Synthesis of Optically Active Arylaziridines by Regio and Stereospecific Lithiation of *N*-Bus-Phenylaziridine

Biagia Musio,^{†,‡} Guy J. Clarkson,[†] Michael Shipman,^{†,}* Saverio Florio^{‡,}* and Renzo Luisi[‡]

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Dipartimento Farmaco-Chimico, Università di Bari, Consorzio Interuniversitario Nazionale Metodologie e Processi Innovativi di Sintesi C.I.N.M.P.I.S., Via E. Orabona 4, I–70125 – Bari, Italy.

Content

General	p. S2
Preparation of aziridine (±)-1	p. S3
Preparation of aziridine (<i>R</i>)-1	p. S3
Representative procedure for the lithiation - trapping sequence of	
aziridines (\pm) -1 and (R) -1	p. S4
Procedure for the preparation of aziridine 4	p. S8
Procedure for the preparation of aziridine 7	p. S8
Procedure for the lithiation - trapping of aziridine (\pm) - 5 c	p. S9
Procedure for the eliminative dimerization of aziridine (<i>R</i>)-5c	p. S10
General procedure for the ring-opening reaction with amines	p. S10
Cleavage of the Bus group	p. S11
Procedure for the preparation of imidazolidinone derivative 12	p. S12
Copy of ¹ H , ¹³ C NMR and NOESY 1D spectra	pp. S13-S33
¹ H NMR analysis of the enantiomeric purity	Pp S31-S35
Ortep view of aziridine 5a and $(1R^*, 2^*R^*)$ - 5g	p. S36

Experimental

General

All reactions involving air-sensitive reagents were performed in oven-dried glassware under an atmosphere of nitrogen using syringe-septum cap technique. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were freshly distilled under a nitrogen atmosphere over sodium / benzophenone.

Column chromatography was performed using the solvent systems indicated. Petroleum ether refers to the fraction that boils at 30–40 °C. The stationary phase used was silica gel 60 unless otherwise indicated.

¹H NMR and ¹³C NMR spectra were recorded at 300, 400, 500, 600 MHz and 75, 100, 125, 200 MHz respectively with CDCl₃ or CD₃OD as solvent. Data are expressed as chemical shifts in parts per million (ppm) relative to residual chloroform CDCl₃ (¹H δ 7.27), (¹³C δ 77.0). The multiplicity of each signal is designated by the following abbreviations: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets; ddt, doublet of doublet of triplets; t, triplet; br, broad. Coupling constants J are given in Hz. Infra-red spectra of the compounds were recorded neat, as a film, or KBr disc as indicated. High resolution mass spectra were obtained by a double focusing (BE) mass spectrometer using electrospray ionisation techniques (M+NH₄⁺, M+H⁺, M+Na⁺). Low resolution mass spectra were obtained by GC-MS analysis using a gas chromatography with a BPX₅ column-HP 6890 plus (30 m, 0.25 mm i.d.) equipped with a 5973 mass selective detector operating at 70 eV (flow rate (He) = 1mL/min). HRMS data for Sn-containing compounds are quoted for the most abundant Sn isotope, i.e. ¹²⁰Sn. Specific rotations $\left[\alpha\right]_{D}^{T}$ were measured using a polarimeter with a cell of path length 1.0 cm, at T °C and are given in 10^{-1} deg cm² g⁻¹. Concentrations (c) are given in g/100 mL. Melting points were uncorrected. TLC was performed on Merck silica gel plates with F-254 indicator; detection was accomplished by UV light (254 nm), by exposing to I_2 vapours and spraying a solution of (5% W/V) ammonium molibdate and 0.2% W/V cerium(III)sulphate in 100 ml 17.6% aq. sulphuric acid and heating to 200 °C for some time until blue spots appear.

N,N,N',N'-tetramethylethylenediamine (TMEDA) was distilled over finely powdered CaH₂. Commercial solutions of *n*-BuLi (2.5 M hexane solution) and *sec*-BuLi (1.3 M cyclohexane solution) were tritated by using *N*-pivaloyl-*o*-toluidine prior use.¹

¹ Suffert, J. J. Org. Chem. 1989, 54, 509-510.

R-(-)- and (\pm) -*N*-*tert*-butyl-sulphonyl-2-phenylaziridine were prepared following reported procedures.² All other chemicals were of commercial grade and used without further purification.

Preparation of aziridine (±)-1.^{2a,b}

The aziridination of styrene (104.1 mg, 1.0 mmol) with Bus-NCINa Salt (294 mg, 1.2 mmol) catalyzed by 10% mol of phenyltrimethylammonium tribromide (PTAB)³ was carried out in acetonitrile (7.0 ml) at room temperature. The mixture was stirred for 12 h, filtered and concentrated under reduced pressure. Purification of the residue by SiO₂ flash chromatography (petroleum ether : Et₂O 9:1) afforded (±)-1 (208 mg, 87 %).

Preparation of aziridine (*R***)-1**.^{2c,d}

Aziridine (*R*)- **1** is readly available from enantiomerically pure (*R*)-(-)-phenylglycinol via activation of the primary alcohol group with in situ aziridine ring closure. The enantiomeric purity of aziridine (*R*)- **1** ($[\alpha]^{25}_{D} = -184.5$, c = 1, CHCl₃) was determined by ¹H-NMR resolution in presence of the chiral solvating agent (*R*)-(-)-1-(9-Anthryl)-2,2,2-trifluoroethanol and found to be >98 %ee.

To a solution of (*R*)-(-)-phenylglycinol (500 mg, 3.64 mmol) at 0 °C in CH₂Cl₂ (6.5 mL) and Et₃N (2.5 equiv, 9.1 mmol) was added dropwise *tert*-butylsulfinyl chloride (1 equiv, 3.64 mmol) and the reaction stirred at room temperature for 12 hours. The mixture was then washed with water (3 x 10 mL) and the organic phase was dried (MgSO₄) and concentrated *in vacuo* to give the corresponding *N*-sulfinyl-(*R*)-

² a) Sharpless, K. B.; Gontcharov, A. V.; Liu, H. Patent **1999**, US6008376. b) Gontcharov, A. V.; Liu, H.; Sharpless, K. B. Org. Lett. **1999**, 1, 5, 783-786. c) Berry, M. B.; Craig, D. Synlett **1992**, 41. d) Alonso, D. A.; Andersson, P. G. J. Org. Chem. **1998**, 63, 9455-9461.

³ Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 6844.

phenylglycinol (99%). To a solution of sulfinamide (880 mg, 3.64 mmol) in CH₂Cl₂ (54 mL) was added *m*-CPBA (1.2 equiv, 751.3 mg, 4.37 mmol) at 0 °C. After 2 hours, the mixture was warmed to room temperature and stirred for a further 1 hour. Then the mixture was diluted with a mixture of saturated aqueous NaHSO₃ (25 mL) and NaHCO₃ (25 mL) and the aqueous layer extracted with CH₂Cl₂ (2 x 25 mL). The combined organic extracts were dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by SiO₂ flash chromatography (Petroleum ether:Et₂O 7:3) to afford the corresponding sulfonamide as a white solid (89%). *p*-Toluenesulfonyl chloride (1 equiv, 615.9 mg, 3.23 mmol)) was added portionwise to a solution of the obtained *N*-protected-(*R*)-phenylglycinol (1 equiv, 833 mg, 3.23 mmol) and Et₃N (2 equiv, 6.46 mmol) in CH₂Cl₂ (40 mL) at 0 °C. The reaction was stirred at room temperature for 12 h then diluted with water and extracted with CH₂Cl₂ (3 x 30 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated to give the crude aziridine which was purified by SiO₂ flash chromatography (petroleum ether: Et₂O 7:3) to afford the pure compound as a white solid (486 mg, 63%).

Representative procedure for the lithiation - trapping sequence of aziridines (\pm) -1 and (R)-1:

n-BuLi (1.6 M in hexane, 525 μ L, 0.84 mmol) was added dropwise to a stirred solution of aziridine (±)-1 (100 mg, 0.42 mmol) and TMEDA (125.8 μ L, 0.84 mmol) in Et₂O (8 mL) at -78 °C. After 5 minutes at -78 °C the electrophile (0.84 mmol) was added. After 1 hour at -78 °C, the mixture was allowed to warm slowly to room temperature. After addition of saturated aqueous NH₄Cl (10 mL), the mixture was extracted with Et₂O (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by SiO₂ flash chromatography gave the substituted aziridines 5**a-i**.

Bus $H_{Ph} \xrightarrow{N}_{Ph} \xrightarrow{H}_{H}$ **1-(***tert***-Butylsulfonyl)-2-phenyl-2-trimethylsilylaziridine (5a).** White solid, mp 110-113 °C, 86%. ¹H-NMR (300 MHz, CDCl₃) δ 0.00 (s, 9H), 1.33 (s, 9H), 2.60 (br s, 1H), 2.75 (br s, 1H), 7.07-7.18 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 24.2, 39.3, 46.5, 60.6, 126.9, 128.4, 127.9, 129.0; HR-MS (ESI) Calcd for C₁₅H₂₅NO₂SSi, [M+NH₄]⁺: 329.1714. Found: 329.1717. FT-IR cm⁻¹: 2995, 2980,

2959, 1302, 1113, 940, 844, 695. Anal calcd for C₁₅H₂₅NO₂SSi: C, 57.84; H, 8.09; N, 4.49; S, 10.29%. Found: C, 57.95; H, 8.17; N, 4.21; S, 10.35%.

Bus 1-(*tert*-Butylsulfonyl)-2-deuterio-2-phenylaziridine (5b). White oil, 88% $P_{Ph} \stackrel{H}{\to} H$ (97% D). ¹H-NMR (300 MHz, CDCl₃) δ ¹H-NMR (300 MHz, CDCl₃) δ 1.47 (s, 9H), 2.36 (s, 1H), 2.96 (s, 1H), 7.26-7.39 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 24.1, 34.6, 59.4, 70.0, 126.3, 128.3, 128.7, 135.1; HR-MS (ESI) Calcd for C₁₂H₁₆DNO₂S, [M+NH₄]⁺: 258.1381. Found: 258.1383. FT-IR cm⁻¹: 2988, 1454, 1298, 1126, 906, 698. Anal calcd for C₁₂H₁₆DNO₂S: C, 59.97; H, 7.55; N, 5.83; S, 13.34. Found: C, 59.64; H, 7.56; N, 5.80; S, 12.94. The enantiomeric purity of (*R*)-5b ([α]²⁵_D = -164.3, c = 1, CHCl₃) was determined by HPLC analysis (AD chiral column; hexane:*i*PrOH 98:2; flow: 0.5 ml/min; for **5b** resulted t₁ = 22.8 min, t₂ = 27.0 min; for (*R*)-5b resulted t = 27.0).

^{Bus}_{Ph} **1-(***tert***-Butylsulfonyl)-2-methyl-2-phenylaziridine (5c)**. Colourless oil, ^{Me} N^H 80%. ¹H-NMR (300 MHz, CDCl₃) δ 1.43 (s, 9H), 1.92 (s, 3H), 2.42 (s, 1H), 2.84 (s, 1H), 7.18-7.34 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 20.9, 24.2, 43.5, 49.2, 61.0, 126.4, 127.7, 128.4, 141.6; HR-MS (ESI) Calcd for C₁₃H₁₉NO₂S, [M+NH₄]⁺: 271.1475. Found: 271.1477. FT-IR cm⁻¹: 2985, 1303, 1114, 724. Anal calcd for C₁₃H₁₉NO₂S: C, 61.63; H, 7.56; N, 5.53; S, 12.65. Found: C, 61.79; H, 7.87; N, 5.33; S, 12.67. The enantiomeric purity of (*R*)-5c ([α]²⁵_D = -142.5, c = 1.3, CHCl₃) was determined by ¹H-NMR resolution in presence of the chiral solvating agent (*R*)-(-)-1-(9-Anthryl)-2,2,2-trifluoroethanol and found to be >98 %ee.

36%. ¹H-NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 2.67 (br s, 1H), 2.98 (br s, 1H), 3.38 (d, *J* = 13.8 Hz, 1H), 3.52 (d, *J* = 13.8 Hz, 1H), 6.86-6.88 (m, 2H), 7.06-7.18 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 24.1, 41.1, 41.9, 54.1, 61.0, 126.7, 127.8, 127.8₄, 128.1, 128.6, 129.8, 137.0; HR-MS (ESI) Calcd for C₁₉H₂₃NO₂S, [M+NH₄]⁺: 347.1788. Found: 347.1786. FT-IR cm⁻¹: 2962, 2905, 1412, 1260, 1096, 798, 467.

2-[1-(*tert***-Butylsulfonyl)-2-phenylaziridin-2-yl]-propan-2-ol (5f).** White solid, mp 122 – 124 °C, 56%. ¹H-NMR (400 MHz, CDCl₃) δ 1.039 (s, 3H), 1.39 (s, 3H), 1.41 (s, 9H), 2.84 (s, 1H), 2.97 (s, 1H), 7.24 – 7.28 (m, 3H), 7.54 – 7.56 (m, 2); ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 24.9, 27.2, 39.2, 61.3, 71.3, 127.5, 128.7, 131.3, 133.7; HR-MS (ESI) Calcd for C₁₅H₂₃NO₃S, [M+H]⁺: 298.1471. Found: 298.1473. FT-IR cm⁻¹: 3525, 2975, 1308, 1122, 947, 760, 705. The enantiomeric purity of (*R*)-5f ([α]²⁵_D = +139.2, c = 1, CHCl₃) was determined by ¹H-NMR resolution in presence of the chiral solvating agent (*R*)-(-)-1-(9-Anthryl)-2,2,2trifluoroethanol and found to be >98 %ee.

[1-(*tert*-Butylsulfonyl)-2-phenylaziridin-2-yl]-phenylmethanol (5g). Diastereomers (dr = 70:30) were separated by SiO₂ flash chromatography (petroleum ether : Et_2O 7:3).

OH Bus Ph Ph H_{M} H_{M} $H_{$

- 7.25 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 24.0, 40.4, 59.4, 61.4, 75.5, 126.6, 127.2, 128.8, 129.9,135.0, 139.2; HR-MS (ESI) Calcd for C₁₉H₂₃NO₃S, [M+NH₄]⁺: 363.1737. Found: 363.1738. FT-IR cm⁻¹: 3472, 2982, 2934, 1451, 1286, 1112, 962, 749, 692. (1*R*, 2'*R*)-5g ([α]²⁵_D = -141.5, c = 1.0, CHCl₃). The enantiomeric purity was determined by HPLC analysis (AD chiral column; hexane:*i*PrOH 98:2; flow: 0.5 ml/min; for (1*S*, 2'*S*)-5g resulted t₁ = 29.88 min, (1*R*, 2'*R*)-5g resulted t₂ = 35.5 min; for enantioenriched sample (1*R*, 2'*R*)-5g resulted t = 35.5 min, er > 98:2). Single crystals suitable for X-ray diffraction grown from hexane/Et₂O.

 - 6.90 (m, 2H), 7.05 - 7.21 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 24.3, 35.9, 61.5, 74.0, 126.9, 127.8, 127.9, 120.0, 128.9, 130.4, 138.2; HR-MS (ESI) Calcd for C₁₉H₂₃NO₃S, [M+H]⁺: 346.1471. Found: 346.1470. FT-IR cm⁻¹: 3500, 2986, 1453, 1304, 1119, 696. (**1***S*, **2**^{*i*}*R*)-**5**g ($[\alpha]^{25}_{D}$ = +15.2, c = 1.1, CHCl₃).

Major diastereomer: white solid, mp 115 – 117 °C, 44%. ¹H-NMR (400 MHz, CDCl₃) δ 0.91 (d, *J* = 6.5 Hz, 3H), 0.99 (d, *J* = 6.7 H, 3H), 1.42 (s, 9H), 1.47 (m, 1H), 2.73 (s, 1H), 2.99 (s, 1H), 3.49 (dd, *J* = 3.1, 9.7 Hz, 1H), 3.84 (bs, 1H), 7.24 – 7.30 (m, 3H), 7.36 – 7.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.4, 19.9, 23.9, 31.7, 40.6, 57.7, 61.3, 79.3, 127.8, 128.1, 129.3, 136.1; HR-MS (ESI) Calcd for C₁₆H₂₅NO₃S, [M+NH₄]⁺: 329.1893. Found: 329.1895. FT-IR cm⁻¹: 3510, 2957, 1285, 1107, 701.

Minor diastereomer: white solid, mp 105 – 107 °C, 11%. ¹H-NMR (300 MHz, CDCl₃) δ 0.74 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.9 H, 3H), 1.14-1.21 (m, 1H), 1.37 (s, 9H), 2.40 (br s, 1H), 2.95 (s, 1H), 3.13 (s, 1H), 4.18 (t, *J* = 2.1 Hz, 1H), 7.28 – 7.32 (m, 3H), 7.42 – 7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.5, 20.7, 24.2, 29.0, 36.3, 61.5, 74.6, 128.2, 129.0, 129.7; HR-MS (ESI) Calcd for C₁₆H₂₅NO₃S, [M+H]⁺: 312.1628. Found: 312.1626. FT-IR cm⁻¹: 3339, 3295, 3245, 2967, 2929, 1302, 1128.

OH Bus $t-Bu \rightarrow h$ $t-Bu \rightarrow h$ t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2-dimethyl-propan-<math>t-I-[1-(tert-Butylsulfonyl)-2-phenylaziridin-2-yl]-2,2

Major diastereomer: white solid, mp 132 °C, 48%. ¹H-NMR (300 MHz, CDCl₃) δ 0.72 (s, 9H), 1.37 (s, 9H), 2.89 (s, 1H), 3.02 (s, 1H), 3.57 (d, *J* = 3.5 Hz, 1H), 3.98 (bs, 1H), 7.24 – 7.27 (m, 3H), 7.43 – 7.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.8, 26.7, 36.0, 40.7, 57.7, 61.2, 81.4, 127.8, 128.1, 130.3, 137.0; HR-MS (ESI) Calcd for C₁₇H₂₇NO₃S, [M+NH₄]⁺: 343.2050. Found: 343.2050. FT-IR cm⁻¹: 3501, 2979, 1281, 1110, 735.

Procedure for the preparation of epoxide 7:

n-BuLi (1.6 M in hexane, 525 μ L, 0.84 mmol) was added dropwise to a stirred solution of aziridine **1** (100 mg, 0.42 mmol) and TMEDA (125.8 μ L, 0.84 mmol) in Et₂O (8 mL) at -78 °C. After 5 minutes at -78 °C benzophenone (0.84 mmol in 2 mL of Et₂O) was added. After 1 hour at -78 °C, the mixture was allowed to warm slowly to room temperature. After addition of saturated aqueous NH₄Cl (10 mL), the mixture was extracted with Et₂O (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by SiO₂ flash chromatography gave **7** (283 mg) as a white solid.

2-(tert-Butylsulfonamido)methyl-2,3,3-triphenyloxirane (7). Ph, NHBus White solid, mp 173 – 176 °C, 80%. ¹H-NMR (400 MHz, CDCl₃) δ 1.13 (s, 9H), 3.12 (dd, J = 6.5, 13.7 Hz, 1H), 3.71 (t, J = 6.2 H, 1H), 3.85 (dd, J = 6.0, 13.7 Hz, 1H), 6.91-7.48 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 24.1, 29.7, 48.8, 60.2, 70.5, 126.8, 127.2, 127.4, 127.7, 127.9, 128.1, 128.2, 128.8, 135.5, 138.0, 138.4; HR-MS (ESI) Calcd for C₂₅H₂₇NO₃S, [M+NH₄]⁺: 439.2050. Found: 439.2054. FT-IR cm⁻¹: 3421, 1448, 1293, 1125, 891, 697.

Procedure for the preparation of aziridine 4:

n-BuLi (1.6M in hexanes, 1.88 mL, 3.0 mmol) was added dropwise to a stirred solution of 2,2,6,6-tetramethylpiperidine (0.51 mL, 3.0 mmol) in THF (15 mL) at -78 °C. The mixture was warmed to room temperature over 30 min, then re-cooled to -78 °C before dropwise addition of the aziridine (239 mg, 1.0 mmol) in THF (8 mL). The mixture was stirred at -78 °C for 5 min before the addition of chlorotrimethylsylane (3.0 mmol), sat. aq. NH₄Cl (8 mL) and Et₂O (16 mL). After 1 hour at -78 °C, the mixture was allowed to warm to room temperature. After addition of saturated aqueous NH₄Cl (10 mL), the mixture was extracted with Et₂O (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by SiO₂ flash chromatography gave **4** (133 mg).

 $\underset{\mathsf{Ph}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}}}_{\mathsf{Ph}} \overset{\mathsf{SiMe}_3}{\underset{\mathsf{H}}{\underset{\mathsf{N}}}} \quad 1-(tert-\mathsf{Butylsulfonyl})-2-phenyl-3-trimethylsilylaziridine (4). Colourless oil, 43\%. ^1H-NMR (400 MHz, CDCl_3) \delta 0.21 (s, 9H), 1.35 (s, 9H), 1.84$

(d, J = 6 Hz, 1H), 3.54 (d, J = 6 Hz, 1H), 7.19-7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ -1.1, 24.2, 43.8, 46.1, 59.5, 126.0, 128.1, 128.7, 137.5. Single crystals suitable for X-ray diffraction grown from hexane/Et₂O.

Procedure for the lithiation - trapping of aziridine (±)-5c:

n-BuLi (1.6 M in hexane, 787 μ L, 1.26 mmol) was added dropwise to a stirred solution of aziridine (±)-5c (100 mg, 0.42 mmol) and TMEDA (188.7 μ L, 1.26 mmol) in Et₂O (8 mL) at -78 °C. After 15 minutes at -78 °C the electrophile (1.26 mmol) was added. After 1 hour at -78 °C, the mixture was allowed to warm slowly to room temperature. Saturated aqueous NH₄Cl (10 mL) was added and the mixture extracted with Et₂O (3 x 10 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated under reduced pressure. Purification by SiO₂ flash chromatography (petroleum ether:Et₂O 8:2) gave the substituted aziridines **9a**, **9b**.

 $(2R^*, 3R^*)$ -1-(*tert*-Butylsulfonyl)-2-methyl-2-phenyl-3-deuterioaziridine (9a).

Bus Colourless oil, 87% (95%D). ¹H-NMR (400 MHz, CDCl₃) δ 1.47 (s, Me, N, D Ph H 9H), 1.96 (s, 3H), 2.45 (s, 1H), 7.22-7.39 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 20.8, 24.1, 43.1 (t, *J* = 26 Hz), 49.0, 60.8, 126.3, 127.6, 128.4, 141.5; ESI-MS *m/z*: 277 [M+Na]⁺ (100). GC-MS (70 eV) *m/z* (%): 254 (1), 134 (13), 133 (65), 92 (100), 77 (11), 57 (29). FT-IR cm⁻¹: 2984, 1297, 1110, 719.

 $(2R^*, 3R^*)-1-(tert-Butylsulfonyl)-2-methyl-2-phenyl-3-trimetylsylylaziridine (9b).$ Bus White solid, mp 105 – 106 °C, 84 %. ¹H-NMR (600 MHz, CD₃OD, 210 K) a mixture of invertomers is detectible (ratio 2:1) δ 0.32 (s, 9H major + 9H minor), 1.41 (s, 9H major), 1.48 (s, 9H minor), 1.66 (s, 3H major), 1.94 (s, 3H minor), 2.01 (s, 1H minor), 2.85 (s, 1H major), 7.33 -7.59 (m, 5H major + 5H minor); ¹³C NMR (125 MHz, CD₃OD, 210 K) δ -1.6, -0.5, 20.9, 23.9, 26.3, 43.6, 50.0, 52.5, 54.1, 60.5, 61.1, 126.3, 128.0, 128.3, 128.8, 129.0, 130.5, 139.3, 145.0; GC-MS (70 eV) *m/z* (%): 325 (8), 190 (12), 132 (100), 73 (32), 57 (26). FT-IR cm⁻¹: 3000, 2979, 1304, 1125, 886, 848, 763, 695. Procedure for the eliminative dimerization of aziridine (*R*)-5c. *n*-BuLi (1.6M in hexanes, 1.88 mL, 3.0 mmol) was added dropwise to a stirred solution of 2,2,6,6-tetramethylpiperidine (0.51 mL, 3.0 mmol) in THF (0.4 mL) at -78 °C. The mixture was warmed to 0 °C over 15 min, then re-cooled to -78 °C before dropwise addition of the aziridine (1.0 mmol) in THF (0.8 mL). The mixture was stirred at -78 °C for 20 min, then at 0 °C for 1 h, before the addition of MeOH (0.8 mL), sat. aq. NH₄Cl (8 mL) and Et₂O (16 mL). The layers were separated, and the aqueous phase was extracted with Et₂O (16 mL). The combined organic phase was dried (MgSO₄) and concentrated, giving the corresponding ene-2,5-diamine.

(3E)-N,N'-bis(tert-Butylsulfonyl)-2,5-diphenylhexan-3-ene-2,5-diamine (13). White solid, mp 135-136 °C, 90%. ¹H-NMR (600 MHz, Me_NHBus Ph CDCl₃) δ 1.42 (s, 9H), 1.89 (s, 3H), 4.20 (s, 1H), 6.05 (s, 1H), Ph' BusHN Me 7.22-7.35 (m, 3H), 7.45-7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) & 24.4, 27.1, 60.1, 63.2, 126.1, 127.5, 128.5, 135.5, 145.3; ESI-MS *m/z*: 277 [M-H] (100). FT-IR cm⁻¹: 3272, 2964, 2921, 1601, 1446, 1305, 1261, 1094, 1020, 798. Anal calcd for C₂₆H₃₈N₂O₄S₂: C, 61.63; H, 7.56; N, 5.53. Found: C, 61,45; H, 7.54; N, 5.91. The enantiomeric purity of **13** ($[\alpha]^{25}_{D} = +8.55$, c = 0.9, CHCl₃) was determined by HPLC analysis (AD chiral column; hexane: iPrOH 98:2; flow: 0.5 ml/min; for (±)-13 resulted $t_1 = 35.7 \text{ min}$, $t_2 = 39.5 \text{ min}$; for (+)-13 resulted t = 39.5min, er >98:2).

General procedure for the ring-opening reaction with amines:

A mixture of aziridine (*R*)-5c (100 mg, 0.42 mmol), aniline (1.2 equiv, 45.6 μ L, 0.50 mmol) and EtOH (420 μ L) was charged in a round-bottom glass flask containing a magnetic stirring bar. The flask was placed in a CEM Discover Focused Microwave Synthesis System. The flask was subjected to MW irradiation at 100 °C (300 W) for 30 min. After the reaction is completed, the flask was removed from the MW cavity and cooled to room temperature. The reaction mixture was concentrated *in vacuo*, followed by distillation in a Kugelrohr apparatus at 85 °C/0.1 mbar to remove excess aniline. The enantiomeric purity of the corresponding chiral products was established by ¹H NMR analysis using Mosher's acid.

NH*t*Bus NHPh [2-Phenyl-(2-phenylamino)]propyl-*tert*-butylsulfonamide (10). White solid mp 119 – 121 °C 98% ¹H_NMP (300 MHz CDCL) \$

White solid, mp 119 – 121 °C, 98%. ¹H-NMR (300 MHz, CDCl₃) δ 1.26 (s, 9H), 1.63 (s, 3H), 3.44 (ddd, J = 17.5, 13.3, 5.9 Hz, 1H), 4.14 (dd, J = 7.5, 4.7Hz, 1H), 6.29 (d, J = 7.8 Hz, 1H), 6.94 (t, J = 7.9 Hz, 1H), 7.08 (t, J = 7.9 Hz, 1H), 7.17-7.39 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 22.7, 54.2, 58.7, 115.5, 117.0, 126.3, 128.5, 128.7, 145.0, 146.1; HR-MS (ESI) Calcd for C₁₉H₂₆N₂O₂S, [M+H]⁺: 347.1788. Found: 347.1789. FT-IR cm⁻¹: 3398, 3267, 2976, 1600, 1501, 1305, 1122, 743, 698, 691. Anal calcd for C₁₉H₂₆N₂O₂S: C, 65.86; H, 7.56; N, 8.08; S, 9.25. Found: C, 66.70; H, 7.63; N, 8.48; S, 8.75.

Cleavage of the Bus group:⁴

To a solution of sulfonamide (73 mg, 0.21 mmol) and anisole (19.7 equiv, 462 µL, 4.25 mmol) in CH₂Cl₂ (6.2 mL) at 0 °C was slowly added trifluoromethanesulfonic acid (0.2 N in CH₂Cl₂, 6.2 mL) (the final concentration of the triflic acid is 0.1 N). The resultant mixture was stirred at room temperature until reaction was complete according to TLC analysis (usually overnight). The reaction mixture was poured into 10 % aqueous NaOH (20 mL) and extracted with CH₂Cl₂ (2 x 20 mL). The organic phases were combined, dried over MgSO₄, filtered and concentrated under reduced The residue purified SiO₂ flash chromatography pressure. was by (Dichloromethane: MeOH 95:5) to afford 11.

2-phenylamino-2-phenyl-propanamine (11). Colourless oil, 98 %. ¹H-NMR (400 MHz, CDCl₃) δ 1.64 (s, 3H), 2.89 (s, 2H), 6.36 (d, J = 7.8 Hz, 2H), 6.59 (t, J = 7.3 Hz, 1H), 6.99 (t, J = 7.9 Hz, 2H), 7.21-7.24 (m, 1H), 7.30-7.34 (m, 2H), 7.43-7.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 24.4, 24.6, 55.0, 58.4, 60.2, 115.3, 117.4, 126.2, 127.2, 128.7, 128.9, 143.1, 145.0; ESI-MS *m/z*: 257 [M-H] (100). FT-IR cm⁻¹: 3337, 2919, 1601, 1499, 1316, 1262, 751, 700. The enantiomeric purity of **11** ([α]²⁵_D = +11.5, c 0.2, CHCl₃) was determined by ¹H-NMR resolution in presence of the Mosher's acid and found to be >98 %ee.

⁴ Sun, P.; Weinreb, S. M. J. Org. Chem. 1997, 62, 8604-8608.

Procedure for the preparation of imidazolidinone derivative 12.⁵

To a solution of diamine (25 mg, 0.11 mmol) in THF (250 μ l) was slowly added a solution of N,N'-carbonyldiimidazole (18.53 mg, 0.11 mmol) in THF (250 μ l) at 0 °C. The resultant mixture was stirred at room temperature until reaction was complete according to TLC analysis (usually overnight). The reaction mixture was poured into brine and the acqueous layer was extracted with Et₂O (3 x 20 mL). The organic phases were combined, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by SiO₂ flash chromatography (Dichloromethane:MeOH 95:5) to afford the corresponding imidazolidinone **12**.

4-Methyl-3,4-diphenyl-imidazolidin-2-one (12). Colourless oil. 41 H_{N} H_{Me} H_{Ne} H_{Me} H_{NMR} (400 MHz, CDCl₃) δ 1.74 (s, 3H), 3.57 (s, 2H), 5.25(br s, 1H), 6.98-7.18 (m, 5H), 7.28-7.47 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7, 55.4, 64.7, 125.4, 125.6, 125.8, 127.8, 128.5, 128.7, 136.8, 144.4, 160.4; GC-MS (70 eV) *m/z* (%): 253 (13), 252 (76), 237 (100), 194 (31), 180 (31), 77 (34).FT-IR cm⁻¹: 3215, 2921, 1687, 700.

⁵ Wright, W. B. Jr. J. Heter. Chem. 1965, 41-43.

S20

S21

S24

Ortep view of aziridine **5a** at 50% ellipsoids probability,

Ortep view of aziridine $(1R^*, 2^R^*)$ -5g at 50% ellipsoids probability, (hydrogen omitted for clarity).

