Asymmetric Michael Addition Mediated by Novel

Cinchona Alkaloid-derived Bifunctional Catalysts

Containing Sulfonamides

Jie Luo ${ }^{a}$, Li-Wen Xu ${ }^{a, c}$, Robyn Aik Siew Hay ${ }^{a}$ and Yixin $\mathrm{Lu}^{*}{ }^{a, b}$
${ }^{a}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543
${ }^{\text {b }}$ Medicinal Chemistry Program, Life Sciences Institute, National University of Singapore
${ }^{c}$ Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, P. R. China
Email: chmlyx@nus.edu.sg
\section*{SUPPORTING INFORMATION}
A. General Information
..... S2
B. Preparation of cinchona alkaloid-derived catalysts
..... S3
C. Representative Procedure
..... S5
D. Analytical Data and HPLC Chromatogram of Michael Adducts
..... S6
E. NMR Spectra of the Products
..... S25

A. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ACF300 or DPX300 (300 MHz) or AMX500 $(500 \mathrm{MHz})$ spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). Coupling constants were reported in Hertz (Hz). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer in FAB mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. Flash chromatography separation was performed on Merck $60(0.040-0.063 \mathrm{~mm})$ mesh silica gel.

The enantiomeric excesses of products were determined by chiral-phase HPLC analysis, using a Daicel Chiralcel OD-H column ($250 \times 4.6 \mathrm{~mm}$), or Chiralpak AD-H column, or IA column ($250 \times 4.6 \mathrm{~mm}$).

Chemicals and solvents were purchased from commercial suppliers and used as received. QD-1, ${ }^{1}$ QD-2 ${ }^{2}$ and $\mathbf{Q D - 3}{ }^{3}$ were prepared according to the literature procedure, but using quinidine as the starting material. All the α-substituted cyclic β-ketoesters ${ }^{4}$ and nitroolefins ${ }^{5}$ were prepared according to the literature procedures.

The absolute configuration of $\mathbf{3 b}$ was assigned by comparing its specific rotation and HPLC data with those of the known compound reported in the literature ${ }^{6,7}$ (page S6), and configurations of other Michael adducts were assigned by analogy. ${ }^{7}$

B. Preparation of cinchona alkaloid-derived catalysts

General procedure for the preparation of catalysts

9-Amino-9-deoxyepiquinidine was prepared from quinidine following the literature procedure. ${ }^{1}$

Preparation of QD-4

To a solution of 9-amino-9-deoxyepiquinidine ($1.0 \mathrm{~g}, 3.09 \mathrm{mmol}$) in anhydrous dichloromethane $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine ($1.3 \mathrm{~mL}, 9.27 \mathrm{mmol}$) under nitrogen atmosphere, followed by $\mathrm{TsCl}(0.62 \mathrm{~g}, 3.25 \mathrm{mmol})$. The reaction mixture was then stirred overnight at room temperature, and the solvent was removed in vacuo. The residue was purified by column chromatography to afford QD-4 as a light yellow powder (1.2 g, 81\%).

QD-4: a light yellow powder; $[\alpha]^{25}{ }_{\mathrm{D}}=+58.7\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.47(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.25(\mathrm{br}, 1 \mathrm{H}), 1.09(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$
$158.3,146.7,145.5,143.4,143.3,140.6,136.5,130.0,128.8,128.6,127.1,122.3,120.3$, 113.6, 100.4, 60.6, 54.9, 51.9, 48.5, 45.9, 38.2, 27.3, 25.8, 24.2, 19.9; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 478.2164$, found: 478.2141 .

QD-5: a white powder (86% yield); $[\alpha]^{25}{ }_{\mathrm{D}}=+89.2\left(\mathrm{c} 0.61, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}$, 2H), $5.83(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.17(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.05-$ $3.10(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{br}, 3 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $160.6,148.0,147.0,146.0,144.7,140.7,132.6,132.4,131.4,129.4,127.9,125.6,124.9$, $123.9,122.8,121.2,115.9,101.6,62.1,56.2,53.9,49.9,47.1,38.9,28.4,26.2,25.4 ;$ HRMS (IT-TOF) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SF}_{6}[\mathrm{M}+\mathrm{H}]^{+} 600.1756$, found: 600.1407 .

QD-6: a white powder (89% yield); $[\alpha]^{25}{ }_{\mathrm{D}}=+92.3\left(\mathrm{c} 0.69, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.47(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.88(\mathrm{~m}, 2 \mathrm{H})$, $5.82(\mathrm{~m}, 1 \mathrm{H}), 4.97-5.08(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.67-3.04(\mathrm{~m}, 5 \mathrm{H}), 2.27(\mathrm{br}, 1 \mathrm{H}), 1.56(\mathrm{br}$, $3 \mathrm{H}), 1.04(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 167.0,165.0,159.8$, 148.1, 146.6, 144.7, 141.9, 137.8, 131.5, 131.1, 131.0, 130.0, 123.8, 121.6, 116.5, 116.4, $116.3,116.2,115.1,101.8,79.5,61.7,56.3,53.3,49.9,47.5,39.6,28.6,27.2,25.7$; HRMS (IT-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SF}[\mathrm{M}+\mathrm{H}]^{+} 482.1914$, found: 482.1612 .

QD-7: a slightly yellow powder (76\% yield); $[\alpha]^{25}{ }_{\mathrm{D}}=+55.0\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) $\delta 8.77(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.63(\mathrm{~m}$, 2H), 7.48 (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.47$ (d,
$J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{br}$, $1 \mathrm{H}), 1.74-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{br}, 1 \mathrm{H}), 0.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO) δ $158.7,148.5,145.2,141.5,139.3,133.7,132.4,128.7,128.2,128.1,126.5,122.8,121.4$, $117.0,112.0,102.8,80.2,60.7,56.6,49.8,49.3,46.2,37.1,27.4,24.8,23.8$; HRMS (ITTOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+} 548.1178$, found: 548.0946 .

C. Representative Procedure

General procedure for Micheal Addition of $\boldsymbol{\beta}$-keto esters to aryl nitroolefins

To a solution of aryl nitroolefin (0.055 mmol) and catalyst QD-4 (0.005 mmol) in dichloromethane $(0.15 \mathrm{~mL})$ was added α-substituted cyclic β-ketoesters $(0.05 \mathrm{mmol})$ at $40{ }^{\circ} \mathrm{C}$. The reaction mixture was kept stirring at that temperature for the time specified. The mixture was then filtered through a short pad of silica gel, and the filtrate was concentrated in vacuo. Purification of the residue by flash chromatography afforded the desired Michael adduct.

D. Analytical Data and HPLC Chromatogram of Michael Adducts

Methyl 2,3-dihydro-2-(2-nitro-1-phenylethyl)-1-oxo-1H-indene-2-carboxylate 3a

A yellow oil; diastereomeric ratio: 5.1 to 1 , and the diastereomers could not be separated; the characterization data were in agreement with the literature value; ${ }^{7}$ the ee value of the major isomer was $92 \%, \mathrm{t}_{\mathrm{R}}($ major $)=23.4 \mathrm{~min}, 112.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.5 \mathrm{~min}, 62.4 \mathrm{~min}$ (Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 20 \% \mathrm{iPrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$).

Racemic 3a

Enantiomeric enriched 3a

Methyl 1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate 3b

3b
A colorless oil; the diastereomeric ratio was greater than 50 to 1 , and the major diastereomer was obtained in pure form; $[\alpha]^{25}{ }_{\mathrm{D}}=-33.6\left(\mathrm{c} 0.79, \mathrm{CHCl}_{3}\right)$, (lit ${ }^{6}:[\alpha]^{25}{ }_{\mathrm{D}}=$ $\left.+36.5\left(\mathrm{c}, 0.84, \mathrm{CHCl}_{3}\right)\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.34(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{dd}, J=$
$13.8 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 3.8 \mathrm{~Hz}$, $1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.85-2.07(\mathrm{~m}, 4 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR data were in agreement with the literature values; ${ }^{6}$ The ee value of the major isomer was 90% (catalyzed by QD-4) and 91% (catalyzed by QD-6), t_{R} (major) $=9.9 \mathrm{~min}, 14.0 \mathrm{~min}$ (Chiralcel OD-H, $\lambda=220 \mathrm{~nm}, 20 \% i \mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$). For the minor diastereomers, $\mathrm{t}_{\mathrm{R}}($ minor $)=8.5 \mathrm{~min}, 12.5 \mathrm{~min} .\left(\right.$ literature ${ }^{6}: \mathrm{t}_{\mathrm{R}}($ major $)=11.0 \mathrm{~min}$, $17.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=9.3 \mathrm{~min}, 13.0 \mathrm{~min}($ Chiralcel $\mathrm{OD}-\mathrm{H}, \lambda=220 \mathrm{~nm}, 20 \%$ $i \mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$).

Racemic 3b

Enantiomeric enriched 3b, (catalyzed by QD-4)

Ethyl 1-(2-nitro-1-phenylethyl)-2-oxocyclopentanecarboxylate 3c

A colorless oil; diastereomeric ratio was greater than 50 to 1 , and the major diastereomer was obtained in pure form; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.17(\mathrm{dd}$, $J=13.25,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=13.25,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=$
$11.35,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3,169.3,135.4,129.3,128.8,128.3,76.5,62.5,62.2$, 46.2, 37.9, 31.3, 19.3, 14.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$328.1161, found 328.1056 ; the ee value of the major isomer was $90 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=8.0 \mathrm{~min}, 10.6$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=6.9 \mathrm{~min}, 9.9 \mathrm{~min}($ Chiralcel OD-H, $\lambda=220 \mathrm{~nm}, 20 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl 4-bromo-2,3-dihydro-2-(2-nitro-1-phenylethyl)-1-oxo-1H-indene-2-carboxylate 4a

A light yellow oil; diastereomeric ratio: 4.1 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ the major isomer: $\delta 7.65-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.15(\mathrm{~m}, 5 \mathrm{H}), 5.42-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=10.7 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65$ $(\mathrm{d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer: $\delta 7.65-7.43(\mathrm{~m}, 3 \mathrm{H})$,
$7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.25-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=10.7 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.47(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.91, 198.61, 169.38, 153.90, 153.73, 135.34, 134.99, 134.52, 132.83, 131.78, 131.46, 131.31, 129.42, 128.96, 128.92, 128.80, 128.50, 128.45, 126.26, 125.82, 125.52, 76.63, 62.92, 61.70, 53.35, 52.87, 47.43, 46.92, 36.22, 34.65; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrNO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 440.0110$, found 440.0103 ; the ee value of the major isomer was $92 \%, \mathrm{t}_{\mathrm{R}}($ major $)=20.4 \mathrm{~min}$ and $141.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=29.2 \mathrm{~min}, 51.2 \mathrm{~min}($ Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 30 \% i \mathrm{PrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min})$.

4b

A colorless oil; diastereomeric ratio: 3.3 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.29-7.10(\mathrm{~m}, 8 \mathrm{H}), 5.46-$ $5.42(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}$, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.63-7.47(\mathrm{~m}, 3 \mathrm{H})$, $7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.31-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.42(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.97, 199.82, 171.29, 169.96, 159.82, 145.44, 145.35, 139.06, 137.38, 135.80, 135.24, 134.82, 132.14, 129.41, 129.14, 129.06, 129.00, 128.84, 128.65, 128.33, 126.80, 125.48, 125.30, 106.03, 105.37, 76.92, 63.59, 62.51, 55.63, 53.21, 47.61, 47.12, 35.95, 34.50; (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$392.1110, found 392.1101; the ee value of the major isomer was $90 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=49.3 \mathrm{~min}$ and $52.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=64.7 \mathrm{~min}, 82.5 \mathrm{~min}($ Chiralcel AD-H, $\lambda=210 \mathrm{~nm}, 5 \% \mathrm{iPrOH} /$ hexanes, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min})$.

4c

A colorless oil; diastereomeric ratio: 3.3 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.23$ - $4.20(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H})$; the minor isomer, $\delta 7.72(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.62(\mathrm{~m}$, $2 \mathrm{H}), 5.20-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, \mathrm{~J}=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.71, 170.07, 166.19, 155.54, 135.95, 129.39, 129.01, 128.80, 128.61, 128.24, 126.97, 126.55, 126.24, $116.19,109.18,109.07,77.19,63.00,55.72,53.15,47.43,47.23,36.35,35.18$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 392.1110$, found 392.1115; the ee value of the major isomer was $95 \%, \mathrm{t}_{\mathrm{R}}($ major $)=91.8 \mathrm{~min}$ and $147.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=96.2 \mathrm{~min}$, $183.5 \mathrm{~min}($ Chiralcel AD-H, $\lambda=210 \mathrm{~nm}, 1.5 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

4d

A colorless oil; diastereomeric ratio: 5.9 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: the major isomer, $\delta 7.50-7.14(\mathrm{~m}, 8 \mathrm{H}), 5.49-$ $5.44(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$; the minor isomer, $\delta 7.58-7.14(\mathrm{~m}, 8 \mathrm{H})$, $5.23-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.82, 171.24, 169.92, $149.80,149.74,138.08,138.03,137.12,137.00,135.80,134.82,134.11,129.00,128.94$, $128.75,128.57,128.20,125.68,124.99,124.25,76.87,63.07,62.01,53.09,47.46,47.06$, 36.14, 34.82, 20.93; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$376.1161, found 376.1170 ; the ee value of the major isomer was $93 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=38.8 \mathrm{~min}$ and 44.6 min , $t_{\mathrm{R}}($ minor $)=41.5 \mathrm{~min}, 57.3 \mathrm{~min}($ Chiralcel IA, $\lambda=210 \mathrm{~nm}, 2 \% i \operatorname{PrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min})$.

Enantiomeric enriched 4d

4e

A colorless oil; diastereomeric ratio: 2.4 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.82-7.18(\mathrm{~m}, 8 \mathrm{H}), 5.76-$ $5.70(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.77-6.90(\mathrm{~m}, 8 \mathrm{H}), 5.35-5.22(\mathrm{~m}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.07,171.49,169.93,152.53,152.45,136.13,135.73,135.38,133.50$, 132.82, 130.21, 130.10, 129.45, 129.31, 128.89, 128.32, 128.20, 127.94, 127.77, 127.06, $126.24,125.98,125.46,124.30,76.65,62.81,61.17,53.25,53.05,41.89,36.62,36.48$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{Cl}[\mathrm{M}+\mathrm{Na}]^{+} 396.0615$, found 396.0622; the ee value of the major isomer was $93 \%, \mathrm{t}_{\mathrm{R}}($ major $)=16.2 \mathrm{~min}$ and $17.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $24.1 \mathrm{~min}, 28.7 \mathrm{~min}$ (Chiralcel AD-H, $\lambda=210 \mathrm{~nm}, 5 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$).

A colorless oil; diastereomeric ratio: 7.1 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.70-7.01(\mathrm{~m}, 8 \mathrm{H}), 5.44-$ $5.38(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$; the minor isomer, $\delta 7.78-6.92(\mathrm{~m}, 8 \mathrm{H})$, $5.20-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.83,171.15,169.80$, $152.43,152.36,138.00,135.75,135.60,133.98,132.61,131.57,129.47,129.30,128.83$, $128.75,127.95,127.90,126.03,125.16,124.38,77.19,62.85,61.82,53.11,47.16,46.76$, 36.45, 35.21, 20.89; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 376.1161$, found 376.1165 ; the ee value of the major isomer was $93 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=11.6 \mathrm{~min}$ and 52.2 min , $t_{R}($ minor $)=12.5 \mathrm{~min}, 30.0 \mathrm{~min}($ Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 15 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl 2-(1-(4-bromophenyl)-2-nitroethyl)-2,3-dihydro-1-oxo-1H-indene-2-carboxylate $\mathbf{4 g}$

A light yellow oil; diastereomeric ratio: 3.5 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: the major isomer, $\delta 7.70-7.14(\mathrm{~m}, 8 \mathrm{H}), 5.42-$ $5.36(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.80-7.01(\mathrm{~m}, 8 \mathrm{H}), 5.19-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.47-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.56,170.92,169.72,152.15,152.07,135.98$, $135.92,134.70,133.86,132.68,131.95,131.81,130.73,130.58,130.30,128.18,126.11$, $126.05,125.26,124.47,122.49,76.80,62.46,61.43,53.25,46.90,46.41,36.48,35.11 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+} 440.0110$, found 440.0095 ; the ee value of the major isomer was $93 \%, \mathrm{t}_{\mathrm{R}}($ major $)=17.7 \mathrm{~min}$ and $129.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$
$24.1 \mathrm{~min}, 64.8 \mathrm{~min}$ (Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 15 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min})$.

Methyl 2-(1-(3-bromophenyl)-2-nitroethyl)-2,3-dihydro-1-oxo-1H-indene-2-carboxylate 4h

4h

A light yellow oil; diastereomeric ratio: 4.4 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.71-7.00(\mathrm{~m}, 8 \mathrm{H}), 5.47-$ $5.41(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.79-6.98(\mathrm{~m}, 8 \mathrm{H}), 5.10-5.01(\mathrm{~m}$, 2H), $4.47-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.63,199.65,170.87,169.75,152.20,152.14$, $138.23,136.05,135.95,133.85,132.26,132.01,131.54,130.35,130.14,128.22,127.88$,
$127.39,126.13,125.31,124.52,122.86,122.64,76.53,62.47,61.57,53.31,46.98,46.66$, 36.48, 35.39; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}$440.0110, found 440.0092 ; the ee value of the major isomer was $95 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=15.3 \mathrm{~min}$ and 67.4 min , $t_{R}($ minor $)=17.8 \mathrm{~min}, 40.0 \mathrm{~min}($ Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 15 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl 2,3-dihydro-2-(1-(4-methoxyphenyl)-2-nitroethyl)-1-oxo-1H-indene-2-carboxylate 4i

$4 i$

A colorless oil; diastereomeric ratio: 4.6 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.69-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.75(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.39-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.77-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.10,199.86,171.21,169.85,159.28,152.40,152.33,136.12$, $135.75,135.65,134.02,130.12,130.03,127.98,127.91,127.42,126.43,126.05,126.02$, 125.14, 124.36, 114.13, 113.97, 77.14, 62.95, 61.83, 55.08, 55.03, 53.11, 46.85, 46.37, 36.54, 35.07; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 392.1110$, found 392.1099; the ee value of the major isomer was $96 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=30.5 \mathrm{~min}$ and $31.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=27.7 \mathrm{~min}, 29.2 \mathrm{~min}($ Chiralcel AD-H, $\lambda=210 \mathrm{~nm}, 6 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$).

Methyl 2-(1-(4-fluorophenyl)-2-nitroethyl)-2,3-dihydro-1-oxo-1H-indene-2-carboxylate $\mathbf{4} \mathbf{j}$

A light yellow oil; diastereomeric ratio: 3.5 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.68-6.88(\mathrm{~m}, 8 \mathrm{H}), 5.41-$ $5.35(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.17(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.78-6.80(\mathrm{~m}, 8 \mathrm{H}), 5.21-5.02(\mathrm{~m}$, 2H), $4.49-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.92, 199.76, 171.09, 169.84, 164.05, 160.76, $152.28,135.96,135.90,135.45,133.97,131.34,131.29,130.85,130.74,130.62,128.17$, 126.07, 125.23, 124.47, 115.92, 115.79, 115.54, 115.51, 76.74, 62.68, 61.59, 53.27, 46.80, 46.25, 36.59, 35.01; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~F}[\mathrm{M}+\mathrm{Na}]^{+} 380.0910$, found 380.0909 ; the ee value of the major isomer was $94 \%, \mathrm{t}_{\mathrm{R}}($ major $)=13.5 \mathrm{~min}, 94.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=17.2 \mathrm{~min}, 46.1 \mathrm{~min}$ (Chiralcel OD-H, $\lambda=210 \mathrm{~nm}, 15 \%$ iPrOH/hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl 5-bromo-2,3-dihydro-2-(2-nitro-1-p-tolylethyl)-1-oxo-1H-indene-2-carboxylate $\mathbf{4 k}$

A light yellow oil; diastereomeric ratio: 3.3 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.56-6.96(\mathrm{~m}, 7 \mathrm{H}), 5.38-$
$5.32(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$; the minor isomer, $\delta 7.63-6.93(\mathrm{~m}, 7 \mathrm{H})$, $5.22-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}$, $J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) $\delta 201.52,198.63,170.92$, $169.38,153.96,153.82,138.23,135.02,132.86,132.22,131.74,131.53,131.42,131.24$, $130.13,129.62,129.51,129.44,128.82,128.76,127.79,126.28,125.82,125.51,77.11$, $63.03,61.79,53.33,47.13,46.62,36.22,34.65,20.96 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+} 454.0266$, found 454.0271 ; the ee value of the major isomer was $90 \%, \mathrm{t}_{\mathrm{R}}($ major $)=15.8 \mathrm{~min}, 27.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.2 \mathrm{~min}, 19.0 \mathrm{~min}($ Chiralcel $\mathrm{AD}-\mathrm{H}$, $\lambda=210 \mathrm{~nm}, 10 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl 2,3-dihydro-5-methoxy-2-(2-nitro-1-(thiophen-2-yl)ethyl)-1-oxo-1H-indene-2-
carboxylate 41

41

A yellow oil; diastereomeric ratio: 3.1 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.17(\mathrm{~m}$, $1 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.44-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.597-4.56(\mathrm{~m}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$; the minor isomer, $\delta 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.80(\mathrm{~m}, 4 \mathrm{H}), 5.06-5.01$ (m, 1H), $4.94-4.90(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ $(\mathrm{d}, \mathrm{J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)) δ 198.63, 197.42, 170.52, 169.90, 166.26, 166.17, 155.67, 155.59, 138.09, 137.28, 128.94, 128.53, 127.85, 127.07, 127.00, 126.72, 126.62, 126.44, 125.87, 125.60, 116.32, 116.27, 109.26, 77.88, 63.03, 62.78, 55.70, 53.20, 53.17, 43.24, 42.74, 35.99, 35.74; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+} 398.0674$, found 398.0682 ; the ee value of the major isomer was $90 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=23.2 \mathrm{~min}, 40.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=25.4 \mathrm{~min}, 49.0 \mathrm{~min}($ Chiralcel AD-H, $\lambda=210 \mathrm{~nm}$, $10 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

A colorless oil; diastereomeric ratio: 8.8 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: the major isomer, $\delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.04(\mathrm{~m}$, $6 H), 5.44-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$; the minor isomer, $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.38-6.96(\mathrm{~m}, 6 \mathrm{H}), 5.20-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.44(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3})) $\delta 199.91,169.97,149.91,138.09,137.99,137.15,137.02$, $136.29,134.16,132.76,129.51,129.36,128.90,128.80,126.17,125.76,125.05,124.30$, $77.04,63.22,53.40,53.14,47.18,46.81,36.11,34.91,21.00,20.96 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 390.1317$, found 390.1312 ; the ee value of the major isomer was $91 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=16.2 \mathrm{~min}, 17.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.2 \mathrm{~min}, 18.9 \mathrm{~min}$ (Chiralcel AD-H, $\lambda=210 \mathrm{~nm}, 6 \% i \operatorname{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

4n

A colorless oil; diastereomeric ratio: 4.1 to 1 , and the diastereomers could not be separated; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): the major isomer, $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.13(\mathrm{~m}$, $1 \mathrm{H}), 4.28-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=17.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$; the minor isomer, $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.45$ $\left.(\mathrm{d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right)$ $\delta 201.97,199.78,171.23,169.97,164.02,160.74,149.72,149.64,138.29,137.30,137.25$, $136.25,134.14,131.41,131.36,130.86,130.75,130.63,125.74,125.05,124.31,115.91$, $115.79,115.62,115.51,77.11,62.99,61.87,53.23,46.79,46.23,36.24,34.62,20.99$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~F}[\mathrm{M}+\mathrm{Na}]^{+}$394.1067, found 394.1059; the ee value of the major isomer was $94 \%, \mathrm{t}_{\mathrm{R}}($ major $)=41.4 \mathrm{~min}, 44.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=39.1$ $\min , 42.7 \mathrm{~min}($ Chiralcel IA $+\mathrm{AD}-\mathrm{H}, \lambda=210 \mathrm{~nm}, 5 \% \mathrm{iPrOH} /$ hexanes, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$).

References

[1] B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967.
[2] H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906.
[3] L. Deng, X. Liu, Y. Chen, S. Tian, PCT Int. Appl., $2004110609,2004$.
[4] S. Kobayashi, T. Gustafsson, Y. Shimizu, H. Kiyohara, R. Matsubara, Org. Lett. 2006, $8,4923$.
[5] B. M. Trost, C. Müller, J. Am. Chem. Soc. 2008, 130, 2438.
[6] H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng, Angew. Chem. Int. Ed. 2005, 44, 105.
[7] T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119.

E. NMR Spectra of Products

ithauscoo fiver cat

${ }^{13}$ C ANMSSO H-307 cat

$13 \mathrm{CNOSOOH} / .50613 \mathrm{C}$

W05 in DMsodpr
N.W5inouso 18.

IHAMO500/334

13C AnX500 1.334 13C

14-102-2 ${ }^{13}$ 13C

\footnotetext{
$4+02 x+130$

4-102-4 13 C

174

4e

+114.5

F114613C

