,2trifluoroethanol and found to be >98 \%ee.
[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-phenylmethanol (5g). Diastereomers $(\mathrm{dr}=70: 30)$ were separated by SiO_{2} flash chromatography (petroleum ether : $\mathrm{Et}_{2} \mathrm{O}$ 7:3).

[^3]

Minor diastereomer ($\mathbf{1 R}^{\boldsymbol{*}}, \mathbf{2}^{\mathbf{\prime}} \boldsymbol{S}^{\boldsymbol{*}}$)-5g: Colourless oil, $\mathbf{2 4 \%}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 6.88$
$-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.21(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.3,35.9,61.5$, $74.0,126.9,127.8,127.9,120.0,128.9,130.4,138.2$; HR-MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}: 346.1471$. Found: 346.1470. FT-IR cm ${ }^{-1}: 3500$, 2986, 1453, 1304, 1119, 696. (1S, 2' $\boldsymbol{R})-\mathbf{5 g}\left([\alpha]^{25}{ }_{\mathrm{D}}=+15.2, \mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

1-[N-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2-methylpropan-1-ol (5h). Diastereomers $(\mathrm{dr}=80: 20)$ were separated by SiO_{2} flash chromatography (petroleum ether: $\mathrm{Et}_{2} \mathrm{O} 7: 3$).
Major diastereomer: white solid, mp $115-117{ }^{\circ} \mathrm{C}, 44 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{H}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H})$, $2.73(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=3.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{bs}, 1 \mathrm{H}), 7.24-7.30$ (m, 3H), $7.36-7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4,19.9,23.9,31.7$, 40.6, 57.7, 61.3, 79.3, 127.8, 128.1, 129.3, 136.1; HR-MS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 329.1893$. Found: 329.1895. FT-IR cm ${ }^{-1}: 3510,2957,1285$, 1107, 701.

Minor diastereomer: white solid, mp $105-107{ }^{\circ} \mathrm{C}, 11 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{H}, 3 \mathrm{H}), 1.14-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}$, 9H), 2.40 (br s, 1H), $2.95(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32$ (m, 3H), $7.42-7.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.5,20.7,24.2,29.0$, 36.3, 61.5, 74.6, 128.2, 129.0, 129.7; HR-MS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$: 312.1628. Found: 312.1626 . FT-IR cm ${ }^{-1}: 3339,3295,3245,2967,2929,1302,1128$.

1-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-

 1-ol (5i). Diastereomers $(\mathrm{dr}=80: 20)$ were separated by SiO_{2} flash chromatography (petroleum ether : $\mathrm{Et}_{2} \mathrm{O} 7: 3$) but only the major isomer was analitically pure.Major diastereomer: white solid, mp $132{ }^{\circ} \mathrm{C}, 48 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.72 (s, 9H), 1.37 (s, 9H), 2.89 (s, 1H), 3.02 (s, 1H), 3.57 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (bs, 1 H), $7.24-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $23.8,26.7,36.0,40.7,57.7,61.2,81.4,127.8,128.1,130.3,137.0$; HR-MS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 343.2050$. Found: 343.2050. FT-IR cm ${ }^{-1}: 3501$, 2979, 1281, 1110, 735.

Procedure for the preparation of epoxide 7:

n-BuLi (1.6 M in hexane, $525 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$) was added dropwise to a stirred solution of aziridine $\mathbf{1}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and TMEDA ($125.8 \mu \mathrm{~L}, 0.84 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 5 minutes at $-78^{\circ} \mathrm{C}$ benzophenone (0.84 mmol in 2 mL of $\mathrm{Et}_{2} \mathrm{O}$) was added. After 1 hour at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm slowly to room temperature. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure. Purification by SiO_{2} flash chromatography gave $7(283 \mathrm{mg})$ as a white solid.
 CDCl_{3}) $\delta 1.13(\mathrm{~s}, 9 \mathrm{H}), 3.12(\mathrm{dd}, J=6.5,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.2 \mathrm{H}, 1 \mathrm{H}), 3.85$ (dd, $J=6.0,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.48(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1$, 29.7, 48.8, 60.2, 70.5, 126.8, 127.2, 127.4, 127.7, 127.9, 128.1, 128.2, 128.8, 135.5, 138.0, 138.4; HR-MS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 439.2050. Found: 439.2054. FT-IR cm ${ }^{-1}: 3421,1448,1293,1125,891,697$.

Procedure for the preparation of aziridine 4:

n-BuLi (1.6 M in hexanes, $1.88 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropwise to a stirred solution of 2,2,6,6-tetramethylpiperidine ($0.51 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in THF (15 mL) at -78 ${ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature over 30 min , then re-cooled to -78 ${ }^{\circ} \mathrm{C}$ before dropwise addition of the aziridine ($239 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (8 mL). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min before the addition of chlorotrimethylsylane (3.0 mmol), sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature. After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure. Purification by SiO_{2} flash chromatography gave $4(133 \mathrm{mg})$.

	utylsulfonyl)-2-phenyl-3-trimethylsilyla
	oil, 43\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 0.21$ (s, 9H), 1.35 (s, 9H), 1.84

$(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-1.1,24.2,43.8,46.1,59.5,126.0,128.1,128.7,137.5$. Single crystals suitable for X-ray diffraction grown from hexane/Et 2 O .

Procedure for the lithiation - trapping of aziridine (\pm)-5c:

$n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexane, $787 \mu \mathrm{~L}, 1.26 \mathrm{mmol}$) was added dropwise to a stirred solution of aziridine $(\pm)-5 \mathbf{c}(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ and TMEDA ($188.7 \mu \mathrm{~L}, 1.26 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 15 minutes at $-78^{\circ} \mathrm{C}$ the electrophile (1.26 mmol) was added. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, the mixture was allowed to warm slowly to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure. Purification by SiO_{2} flash chromatography (petroleum ether:Et $\mathrm{E}_{2} \mathrm{O}$ 8:2) gave the substituted aziridines $9 \mathbf{9 a}, \mathbf{9 b}$.
($2 R^{*}, 3 R^{*}$)-1-(tert-Butylsulfonyl)-2-methyl-2-phenyl-3-deuterioaziridine
(9a).
 $9 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.8,24.1,43.1(\mathrm{t}, J=26 \mathrm{~Hz}), 49.0,60.8,126.3,127.6,128.4$, 141.5; ESI-MS m/z: 277 [M+Na] ${ }^{+}$(100). GC-MS (70 eV) $m / z(\%): 254$ (1), 134 (13), 133 (65), 92 (100), 77 (11), 57 (29). FT-IR cm ${ }^{-1}: 2984,1297,1110,719$.
($2 R^{*}, 3 R^{*}$)-1-(tert-Butylsulfonyl)-2-methyl-2-phenyl-3-trimetylsylylaziridine (9b).
 3H major), 1.94 ($\mathrm{s}, 3 \mathrm{H}$ minor), 2.01 ($\mathrm{s}, 1 \mathrm{H}$ minor), 2.85 ($\mathrm{s}, 1 \mathrm{H}$ major), $7.33-7.59$ (m, 5 H major +5 H minor); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 210 \mathrm{~K}$) $\delta-1.6,-0.5,20.9,23.9$, $26.3,43.6,50.0,52.5,54.1,60.5,61.1,126.3,128.0,128.3,128.8,129.0,130.5$, 139.3, 145.0; GC-MS (70 eV) m/z (\%): 325 (8), 190 (12), 132 (100), 73 (32), 57 (26). FT-IR cm ${ }^{-1}: 3000,2979,1304,1125,886,848,763,695$.

Procedure for the eliminative dimerization of aziridine (\boldsymbol{R})-5c. n - $\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $1.88 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropwise to a stirred solution of 2,2,6,6tetramethylpiperidine ($0.51 \mathrm{~mL}, 3.0 \mathrm{mmol}$) in THF $(0.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 15 min , then re-cooled to $-78^{\circ} \mathrm{C}$ before dropwise addition of the aziridine (1.0 mmol) in THF (0.8 mL). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 \min, then at $0{ }^{\circ} \mathrm{C}$ for 1 h , before the addition of $\mathrm{MeOH}(0.8 \mathrm{~mL})$, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(8$ $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, giving the corresponding ene-2,5-diamine.
(3E)-N, N^{\prime}-bis (tert-Butylsulfonyl)-2,5-diphenylhexan-3-ene-2,5-diamine
$\underbrace{}_{\text {BusHN }}{ }^{\text {M }}$ Me $\left.\mathrm{CDCl}_{3}\right) \delta 24.4,27.1,60.1,63.2,126.1,127.5,128.5,135.5,145.3$; ESI-MS $m / z: 277$ [M-H] (100). FT-IR cm ${ }^{-1}: 3272,2964,2921,1601,1446,1305,1261,1094,1020$, 798. Anal calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 61.63; H, 7.56; N, 5.53. Found: C, 61,45; H, $7.54 ; \mathrm{N}, 5.91$. The enantiomeric purity of $\mathbf{1 3}\left([\alpha]^{25}=+8.55, \mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$ was determined by HPLC analysis (AD chiral column; hexane: $i \operatorname{PrOH} 98: 2$; flow: 0.5 $\mathbf{m l} / \mathrm{min}$; for $(\pm) \mathbf{- 1 3}$ resulted $\mathrm{t}_{1}=35.7 \mathrm{~min}, \mathrm{t}_{2}=39.5 \mathrm{~min}$; for $(+) \mathbf{- 1 3}$ resulted $\mathrm{t}=39.5$ \min, er $>98: 2$).

General procedure for the ring-opening reaction with amines:

A mixture of aziridine (\boldsymbol{R})-5c ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$), aniline (1.2 equiv, $45.6 \mu \mathrm{~L}, 0.50$ mmol) and EtOH ($420 \mu \mathrm{~L}$) was charged in a round-bottom glass flask containing a magnetic stirring bar. The flask was placed in a CEM Discover Focused Microwave Synthesis System. The flask was subjected to MW irradiation at $100^{\circ} \mathrm{C}(300 \mathrm{~W})$ for 30 min . After the reaction is completed, the flask was removed from the MW cavity and cooled to room temperature. The reaction mixture was concentrated in vacuo, followed by distillation in a Kugelrohr apparatus at $85^{\circ} \mathrm{C} / 0.1 \mathrm{mbar}$ to remove excess aniline. The enantiomeric purity of the corresponding chiral products was established by ${ }^{1} \mathrm{H}$ NMR analysis using Mosher's acid.

White solid, mp $119-121{ }^{\circ} \mathrm{C}, 98 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.26(\mathrm{~s}, 9 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (ddd, $J=17.5,13.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=7.5,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.39 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.7,54.2,58.7,115.5,117.0$, 126.3, 128.5, 128.7, 145.0, 146.1; HR-MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}$: 347.1788. Found: 347.1789 . FT-IR cm ${ }^{-1}: 3398,3267,2976,1600,1501,1305,1122$, 743, 698, 691. Anal calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.86 ; \mathrm{H}, 7.56$; $\mathrm{N}, 8.08 ; \mathrm{S}, 9.25$. Found: C, 66.70; H, 7.63; N, 8.48; S, 8.75.

Cleavage of the Bus group: ${ }^{4}$

To a solution of sulfonamide ($73 \mathrm{mg}, 0.21 \mathrm{mmol}$) and anisole (19.7 equiv, $462 \mu \mathrm{~L}$, $4.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added trifluoromethanesulfonic $\operatorname{acid}\left(0.2 \mathrm{~N}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2 \mathrm{~mL}\right)$ (the final concentration of the triflic acid is 0.1 N). The resultant mixture was stirred at room temperature until reaction was complete according to TLC analysis (usually overnight). The reaction mixture was poured into 10% aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by SiO_{2} flash chromatography (Dichloromethane:MeOH 95:5) to afford 11.

2-phenylamino-2-phenyl-propanamine (11). Colourless oil, $98 \%{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.45(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,24.6,55.0,58.4,60.2,115.3,117.4,126.2$, 127.2, 128.7, 128.9, 143.1, 145.0; ESI-MS m/z: 257 [M-H] (100). FT-IR cm ${ }^{-1}: 3337$, $2919,1601,1499,1316,1262,751,700$. The enantiomeric purity of $11\left([\alpha]^{25}{ }_{D}=\right.$ +11.5 , c $0.2, \mathrm{CHCl}_{3}$) was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ resolution in presence of the Mosher's acid and found to be $>98 \%$ ee.

[^4]
Procedure for the preparation of imidazolidinone derivative 12. ${ }^{5}$

To a solution of diamine ($25 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF ($250 \mu \mathrm{l}$) was slowly added a solution of N, N '-carbonyldiimidazole ($18.53 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF ($250 \mu \mathrm{l}$) at 0 ${ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at room temperature until reaction was complete according to TLC analysis (usually overnight). The reaction mixture was poured into brine and the acqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by SiO_{2} flash chromatography (Dichloromethane:MeOH 95:5) to afford the corresponding imidazolidinone $\mathbf{1 2}$.

[^5]

Ph
5d
$300 \mathrm{MHz}, \mathrm{CDCl}_{3}$
\qquad lin \qquad j

m(t1)

5e
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3.5003 .4503 .400

5g-minor $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

pm (t1)

5h-minor $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5i-major

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

11
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

I	\|	1	1	1	।	1	1	1	1	1		1	1	1	1	
	150					100					50					0
jpm (f1)																

12
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

13
$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

13
$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Ortep view of aziridine $\mathbf{5 a}$ at 50% ellipsoids probability,
(hydrogen omitted for clarity).

Ortep view of aziridine ($1 R^{*}, 2^{\prime} R^{*}$)-5g at 50% ellipsoids probability, (hydrogen omitted for clarity).

[^0]: ${ }^{1}$ Suffert, J. J. Org. Chem. 1989, 54, 509-510.

[^1]: ${ }^{2}$ a) Sharpless, K. B.; Gontcharov, A. V.; Liu, H. Patent 1999, US6008376. b) Gontcharov, A. V.; Liu, H.; Sharpless, K. B. Org. Lett. 1999, 1, 5, 783-786. c) Berry, M. B.; Craig, D. Synlett 1992, 41. d) Alonso, D. A.; Andersson, P. G. J. Org. Chem. 1998, 63, 9455-9461.
 ${ }^{3}$ Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 6844.

[^2]: $1.33(\mathrm{~s}, 9 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.07-7.18(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 24.2,39.3,46.5,60.6,126.9,128.4,127.9,129.0 ;$ HR-MS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SSi},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 329.1714$. Found: 329.1717. FT-IR cm ${ }^{-1}: 2995,2980$,

[^3]: OH Bus Major diastereomer ($\mathbf{1}^{\boldsymbol{*}}, \mathbf{2}^{\mathbf{\prime}} \boldsymbol{R}^{*}$)-5g: White solid, mp $120-122{ }^{\circ} \mathrm{C}$, $56 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 9 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{~s}$, $1 \mathrm{H}), 4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=2.87 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.07$ $-7.25(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,40.4,59.4,61.4,75.5,126.6$, 127.2, 128.8, 129.9, 135.0, 139.2; HR-MS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 363.1737. Found: 363.1738 . FT-IR cm ${ }^{-1}: 3472,2982,2934,1451,1286,1112,962$, 749, 692. $\left(\mathbf{1 R}, \mathbf{2}^{\boldsymbol{\prime}} \boldsymbol{R}\right)-\mathbf{5 g}\left([\alpha]^{25}{ }_{\mathrm{D}}=-141.5, \mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric purity was determined by HPLC analysis (AD chiral column; hexane: $i \operatorname{PrOH} 98: 2$; flow: 0.5 $\mathbf{m l} / \mathrm{min}$; for $(\mathbf{1} \boldsymbol{S}, \mathbf{2} \boldsymbol{S}) \mathbf{- 5 g}$ resulted $\mathrm{t}_{1}=29.88 \mathrm{~min},(\mathbf{1} \boldsymbol{R}, \mathbf{2} \boldsymbol{R}) \mathbf{- 5 g}$ resulted $\mathrm{t}_{2}=35.5 \mathrm{~min}$; for enantioenriched sample ($\mathbf{1 R}, \mathbf{2}^{\boldsymbol{\prime}} \boldsymbol{R} \mathbf{)} \mathbf{- 5 g}$ resulted $\mathrm{t}=35.5 \mathrm{~min}$, er $\left.>98: 2\right)$. Single crystals suitable for X-ray diffraction grown from hexane $/ \mathrm{Et}_{2} \mathrm{O}$.

[^4]: ${ }^{4}$ Sun, P.; Weinreb, S. M. J. Org. Chem. 1997, 62, 8604-8608.

[^5]: ${ }^{5}$ Wright, W. B. Jr. J. Heter. Chem. 1965, 41-43.

