Supporting Information

Stable Pre-formed Chiral Palladium Catalysts for the One-Pot Asymmetric Reductive Amination of Ketones

Laura Rubio-Pérez,* F. Javier Pérez-Flores, Pankaj Sharma, Luis Velasco and Armando Cabrera
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F., México. laurarpz@correo.unam.mx

Table of Contents.
General and materials. S2-3
The preparation of chiral palladium complexes. S3
General procedure for asymmetric reductive amination reaction of alkyl ketones S4
Characterization for these products S4-16
General procedure for asymmetric reductive amination reaction of aryl ketones S16
Characterization for these products S17-20
References S20
Copies of NMR, GC-MS or HPLC for all products $\mathbf{S 2 1}$

General: All reactions and manipulations were carried out under nitrogen atmosphere by using Schlenk-type techniques. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were obtained on a JEOL GX300 Bruker-Avance 300, Varian Unity 300 (300, 75 and 121 MHz respectively), and Varian Inova Plus 500 (500 for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) spectrometers using TMS as the internal reference in CDCl_{3} as solvent at $25^{\circ} \mathrm{C}$. All chemical shifts are reported in ppm (δ). Coupling constants (J) are reported in Hz to apparent peak multiplications. 2D NOESY and ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQC sequences were used for help the assignments of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra. IR spectra were recorded on a Nicolet FTIR Magna 750 spectrophotometer. Optical rotations were measured on a Perkin-Elmer 343 spectropolarimeter. Mass spectra were obtained using a JEOL JMS-SX102A instrument with m-nitrobenzyl alcohol as the matrix (FAB^{+}mode), and a JEOL JMS-AX505-A GC/MS-EI at 70 eV . Elemental compositions were calculated within an uncertainty of 5 ppm by using the program installed in the computer system. Elemental analyses for some compounds were obtained on a Elemental Analyzer CE-440. GC-MS analyses were conducted on a Hewlett Packard 5890 (series II) instrument coupled with a JEOL JMS-AX505-A GC/MS-EI at 70 eV instrument equipped with a FID detector and a chiral capillary column Cyclodex- β ($0.32 \mathrm{~mm} \times 0.32 \mathrm{~mm} \times 50 \mathrm{~m}$) using He as a carrier gas. HPLC analyses were performed on a Hewlett Packard 1100 system with UV-DAD. Separations were achieved on a Daicel Chiracel OD-H ($25 \times 4.6 \mathrm{~mm}$) column. Flash column chromatography was performed on silica gel (70-230 mesh). X-ray determination was collected on a Bruker SMART APEX CCD area diffractometer by the ω-scan method.

Materials: All reagents were obtained from commercial suppliers and used without further purification. Molecular sieves ($5 \AA$) were activated by flame under vacuum and stored at $200{ }^{\circ} \mathrm{C}$. Diethyl ether and benzene were distilled from sodium-benzophenone under nitrogen. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under nitrogen. All other solvents were HPLC grade. PdBr_{2} (palladium dibromide), BINAP [(rac)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (R)-BINAP [(+)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (S)-BINAP [(-)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (R)-TolBINAP $\left[(+)-2,2^{\prime}-\operatorname{Bis}\left(\right.\right.$ di- p-tolylphosphine) $-1,1^{\prime}-\quad$ binaphthyl $]$ and (S, S)-CHIRAPHOS [(2S,3S)-Bis(diphenylphosphino)butane] were purchased from Strem Chemical Co. The
$\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdBr}_{2}$ complex was prepared similar to $\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdCl}_{2}$ according to the previous published procedure. ${ }^{1}$

General procedure for $[($ rac $)$-BINAP $] \mathrm{PdBr}_{2}(1 \mathrm{a}),\left[(R)-\mathrm{BINAP}^{2} \mathrm{PdBr}_{2}\right.$ (1b), [(S)-
 complexes: These complexes were prepared by modified method described for the synthesis of $[(\mathrm{R})-\mathrm{BINAP}] \mathrm{PdCl}_{2}$ reported in the literature. ${ }^{2}$ In a Schlenk tube, $\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdBr}_{2}(174 \mathrm{mg}, 0.5 \mathrm{mmol})$ was suspended in 10 mL of benzene. Chiral diphosphine (0.5 mmol) was added. The suspension was stirred at room temperature for 24 h. The yellow-orange ($\mathbf{1 a - 1 d}$) or pinkish (1e) precipitate was collected by filtration, washed several times with diethyl ether and dried in vacuum. Each complex was pure enough for further purposes, but it can be crystallized by the slow diffusion of diethyl ether into a concentrated solution of the solid in a mixture of dichloromethane:acetone (1:1) to obtain red crystals for $\mathbf{1 a - 1 d}$ and yellow crystals for $\mathbf{1 e}$.
$\left[(\boldsymbol{R})\right.$-BINAP $\mathbf{P d B r}_{2}$ (1b): Prepared according to the general procedure from $\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdBr}_{2}(174 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[(\mathrm{R})-\mathrm{BINAP}](311 \mathrm{mg}, 0.5 \mathrm{mmol})$ at room temperature for overnight, to provide the title compound as yellow solid (85%) ; ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.57(\mathrm{~s}, 2 \mathrm{P}, \mathrm{BINAP}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-6.59(\mathrm{~m}$, $32 \mathrm{H}, \mathrm{ArH}$); FAB MS (positive ion mode): $m / z: 809\left[\mathrm{M}^{+}-\mathrm{Br}\right]$; HRMS-FAB $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{BrP}_{2} \mathrm{Pd}[\mathrm{M}-\mathrm{Br}]^{+}$809.0177, found: 809.01850; Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}$: C, 59.45; H, 3.63. Found: C, 59.35; H 3.60; $[\alpha]^{20}{ }_{\mathrm{D}}+630$ (c 0.18, acetone).
[(S)-BINAP] $\mathbf{P d B r}_{2} \mathbf{(1 c) :}[\alpha]^{20}{ }_{\mathrm{D}}-635$ (c 0.18, acetone).
$[(\boldsymbol{R})$-Tol-BINAP $] \mathbf{P d B r}_{2} \mathbf{(1 d) : ~ P r e p a r e d ~ a c c o r d i n g ~ t o ~ t h e ~ g e n e r a l ~ p r o c e d u r e ~ f r o m ~}$ $\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdBr}_{2}(174 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[(\mathrm{R})-\mathrm{Tol}-\mathrm{BINAP}](472 \mathrm{mg}, 0.5 \mathrm{mmol})$ at room temperature for 24 h , to provide the title compound as orange solid (88%); ${ }^{31} \mathrm{P}$ NMR (121 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.35\left(\mathrm{~s}, 2 \mathrm{P}\right.$, Tol-BINAP); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.68$ (m, $4 \mathrm{H}, \mathrm{ArH}$), $7.56-7.11(\mathrm{~m}, 18 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=7.15 \mathrm{~Hz}, \mathrm{ArH}), 6.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5$ $\mathrm{Hz}, \mathrm{ArH}$), 2.36 ($\mathrm{s}, 6 \mathrm{H},-\mathrm{CH}_{3}$), $1.98\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right.$); FAB MS (positive ion mode): $m / z: 865$
$\left[\mathrm{M}^{+}-\mathrm{Br}\right]$; Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}: \mathrm{C}, 61.01 ; \mathrm{H}, 4.27$. Found: C, 60.11; H 4.25; $[\alpha]^{20}{ }_{\mathrm{D}}+641.1$ (c 0.18, acetone).
[(S,S)-CHIRAPHOS]PdBr $\mathbf{2}_{2}$ (1e): Prepared according to the general procedure from $\left[(\mathrm{MeCN})_{2}\right] \mathrm{PdBr}_{2}(174 \mathrm{mg}, 0.5 \mathrm{mmol})$ and [(S,S)-CHIRAPHOS] ($213 \mathrm{mg}, 0.5 \mathrm{mmol}$) at room temperature for 24 h , to provide the title compound as pinkish solid (78%); ${ }^{31} \mathrm{P}$ NMR (121 MHz, CDCl_{3}) $\delta 64.3$ (s, 2P, BINAP); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.23$ (m, $20 \mathrm{H}, \mathrm{ArH}), 2.41\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CHCH}_{3}\right), 1.06\left(\mathrm{dd}, 6 \mathrm{H}, J=4.9,7.9 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right)$; FAB MS (positive ion mode): $m / z: 613\left[\mathrm{M}^{+}-\mathrm{Br}\right]$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Pd}$: C, 48.55; H, 4.07. Found: C, 48.29; H 4.05; $[\alpha]^{20}{ }_{\mathrm{D}}+113.75$ (c $0.2, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

General procedure for asymmetric reductive amination of alkyl ketones: 1.0 mmol of the carbonyl compound, 1.5 mmol of aniline derivative were added to a stirred solution of 0.025 mmol of chiral palladium complex in 10 mL of dry CHCl_{3} (in a Schlenk tube) and stirred under nitrogen atmosphere for 10 minutes. The solution was transferred to a 45 ml stainless steel autoclave (PARR), which contains 150 mg of activated molecular sieves $5 \AA$ previously purged with vacum- N_{2}. Subsequently, the reaction was taken to the desired pressure ($800 \mathrm{psi} \mathrm{H}_{2}$), stirred in an oil bath at $70^{\circ} \mathrm{C}$ for 24 h . At the end of this period, the gas was liberated. The solution was analyzed by GC-MS to quantify the remaining substrate, and was later concentrated under reduced pressure, affording a crude residue, which was purified by column chromatography over silica gel (70-230 mesh), and eluted with hexane-ethyl acetate $(99 / 1)$ to isolate the product.

4a
(-)-N-(4-methoxyphenyl)-[1-(methyl)-hexyl]amine (4a) (Table 1): Prepared according to the general procedure from 2-heptanone $(140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}), p$-anisidine $(185 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as a yellow oil (78\%); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, 2 \mathrm{H}, J=9.0$
$\mathrm{Hz}, \mathrm{ArH}$), $6.55(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.36(\mathrm{sext}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz},-$ CHCH_{3}), 2.99 (bs, $\left.1 \mathrm{H},-\mathrm{NHCH}\right), 1.57-1.28\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}$, CHCH_{3}), $0.89\left(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,141.9$, $114.9,114.6,55.8,49.5,37.1,31.9,25.8,22.6,20.7$, 14.0; IR(neat) 3405, 2959, 2929, 1618, 1518, 1181, $807 \mathrm{~cm}^{-1}$; EIMS (70 eV) $\mathrm{m} / \mathrm{z} 221\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ON}\left(\mathrm{M}^{+}\right)$221.1780, found 221.1775; $[\alpha]^{20}{ }_{\mathrm{D}}-2.0\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ; 76 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/^{j} \mathrm{PrOH}=95 / 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=$ 3.1 min (major), $\mathrm{t}_{\mathrm{R}}=4.5 \mathrm{~min}$ (minor).

With $\left[(R)\right.$-Tol-BINAP] $\mathrm{PdBr}_{2}(\mathbf{1 d}): 77 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{j} \mathrm{PrOH}=98 / 2$, flow $1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{r}}=4.2 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{r}}=7.4 \mathrm{~min}$ (major). [(S,S)-CHIRAPHOS] $\mathrm{PdBr}_{2}(\mathbf{1 e}): 14 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \operatorname{PrOH}=98 / 2$, flow $1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=4.2 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=7.5 \mathrm{~min}$ (major).

4b
(-)-N-(4-methylphenyl)-[1-(methyl)-hexyl]amine (4b) (Table 2, entry 1): Prepared according to the general procedure from 2-heptanone ($140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), p-toluidine (161 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (84%); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99$ (d, 2 H , $J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), $6.52(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 3.43\left(\mathrm{sext}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 3.28$ (bs, $1 \mathrm{H},-\mathrm{NHCH}$), $2.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.59-1.30\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-$ CHCH_{3}), $0.91\left(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,129.8$, $126.0,113.4,48.8,37.3,32.0,25.9,22.7,20.9,20.4,14.1$; IR(neat) 3402, 2958, 2927, 1618, 1181, $806 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $205\left(\mathrm{M}^{+}\right)$; Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}$ (205.1830): C, 82.13; H, 11.49; N, 6.39. Found: C, 82.11; H, 11.50; N, 6.38; HRMS-EI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}\left(\mathrm{M}^{+}\right)$205.1830, found 205.1830; $[\alpha]^{20}{ }_{\mathrm{D}}-2.0\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right.$); 73\% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \operatorname{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $t_{R}=3.1 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=3.4 \mathrm{~min}$ (major).

(-)-N-(3-trifluoromethylphenyl)-[1-(methyl)-hexyl]amine (4c) (Table 2, entry 2): Prepared according to the general procedure from 2-heptanone ($140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), mtrifluoromethyl aniline ($180 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025$ mmol) at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil $(51 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.75(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{ArH}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}$), $3.65(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCH}$), 3.47 (sext, $1 \mathrm{H}, J=6.3$ $\left.\mathrm{Hz},-\mathrm{CHCH}_{3}\right), 1.57-1.28\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.6.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,131.6(\mathrm{Cq}, J=32.3 \mathrm{~Hz}), 129.7$, $124.4(\mathrm{Cd}, J=272.3 \mathrm{~Hz}), 115.9,113.1(\mathrm{Cq}, J=4.0 \mathrm{~Hz}), 109.1(\mathrm{Cq}, J=4.0 \mathrm{~Hz}), 48.5,37.1$, 31.9, 25.8, 22.7, 20.6, 14.1; IR(neat) 3426, 2961, 2931, 1614, 1517, 1162, $857 \mathrm{~cm}^{-1}$; EIMS $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 259\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NF}_{3}\left(\mathrm{M}^{+}\right) 259.1548$, found 259.1545; $[\alpha]^{20}{ }_{D}-1.6\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ; 95 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \mathrm{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=3.6 \mathrm{~min}$ (major).

(+)-N-phenyl-[1-(ethyl)-pentyl]amine (4d) (Table 2, entry 3): Prepared according to the general procedure from 3-heptanone ($140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline ($0.13 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (86%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15$ ($\mathrm{td}, 2 \mathrm{H}, J=8.7,1.5$ $\mathrm{Hz}, \mathrm{ArH}$), $6.64(\mathrm{tt}, 1 \mathrm{H}, J=1.2,7.2 \mathrm{~Hz}, \mathrm{ArH}), 6.57(\mathrm{dd}, 1 \mathrm{H}, J=1.2,8.5 \mathrm{~Hz}, \mathrm{ArH}), 3.46$ (bs, $1 \mathrm{H},-\mathrm{NHCH}$), 3.28 (quint, $1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{2}$), $1.74-1.26\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92(\mathrm{t}, 3 \mathrm{H}$, $J=7.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.1, 129.2, 116.4, 112.8, 54.0, 34.0, 28.1, 27.2, 22.8, 14.0, 10.0; IR(neat) 3405, 2959, 2929, 1602, 1504, 1179, $865 \mathrm{~cm}^{-1} ; \operatorname{EIMS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 191\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+2.72(\mathrm{c} 0.44$,
CHCl_{3}); 49\% ee by GC-MS (EI) (column: Ciclodex- β, flow rate $=1$ grade $/ \mathrm{min}, \mathrm{t}_{\mathrm{R}}=28.4$ $\min ($ minor $), \mathrm{t}_{\mathrm{R}}=28.7 \mathrm{~min}$ (major).

(-)-N-(4-methylphenyl)-[1-(ethyl)-pentyl]-amine (4e) (Table 2, entry 4): Prepared according to the general procedure from 3-heptanone ($140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), p-toluidine (161 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (82%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97$ (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 3.31(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCH}), 3.25$ (quint, $\left.1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{2}\right), 3.04\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.63-1.27\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}\right), 0.92(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9$, 129.7, 125.6, 113.0, 54.3, 34.1, 28.1, 27.2, 22.8, 20.3, 14.0, 10.0; IR(neat) 3404, 2959, 2929, 1618, 1518, 1151, $806 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $205\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N} 205.1830\left(\mathrm{M}^{+}\right)$, found 205.1833; $[\alpha]^{20}{ }_{\mathrm{D}}-1.5\left(\mathrm{c} 0.54, \mathrm{CHCl}_{3}\right) ; 59 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/ \mathrm{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=$ 3.0 min (minor), $\mathrm{t}_{\mathrm{R}}=3.4 \mathrm{~min}$ (major).

N-phenyl-[1-(ethyl)-propyl]amine (4f) (Table 2, entry 5): Prepared according to the general procedure from 3-pentanone ($100 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline ($130 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and [(rac)-BINAP] $\operatorname{PdBr}_{2}, \mathbf{1 a},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as light yellow oil (77%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (td, $2 \mathrm{H}, J=8.5$, 1.1 Hz, ArH), $6.61(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.59(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 3.44(\mathrm{bs}, 1 \mathrm{H},-$ NHCH), 3.25 (quint, $1 \mathrm{H}, J=5.8 \mathrm{~Hz},-\mathrm{CHCH}_{2}$), $1.65-1.45\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}\right), 0.94(\mathrm{t}, 6 \mathrm{H}, J=$ 7.4 Hz, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3$, 129.3, 116.6, 113.0, 55.4, 26.8,
10.2; IR(neat) 3403, 2963, 2930, 1602, 1505, 1179, $865 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $163\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}\left(\mathrm{M}^{+}\right)$163.1361, found 163.1360.

$4 g$
(-)-N-sec-butyl-(p-tolyl)amine (4g) (Table 2, entry 6): Prepared according to the general procedure from 2-butanone ($90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), p-toluidine $(161 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $[(S)$ BINAP] $P_{d B r}^{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (77\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97$ (d, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}$), 6.51 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}$), 3.36 (sext, $1 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), 3.26 (bs, $1 \mathrm{H},-\mathrm{NHCH}$), 2.23 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64-1.55\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.50-1.39\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.3 Hz, $-\mathrm{CHCH}_{3}$), $0.94\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.5$, $129.8,126.0,113.4,50.1,29.7,20.4,20.3,10.4$; IR(neat) 3399, 2964, 2924, 1618, 1518, 1160, $807 \mathrm{~cm}^{-1}$; EIMS (70 eV) $\mathrm{m} / \mathrm{z} 163\left(\mathrm{M}^{+}\right) ;[\alpha]_{\mathrm{D}}^{20}-1.0\left(\mathrm{c} 0.44, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \operatorname{PrOH}=95 / 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}=5.0 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=5.9 \mathrm{~min}$ (minor).

4h
(-)-N-sec-butyl-(4-ethylphenyl)amine (4h) (Table 2, entry 7): Prepared according to the general procedure from 2-butanone ($90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), p-ethyl aniline ($190 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (77%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$, $\mathrm{ArH}), 6.55(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 3.44-3.33\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHCH}+-\mathrm{CHCH}_{3}\right), 2.55(\mathrm{q}, 2 \mathrm{H}$, $\left.J=7.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.66-1.55\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.52-1.40\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.22$ $\left(\mathrm{d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 145.7,132.7,128.6,113.3,50.1,29.7,28.0,20.4,16.0,10.5 ; \operatorname{IR}(\mathrm{neat}) 3402$, 2963, 2927, 1616, 1518, 1158, $819 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $177\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-2.80(\mathrm{c} 0.5$, CHCl_{3}); 92% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/^{j} \mathrm{PrOH}=90 / 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=3.2 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=3.7 \mathrm{~min}$ (major).

$4 i$
(+)-N-sec-butyl-(2-trifluoromethylphenyl)amine (4i) (Table 2, entry 8): Prepared according to the general procedure from 2-butanone ($90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), o-trifluoromethyl aniline $(180 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c}$, $(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil $(76 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.41(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.33(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH})$, $6.65\left(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}\right.$), 4.13 (bs, $1 \mathrm{H},-\mathrm{NHCH}$), 3.48 ($\mathrm{sext}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), $1.53-1.51\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,133.0,126.8(\mathrm{Cq}, J=5.3 \mathrm{~Hz}), 123.5,115.2$, $113.2(\mathrm{Cq}, J=29.4 \mathrm{~Hz}), 112.3,49.7,29.5,20.1,10.2$; $\operatorname{IR}($ neat $) 3468,2969,2929,1615$, 1586, 1168, $941 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $217\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+3.33\left(\mathrm{c} 0.36, \mathrm{CHCl}_{3}\right) ; 82 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/ \mathrm{PrOH}=92 / 8$, flow rate $=1$ $\mathrm{mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=3.8 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=4.6 \mathrm{~min}($ minor $)$.

4j
(S)-N-sec-butyl-(3-trifluoromethylphenyl)amine (4j) (Table 2, entry 9): Prepared according to the general procedure from 2-butanone $(90 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$, m-trifluoromethyl $(180 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (71\%); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23$ (t,
$1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \operatorname{ArH}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \operatorname{ArH}), 6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.2 \mathrm{~Hz}, \mathrm{ArH}$), 3.65 (bs, 1H, -NHCH), 3.42 (sext, $1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), $1.64-1.45$ (m, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.96\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,131.5(\mathrm{Cq}, J=31.7 \mathrm{~Hz}), 129.7,122.7,115.9,113.1(\mathrm{Cq}, J$ $=4.0 \mathrm{~Hz}), 109.1(\mathrm{Cq}, J=4.0 \mathrm{~Hz}), 49.8,29.6,20.1,15.8$; IR (neat) $3425,2970,2932,1614$, 1517, 1163, $859 \mathrm{~cm}^{-1}$; EIMS (70 eV) $\mathrm{m} / \mathrm{z} 217\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NF}_{3}$ $\left(\mathrm{M}^{+}\right)$217.1078, found 217.1083; $[\alpha]^{20}{ }_{\mathrm{D}}-3.01$ (c $0.53, \mathrm{CHCl}_{3}$); 75% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \mathrm{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=3.8 \mathrm{~min}$ (major).
To determine the absolute configuration of this compound was derivatized by hydrogenolysis in presence of Pd / C and salt formation with HCl in methanol to obtain 2butylamine hydrochloride. The obtained ammonium salt (2-butylamine hydrochloride) has optical rotation $[\alpha]^{20}{ }_{D}-4.8$ (c $0.25, \mathrm{EtOH}$). This was compared with the optical rotation of reported 2-butylamine hydrochloride. ${ }^{4}$

(-)-N-phenyl-[1-(methyl)-butyl]amine (4k) (Table 2, entry 10): Prepared according to the general procedure from 3-penten-2-one ($100 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline ($130 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (78\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, ArH), $6.55\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}\right.$), 3.48 (quint, $1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), 3.31 (bs, 1 H , NHCH), $1.62-1.39\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.0 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,129.9,126.0,113.4,48.6,39.6$, 20.9, 20.5, 19.4, 14.3; IR(neat) 3383, 2959, 2924, 1616, 1513, 1172, $806 \mathrm{~cm}^{-1}$; EIMS (70 eV) $m / z 177\left(\mathrm{M}^{+}\right) ;$HRMS-EI m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}\left(\mathrm{M}^{+}\right)$177.1517, found 177.1518; $[\alpha]^{20}{ }_{\mathrm{D}}-3.40\left(\mathrm{c} 0.47, \mathrm{CHCl}_{3}\right) ; 10 \%$ ee by CG-MS (column: Ciclodex- β, flow rate $=1$ grade $/ \mathrm{min}, \mathrm{t}_{\mathrm{R}}=20.9 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=21.3 \mathrm{~min}$ (minor).

4I
(-)-N-phenyl-[1-(methyl)-3-(methyl)-butyl]amine (4l) (Table 2, entry 11): Prepared according to the general procedure from 4-methyl-2-pentanone ($120 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline ($130 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (83%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.17 (t, 2H, $J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 6.66(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 6.58(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{ArH})$, 3.53 (sext, $1 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), 3.39 (bs, $1 \mathrm{H},-\mathrm{NHCH}$), $1.80-1.71$ (m, 1 H , $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.52-1.43(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}), 1.31-1.23\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}\right), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.3$ $\left.\mathrm{Hz},-\mathrm{CHCH}_{3}\right), 0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,129.3,116.8,113.0,47.0,46.5,25.1,23.0,22.6,21.1$; IR(neat) 3402, 2958, 2927, 1602, 1504, 1160, $866 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $177\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}\left(\mathrm{M}^{+}\right)$177.1517, found 177.1511; $[\alpha]^{20}{ }_{\mathrm{D}}-1.27$ (c 0.47, CHCl_{3}); 51% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/^{i} \operatorname{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=4.0 \mathrm{~min}($ major $), \mathrm{t}_{\mathrm{R}}=4.7 \mathrm{~min}$ (minor) .

4m
(-)-N-(4-methylphenyl-[1-(methyl)-3-(methyl)-butyl]amine (4m) (Table 2, entry 12):
Prepared according to the general procedure from 4-methyl-2-pentanone ($120 \mu \mathrm{~L}, 1.0$ mmol), p-toluidine ($161 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $[(S)$ - BINAP$] \mathrm{PdBr}_{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (73\%); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}), 6.51(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 3.49(\mathrm{sext}, 1 \mathrm{H}, J=$ $6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}$), 3.26 (bs, $1 \mathrm{H},-\mathrm{NHCH}$), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 1.81-1.68\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.50-1.41(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CHCH}), 1.28-1.19\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}\right), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-$ $\left.\mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,129.7,125.9,113.2,46.9,46.8,25.0,22.9,22.6,22.5,21.0$; IR(neat) 3397, 2957, 2924, 1617, 1517, 1162, $880 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $191\left(\mathrm{M}^{+}\right)$; $[\alpha]^{20}{ }_{D}-4.25\left(c 0.40, \mathrm{CHCl}_{3}\right.$); 90% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/ / \operatorname{PrOH}=95 / 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=4.9 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=5.4 \mathrm{~min}$ (minor).

4n
(-)-N-(4-ethylphenyl)-[1-(methyl)-4-(methyl)-pentyl]amine (4n) (Table 2, entry 13):
Prepared according to the general procedure from 5-methyl-2-hexanone (125 $\mu \mathrm{L}, 1.0$ mmol), p-ethyl aniline ($190 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and [(S)-BINAP] $\mathrm{PdBr}_{2}, \mathbf{1 c}$, $(22 \mathrm{mg}, 0.025$ mmol) at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (80%); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 6.52(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 3.44-3.33$ $\left(\mathrm{m}, 2 \mathrm{H},-\mathrm{CHCH}_{3}+-\mathrm{NH}\right), 2.54\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.64-1.24\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ $\left.+-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.19\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.89(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.88\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.7, 132.6, 128.6, 113.2, 49.1, 35.4, 35.1, 28.2, 27.9, 22.8, 22.7, 20.9, 16.0; IR(neat) 3403, 2959, 2928, 1616, 1518, 1158, $818 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z 219 (M ${ }^{+}$); HRMS-EI m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}\right)$219.1987, found 219.1984; $[\alpha]^{20}{ }_{\mathrm{D}}-0.70\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}\right) ; 83 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/^{i} \operatorname{PrOH}=95 / 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $t_{R}=3.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=4.9 \mathrm{~min}$ (minor).

(-)-N-(3-trifluoromethylphenyl)-[1-(methyl)-4-(methyl)-pentyl]amine (40) (Table 2, entry 14): Prepared according to the general procedure from 5-methyl-2-hexanone (125 $\mu \mathrm{L}, 1.0 \mathrm{mmol}$), m-trifluoromethyl aniline ($180 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c}$,
($22 \mathrm{mg}, 0.025 \mathrm{mmol}$) at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (71%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=7.7$ $\mathrm{Hz}, \mathrm{ArH}), 6.79(\mathrm{~s}, 2 \mathrm{H}, 1 \mathrm{H}, \mathrm{ArH}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 3.63$ (bs, 1H, -NHCH), 3.47 (sext, $\left.1 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 1.64-1.25\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}+-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.20(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.93\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-$ CHCH_{3}); IR(neat) 3425, 2960, 2931, 1614, 1516, 1164, $858 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z 259 $\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NF}_{3}\left(\mathrm{M}^{+}\right)$259.1548, found 259.1545; $[\alpha]^{20}{ }_{\mathrm{D}}-2.08$ (c $0.24, \mathrm{CHCl}_{3}$); 82% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/ \mathrm{PrOH}=$ $90 / 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=3.8 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=5.1 \mathrm{~min}$ (minor).

(-)-N-(3-trifluoromethylphenyl)-[1-(methyl)-2,2-(dimethyl)-propyl]-amine (4p) (Table 2, entry 15): Prepared according to the general procedure from 3,3-dimethyl-2-butanone $(90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}), m$-trifluoromethyl aniline ($180 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $\left[(R)-\mathrm{BINAP}^{2} \mathrm{PdBr}_{2}\right.$, $\mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (89\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}, \mathrm{ArH}$), 6.77 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 6.71 (d, 1H, $J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), 3.63 (bs, 1H, NHCH), 3.26 (q, $\left.1 \mathrm{H}, J=6.0 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 1.10\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.97(\mathrm{~s}, 9 \mathrm{H}, J=6.6 \mathrm{~Hz},-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.6,131.6(\mathrm{Cq}, J=31.7 \mathrm{~Hz}), 129.7,122.7$, $115.8,112.9(\mathrm{Cq}, J=4.0 \mathrm{~Hz}), 109.0(\mathrm{Cq}, J=4.0 \mathrm{~Hz}), 57.1,34.9,26.5,15.8$; $\operatorname{IR}($ neat $) 3430$, 2966, 1614, 1519, 1162, $855 \mathrm{~cm}^{-1}$; EIMS (70 eV) $m / z 245\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NF}_{3}\left(\mathrm{M}^{+}\right) 245.1391$, found 245.1397; $[\alpha]^{20}{ }_{\mathrm{D}}-24.72$ (c $0.55, \mathrm{CHCl}_{3}$); 96% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{\prime} \operatorname{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}=3.0 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=3.4 \mathrm{~min}$ (major).

$4 q$
(-)-N-(phenyl)-[2-sec-butylcyclohexyl]amine (4q) (Table 2, entry 16): Prepared according to the general procedure from 2-sec-butylcyclohexanone (Mixture of diastereomers with a slight 10% of diastereomeric excess, $170 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline (130 $\mu \mathrm{L}, 1.5 \mathrm{mmol})$ and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b}$, $(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (80\%); First diastereomer: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{td}, 2 \mathrm{H}, J=2.0,7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.62(\mathrm{td}, 1 \mathrm{H}, J=2.0,7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.58(\mathrm{~d}$, $2 \mathrm{H}, J=2.0,7.5 \mathrm{~Hz}, \mathrm{ArH}$), 3.77 (m, 1H, -CHNH), 3.71 (bs, 1H, -CHNH), $2.04-2.03$ (m, 2 H , cyclohexyl), $1.83-1.74(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl), $1.55-1.08(\mathrm{~m}, 7 \mathrm{H}$, cyclohexyl and butyl), $0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.79\left(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.7,129.3,116.3,112.8,48.5,45.1,35.4,29.5,26.4,25.9,25.0,20.3$, 16.6, 10.6; Second diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (td, $2 \mathrm{H}, J=2.0,7.5$ $\mathrm{Hz}, \mathrm{ArH}$), 6.62 (td, 1H, $J=2.0,7.5 \mathrm{~Hz}, \mathrm{ArH}$), 6.58 (d, 2H, $J=2.0,7.5 \mathrm{~Hz}, \mathrm{ArH}), 3.77$ (m, $1 \mathrm{H},-\mathrm{CHNH}$), $3.71(\mathrm{bs}, 1 \mathrm{H},-\mathrm{CHNH}), 2.02-2.00(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl), $1.83-1.74(\mathrm{~m}, 2 \mathrm{H}$, cyclohexyl), $1.55-1.08\left(\mathrm{~m}, 7 \mathrm{H}\right.$, cyclohexyl and butyl), $0.85\left(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right)$, $0.82\left(\mathrm{t}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.7,129.3,116.3$, $112.8,48.3,44.8,35.8,29.5,26.3,26.2,24.9,20.3,16.1,10.5$; IR(neat) $3429,3051,2926$, 1601, 1154, $860 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $231\left(\mathrm{M}^{+}\right)$; HRMS-EI m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}\right)$ 231.1987, found 231.1991; $[\alpha]^{20}{ }_{\mathrm{D}}-36.2$ (c $0.16, \mathrm{CHCl}_{3}$); 53 and 66% de by GC-MS (EI) [column: Ciclodex $-\beta$, flow rate $=1.2$ grade $/ \mathrm{min}, \mathrm{t}_{\mathrm{R}}=55.7 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=56.1 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=57.5 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=57.8 \mathrm{~min}$ (major) respectively].

Notes:

1. The injection of 2-sec-butylcyclohexanone by GC-MS employing a non chiral column was detected two peaks with $t_{R}=26.7 \mathrm{~min}$ (major) and $t_{R}=26.8 \mathrm{~min}$ (minor) with a slight diastereomeric excess of 10%. When this substrate was aminated with aniline using [(rac)BINAP] $\operatorname{PdBr}_{2}(\mathbf{1 a})$, two pairs of diastereomers of the desired product $(\mathbf{4 n})$ were detected by

GC-MS (EI) [column: Ciclodex- β, flow rate $=1.2$ grade $/ \mathrm{min}, \mathrm{t}_{\mathrm{R}}=55.7 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=$ 56.0 min (major) and $\mathrm{t}_{\mathrm{R}}=57.5 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=57.7 \mathrm{~min}$ (minor) respectively] with the same intensity. See S80.
2. When $[(S)$-BINAP $] \operatorname{PdBr}_{2}$ (1c) complex was used: $[\alpha]^{20}{ }_{\mathrm{D}}+33.0$ (c $0.16, \mathrm{CHCl}_{3}$); 57 and 69% of diastereomeric excess was detected by GC-MS (EI) [column: Ciclodex- β, flow rate $=1.2$ grade $/ \mathrm{min}, \mathrm{t}_{\mathrm{R}}=55.7 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=56.0 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=57.6 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}$ $=57.8 \mathrm{~min}$ (major) respectively]. These values are opposite to $\left[(R)-\mathrm{BINAP}^{2}\right] \mathrm{PdBr}_{2}(\mathbf{1 b})$ was used. See S82.

(-)-N-(phenyl)-[1-(methyl)-2-(one)-propyl]amine (4r) (Table 2, entry 17): Prepared according to the general procedure from 2,3-butanedione ($90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), aniline (130 $\mu \mathrm{L}, 1.5 \mathrm{mmol})$ and $[(S)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 c},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (85\%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18$ (td, $2 \mathrm{H}, J=7.4,1.6 \mathrm{~Hz}, \mathrm{ArH}), 6.72(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 6.56(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH})$, 4.39 (bs, $1 \mathrm{H},-\mathrm{NHCH}), 4.06\left(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 1.41(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.4(-\mathrm{CO}), 146.5,129.5,118.0$, $113.0,58.6,25.8,18.0$; IR(neat) $3391,2977,2930,1712(\mathrm{CO}), 1602,1505,1177,872 \mathrm{~cm}^{-1}$; EIMS $(70 \mathrm{eV}) m / z 163\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-1.62\left(\mathrm{c} 0.43, \mathrm{CHCl}_{3}\right) ; 20 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \mathrm{PrOH}=90 / 10$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=8.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=10.8 \mathrm{~min}$ (minor).

4s
(-)-N-(2-trifluoromethylphenyl)-[1-(methyl)-2-(one)-propyl]amine (4s) (Table 2, entry
18): Prepared according to the general procedure from 2,3-butanedione ($90 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), o-trifluoromethyl aniline ($180 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025$ mmol) at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as colorless oil (83%); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{ArH}), 7.33(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.73(\mathrm{t}$, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.54(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 5.12(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCH}), 4.10(\mathrm{q}, 1 \mathrm{H}, J$ $\left.=6.7 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.44\left(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.1(-\mathrm{CO}), 143.9,133.3,127.0(\mathrm{Cq}, J=5.6 \mathrm{~Hz}), 123.3,119.9,116.7$, $114.0(\mathrm{Cq}, ~ J=29.4 \mathrm{~Hz}), 58.2$, 20.3, 17.7; IR(neat) 3423, 2985, 2929, 1721(CO), 1614, 1520, 1145, $752 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $231\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}-1.0\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ; 2 \%$ ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \operatorname{PrOH}=99 / 1$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}=6.4 \mathrm{~min}($ minor $), \mathrm{t}_{\mathrm{R}}=6.8 \mathrm{~min}$ (major).

General procedure for asymmetric reductive amination of aryl ketones: 1.0 mmol of the acetophenone derivative, 1.5 mmol of aniline derivative were added to a stirred solution of 0.025 mmol of chiral palladium complex in 10 mL of dry CHCl_{3} (in a Schlenk tube) and stirred for 10 minutes. The solution was transferred to a 45 ml stainless steel autoclave (PARR) that contained 150 mg of molecular sieves $5 \AA$ previously purged with vacum- N_{2}. Subsequently, the reaction was taken to the desired pressure ($800 \mathrm{psi}_{2}$), stirred in an oil bath at $70^{\circ} \mathrm{C}$ for 24 h . At the end of this period, the gas was liberated. The solution was analyzed by GC-MS to quantify the remaining substrate, and was later concentrated under reduced pressure, affording a crude residue, which was purified by column chromatography over silica gel (70-230 mesh), and eluted with hexane-ethyl acetate (99/1) to isolate the product.

Absolute configurations of known compounds were assigned by comparison of optical rotations to literature values.

6a
(R)-(-)-N-[1-(phenyl)-ethyl]aniline (6a) (Table 3, entry 1): Prepared according to the general procedure from acetophenone ($110 \mu \mathrm{~L}, 1 \mathrm{mmol}$), aniline ($130 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) and [(S)-BINAP] $\mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (64%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, $7.11(\mathrm{dd}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}), 6.66(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \operatorname{ArH}), 6.53(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, $\operatorname{ArH}), 4.51\left(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 4.04(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCH}), 1.54(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz},-$ CHCH_{3}); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.2,145.1,129.0,128.6,126.8,125.8,117.2$, 113.2, 53.4, 24.9; EIMS (70 eV) m/z 197 (M^{+}); $[\alpha]^{20}{ }_{\mathrm{D}}-3.6$ (c $0.5, \mathrm{CHCl}_{3}$); 43\% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{i} \operatorname{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}=5.9 \mathrm{~min}$ (minor), $\mathrm{t}_{\mathrm{R}}=6.9 \mathrm{~min}$ (major).
The absolute configuration was determined by comparison with the reported literature as (R) with $[\alpha]^{20}{ }_{\mathrm{D}}-3.9$ (c $1.0, \mathrm{CHCl}_{3}$) and 81% ee. ${ }^{3}$

6b
(+)-N-(4-tolyl)-[1-(4-methylphenyl)-ethyl]amine (6b) (Table 3, entry 2): Prepared according to the general procedure from p-methyl acetophenone ($130 \mu \mathrm{~L}, 1 \mathrm{mmol}$), ptoluidine ($160.5 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, 1 \mathrm{c}$, $(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (67%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{ArH})$, $6.43(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 4.46\left(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 3.89(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NHCH})$, $2.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.51\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,142.3,136.2,129.5,129.2,126.2,125.7,113.4,53.3,24.9,21.0$,
20.3; IR(neat) 3409, 2966, 2921, 1618, 1519, 1140, $808 \mathrm{~cm}^{-1}$; EIMS (70 eV) $\mathrm{m} / \mathrm{z} 225\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}$ (225.1517): C, 85.28; H, 8.50; N, 6.22. Found: C, 85.27; H, 8.46; $\mathrm{N}, 6.25$; HRMS-EI m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}\left(\mathrm{M}^{+}\right)$225.1517, found 225.1515; $[\alpha]^{20}{ }_{\mathrm{D}}+10.18$ (c $0.54, \mathrm{CHCl}_{3}$); 35% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{\mathrm{i}} \mathrm{PrOH}=$ $92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=5.2 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.0 \mathrm{~min}$ (minor).

6c
(R)-(+)-N-(4-methoxyphenyl)-[1-(phenyl)-ethyl]amine (6c) (Table 3, entry 3): Prepared according to the general procedure from acetophenone $(110 \mu \mathrm{~L}, 1.0 \mathrm{mmol}), p$-anisidine $(184.5 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $[(R)-\mathrm{Tol}-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 d},(23.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (65%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.40-7.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.71(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH})$, $6.49(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 4.43\left(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 3.49(\mathrm{bs}, 1 \mathrm{H},-\mathrm{NHCH})$, $3.70\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.51\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.9,145.6,141.6,128.7,126.9,126.0,114.8,114.6,55.8,54.3,25.2$; EIMS (70 eV) m/z $227\left(\mathrm{M}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$ (227.1310): C, 79.26; H, 7.54; N, 6.16. Found: C, 79.25; H, 7.56; N, 6.20; HRMS-EI m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}\left(\mathrm{M}^{+}\right)$227.1310, found 227.1314; $[\alpha]^{20}=+5.6\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right.$); 35\% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/ \mathrm{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=6.9 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=7.6 \mathrm{~min}$ (minor).

The absolute configuration was determined by comparison with the reported literature as (R) with $[\alpha]^{20}{ }_{\mathrm{D}}+6.0\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right)$ and 21% ee. ${ }^{5}$

6d
(+)-N-(4-methoxyphenyl)-[1-(4-tolyl)-ethyl]amine (6d) (Table 3, entry 4): Prepared according to the general procedure from p-methyl acetophenone ($130 \mu \mathrm{~L}, 1 \mathrm{mmol}$), p anisidine ($184.5 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $[(R)-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 b},(22 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (53%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.25(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.69(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\mathrm{ArH}), 6.47(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 4.39\left(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 3.71(\mathrm{bs}, 1 \mathrm{H}$, NHCH), $3.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.48\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,142.5,141.7,136.4,129.3,125.8,114.8,114.6,55.8$, 25.2, 21.1; EIMS (70 eV) m/z $241\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+6.73$ (c $0.22, \mathrm{CHCl}_{3}$); 38\% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{j} \mathrm{PrOH}=92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=$ 23.3 min (major), $\mathrm{t}_{\mathrm{R}}=25.2 \mathrm{~min}$ (minor).

(+)-N-(4-methoxyphenyl)-[1-(phenyl)-propyl]amine (6e) (Table 3, entry 5): Prepared according to the general procedure from propiophenone ($130 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), p-anisidine $(184.5 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $[(R)-\mathrm{Tol}-\mathrm{BINAP}] \mathrm{PdBr}_{2}, \mathbf{1 d},(23.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ at $70{ }^{\circ} \mathrm{C}$ for 24 h , to provide the title compound as yellow oil (57%); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.33 - 7.21 (m, 5H, ArH), 6.68 (d, 2H, $J=8.8 \mathrm{~Hz}, \operatorname{ArH}$), 6.47 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}$), $4.15\left(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 3.82(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NHCH}), 3.69\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.81$ (sext, $2 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.94\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,144.2,141.9,128.5,126.9,126.6,114.8,114.5,60.6,55.8,31.8,10.9$; IR(neat) 3402, 2963, 2932, 1614, 1513, 1178, $819 \mathrm{~cm}^{-1}$; EIMS (70 eV) m/z $241\left(\mathrm{M}^{+}\right) ;[\alpha]^{20}{ }_{\mathrm{D}}+9.44$
(c $0.54, \mathrm{CHCl}_{3}$); 34% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane $/{ }^{\mathrm{i}} \mathrm{PrOH}=$ $92 / 8$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=5.6 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}}=6.0 \mathrm{~min}$ (minor).

References

1. Andrews, M. A.; Chang, T. C. T.; Cheng, C. W. F.; Emge. T. J.; Kelly, K. P.; Koetzle, T. F. J. Am. Chem. Soc. 1984, 106, 5913.
2. Ozawa, F. Kubo, A.; Matsumoto, Y. Hayashi, T. Organometallics 1993, 12, 4188.
3. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089.
4. (a) Pallavicini, M.; Bolchi, C.; Fumagalli, L.; Valoti, E., Villa, L. Tetrahedron: Asymmetry 2002, 13, 2277. (b) Grishina, G.V.; Luk'yanenko, E. R.; Borisenko, A. A. Russ. J. Org. Chem. 2005, 41, 807. (c) Andrés, C.; Nieto, J.; Pedrosa, R.; Villamañán, N. J. Org. Chem. 1996, 61, 4130.
5. Tagashira, J.; Imao, D.; Yamamoto, T.; Ohta, T.; Furukawa, I.; Ito, Y. Tetrahedron: Asymmetry, 2005, 16, 2307.

Copies of NMR, GC-MS (EI) or HPLC for all compounds.

Eecs 52

Reacc340
080616-coa-01

Data File C:\HPCHEMI1LDATAIOSCAR\MS000250.D Sample Name: Reacc340
HPLC IQ 19/06/08 10:23:33 AM carmen
Chiralcel OD 25 x 4.6 mm
hexano/isopropanol 95/5
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

```
Injection Date :18/06/08 3:48:25 PM
Sample Name : Reacc340
    Vial: 1
Acq. Operator : carmen
Acq. Method : C:\HPCHEM\1MMETHODS\QUIRAL.M
Last changed : 18/06/08 3:38:29 PM by carmen
    (modified after loading)
Analysis Method : C:\HPCHEM1\METHODS\QUIRAL.M
Last changed : 19/06/08 10:08:54 AM by carmen
    (modified after loading)
```


Reacc390
080619-coa-02

Data File C:IHPCHEMI1IDATAIOSCARIMS000253.D Sample Name: Reacc390
HPLC IQ 20/06/08 12:10:17 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210
==1
Injection Date : 20/06/08 11:10:51 AM
Sample Name : Reacc390 Vial: 1
Acq. Operator : carmen
Method : C:IHPCHEMITMMETHODSIQUIRAL.M
Last changed : 20/06/08 9:08:55 AM by carmen (modified after loading)

Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

Injection Date	20/06/08 4:26:23 PM		
Sample Name	: Reacc409	Vial :	1
Acq. Operator	: carmen		
Acq. Method	: C: \HPCHEM $\ 1 \backslash$ METHODS \backslash QUIRAL.M		
Last changed	20/06/08 3:40:09 PM by carmen (modified after loading)		
Analysis Method	: C: \HPCHEM 1		
METHODS \(
) QUIRAL.M			
Last changed	12/09/08 12:43:24 PM by 428 (modified after loading)		

(Table 2, entry 2)

Area Percent Report		
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area \%
1	3.073	MM	0.1349	761.20813	94.03625	2.2999
2	3.609	MM	0.2120	3.23209 e 4	2541.08276	97.6527
3	7.285	BP	0.1814	15.70433	1.33349	0.0474
Totals	s :			3.30978 e 4	2636.45250	

[TIC]
Data : Dr-Cabrera-Armando-021 Date : 11-Mar-120 15:50
Sample: 595 G Reacc 391 JeolAX505HA
Note : 5 horas
Inlet : GC Ion Mode : EI+
Ion Species : Normal Ion TIC Range : m/z 10 to 650

No. RT[min]	Area	Area\%	Height	Height\%	Width[sec]	INTEG	
1	28.42	280.66	25.22	29.44	25.64	8.95	BV
2	28.73	831.97	74.78	85.35	74.36	9.15	VB

Reacc 365
080619-coa-06

Data File C:IHPCHEM\11DATAIOSCARIMS000258.D Sample Name: Reacc365
HPLC IQ 20/06/08 2:44:03 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

Injection Date : 20/06/08 12:21:49 PM
Sample Name : Reacc365 Vial : 1
Acq: Operator : carmen
Acq. Method : C:IHPCHEMIIMMETHODSIQUIRAL.M
Last changed : 20/06/08 9:08:55 AM by carmen
(modified after loading)
Analysis Method: C:IHPCHEMI1MMETHODSIQUIRAL.M
Last changed : 20/06/08 12:36:04 PM by carmen
(modified after loading)
para Le legadec
 Area Percent Report

$\begin{array}{ll}\text { Sorted By } & : \begin{array}{c}\text { Signal } \\ \text { Multiplier }\end{array} \\ & : \quad 1.0000\end{array}$
Dilution : 1.0000
Signal 1: DAD1 A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!

Reacc349 rac
080617-coa07

Data File C: H HPCHEM
HPLC IQ 09/09/08 5:50:01 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 95/5
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254
Injection Date : 09/09/08 12:24:12 PM
Sample Name : Reacc349rac
Vial: 1
Acq. Operator : carmen
Acq. Method : C:LHPCHEM 11 METHODSIQUIRAL.M
Last changed : 10/09/08 9:44:12 AM by carmen
(modified after loading)
Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M
Last changed : 10/09/08 9:02:34 AM by carmen
(modified after loading)


```
Data File C:\HPCHEM\1\DATA\MS000421.D
    080825-cOa-07
    Chiralcel OD 100 5 250x 4.6 mm
    hexano/isopropanol 95/5
    flujo 1 ml/min
    UV 254 nm
```


Signal 1: DAD1 A, Sig=254, 16 Ref=off
Results obtained with enhanced integrator!

$\begin{gathered} \text { Peak } \mathrm{R} \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area \%
1	5.023	MM	0.1634	4033.52783	411.43063	99.1958
2	5.920	MM	0.1086	32.69881	5.01843	0.8042
Totals	s :			4066.22664	416.44907	

Chiralcel OD 1005 250x 4.6 mm
hexano/isopropanol 90/10
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254 nm

Injection Date	04/09/08 1:10:41 PM		
Sample Name	Reacc 429F23	Vial :	1.
Acq. Operator	carmen		
Acq. Method	C: \HPCHEM \1 \METHODS VQUIRAL. M $^{\text {a }}$		
Last changed	04/09/08 11:49:21 AM by carmen (modified after loading)		
Analysis Method	C C \HPCHEM $\backslash 1 \backslash \mathrm{METHODS}$ \QUIRAL.M		
Last changed	11/09/08 11:09:31 AM by carmen (modified after loading)		
para Le legadec			

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Data File C:\HPCHEM11DATAIOSCARIMS000225.D Sample Name: Reacc410F21
HPLC IQ 18/06/08 3:50:52 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210
Injection Date : 16/06/08 3:32:37 PM
Sample Name : Reace410F21
Acq. Operator : carmen
Acq. Method : $:$: $\backslash \mathrm{HPCHEM} \backslash 1$ METHODS\QUIRAL.M
Last changed $: 16 / 06 / 08$ 3:24:23 PM by carmen
(modified after loading)
Analysis Method : C:\HPCHEM 11 METHODSIQUIRAL.M
Last changed : 18/06/08 3:38:29 PM by carmen
(modified after loading)
para Cabrera Armando

Area Percent Report

Data File C:IHPCHEMI1IDATAIOSCARIMS000260.D Sample Name: Reacc406F21
HPLC IQ 20/06/08 5:22:37 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

Injection Date : 20/06/08 4:11:22 PM
Sample Name : Reacc406F21 Vial: 1
Acq. Operator : carmen
Acq. Method : C:IHPCHEMIIMETHODSIQUIRAL.M
Last changed : 20/06/08 3:40:09 PM by carmen
(modified after loading)
Analysis Method : C:IHPCHEMI1\METHODSIQUIRAL.M
Last changed : 20/06/08 5:08:36 PM by carmen (modified after loading)
para Le legadec

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!

[TIC]

```
Data : Dr-Cabrera-Armando-004 Date : 04-Mar-108 14:46
Sample: 453 G Reacc 385 JeolAX505HA
Note : 5 horas
Inlet : GC Ion Mode : EI+
Ion Species : Normal Ion
```

Ion Mode : EI+
TIC Range : m/z 10 to 650

No. RT[min]	Area	Area\%	Height Height\%	Width[sec]	INTEG		
1	20.99	3966.79	54.78	364.66	60.35	10.21	BV
2	21.36	3274.27	45.22	239.55	39.65	12.83	VB

Data : Dr-Cabrera-Armando-0184 Date : D4-Mar-108 14:46
Sample: 453 G Reacc 385 JeolfX505H
Note : 5 horas
Inlet: GC Ion Mode : EI+
Ion Species : Normal Ion [MF-Linear]
TIC Range : $\mathrm{m} / \mathrm{z} 10$ to 650 Output RT Range : 0.00 to 60.49 man

[Mass Spectrum]
RT : 21.36 min Scan\# : 1659-1603-1692
Ion Mode : EIt Int. : 113.14

Reacc405
080619-coa-07

Data File C:IHPCHEM\11DATAIOSCARIMS000259.D Sample Name: Reacc405
HPLC IQ 20/06/08 4:18:56 PM carmen
Chiralcel OD 25x 4.6 mm
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

Injection Date : 20/06/08 3:57:57 PM
Sample Name : Reacc405
Vial: 1
Acq. Operator : carmen
Method : C:IHPCHEMII\METHODSIQUIRAL.M
Last changed : 20/06/08 3:40:09 PM by carmen (modified after loading)
para Le legadec

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=ofi
Results obtained with enhanced integrator!

[^0]Chiralcel OD $1005250 \times 4.6 \mathrm{~mm}$ hexano/isopropanol 95/5
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254 nm

Injection Date : 11/09/08 1:34:42 PM
Sample Name : Reacc 432 F 24
Vial : 1
Acq. Operator : 428
Method : C: \HPCHEM $\backslash 1 \backslash M E T H O D S \backslash Q U I R A L . M$
Last changed : 11/09/08 12:35:40 PM by 428 (modified after loading)
para Le legadec

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off
Results obtained with enhanced integrator!

Chiralcel OD $1005250 \times 4.6 \mathrm{~mm}$ hexano/isopropanol 95/5
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254 nm

Injection Date	11/09/08 12:02:30 PM		
Sample Name	: Reacc 433f25	Vial :	1
Acq. Operator	: 428		
Method	: C: \HPCHEM 1 \METHODS \backslash QUIRAL.M		
Last changed	11/09/08 11:09:31 AM by carmen (modified after loading)		


```
==========================================================================
```

 Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off
Results obtained with enhanced integrator!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	3.663	MM	0.3768	2.89822 e 4	1281.97351	91.4137
2	4.932	MM	0.2406	2722.23267	188.55191	8.5863
Totals	s :			3.17044 e 4	1470.52542	

Chiralcel OD 1005 250x 4.6 mm
hexano/isopropanol $90 / 10$
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254 nm

Injection Date	08/09/08 1:01:11 PM		
Sample Name	Reacc 430	Vial :	1
Acq. Operator	carmen		
Acq. Method	C: \HPCHEM \1 \METHODS \QUIRAL.M		
Last changed	08/09/08 10:22:21 AM by carmen (modified after loading)		
Analysis Method	C: \HPCHEM $\backslash 1$ \METHODS \backslash QUIRAL.M		
Last changed	12/09/08 12:43:24 PM by 428 (modified after loading)		
para Le legadec			

DADIA, Sig=254,16 Ref=off (M5000416.D)

Area Percent Report							
Sorted By	$\begin{array}{ll} : & \text { Signal } \\ : & 1.0000 \\ : & 1.0000 \end{array}$						
Multiplier							
Dilution							
Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!							
```Peak RetTime Type # [min]```	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area 응			
13.773 Fsho	0.0000	0.00000	12.74802	0.0000			
23.822 MM	0.3657	316.64301	14.43213	90.9401			
3 4.224 Rsho	0.0000	0.00000	3.26390	0.0000			
44.455 Rsho	0.0000	0.00000	1.68889	0.0000			
5 5.013 Fsho	0.0000	0.00000	5.51193e-1	0.0000			
65.177 MM	0.2628	31.54560	2.00050	9.0599			




Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210


Area Percent Report	
Sorted By	Signal
Multiplier	1.0000
Dilution	1.0000

Signal 1: DADI A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!

Peak R	Time   min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$	Height [mAU]	Area \%
1	3.054	MM	0.1197	632.72961	88.13225	2.0651
2	3.416	MM	0.1834	3.00066 e 4	2726.47974	97.9349
Totals	:			$3.06393 e 4$	2814.61198	






[ TIC]
Data :
Sample:
Sample: 1742 G Reacc 306 JeolAX505HA
Note : 5 horas
Inlet : GC
Ion Species : Normal Ion
Ion Mode : EI+
TIC Range : m/z 10 to 650


No. RT[min]	Area	Area\%	Height Height\%	Width[sec]	INTEG		
1	55.71	436.93	27.30	54.64	29.08	7.51	BV
2	56.05	457.54	28.59	52.97	28.19	8.11	VV
3	57.53	346.95	21.68	39.64	21.09	8.22	VV
4	57.79	358.96	22.43	40.68	21.64	8.29	VB

[TIC J
Data : Dr-Cabrera-Armando-091
Samole: 1742 G Reacc 366 Jeolfx505HA
Sample: 1742 G Reace 366 Jeo Ifx585HA
Note: 5 horas
Note: i horas
Inlet : GC
Ion Species : Normal Ion [MF-Linear]



[ Mass Spectrum ]


124854
100
10
10

[Mass Spectrum ]
RT: 57 . 79 nin


[ TIC ]



[Mass Spectrum ]
RT : 57.57 min
Ion Made : EI+
Scan\# : 4459-4461-4502

[ Mass Spectrum ]
RT: 57.86 min
Ion Mode: EIt
Scan\# : 4492-446t-4502
Int. $: 20.86$ Int. : 20.86
 (10.0 : 132
Data: Dr-Cabrera-Armando-114 Date: 22-Aug-120 09:28
Sample: 1914 G Reacc 301-3 JeolAX505HA
Note: 5 horas
Inlet : GC

Ion Species : Normal Ion
1356935
100

50
0

Ion Mode : EI+
TIC Range : $\mathrm{m} / \mathrm{z} 10$ to 650

$4 q$
(Table 2, entry 16) With [(S)-BINAP]PdBr ${ }_{2}$

[ Mass Spectrum $]$
RT: 56.67 min
RT : 56.67 minn
Ion Made : $\mathrm{EI+}$
Scan\#: 4353-4317-4505
Temp : 0.0 deg. $C$
25684
E Mass Spectrum I
RT : 57.62 min
$\begin{array}{ll}\text { RT : 57.62 min } & \text { Scan }: ~ 4473-4317-4505 \\ \text { Ion Mode : EI }+ & \text { Int. }\end{array}$

[Mass Spectrum ]
既 $: 57.84$ min
Ion Mode $:$ EI +




Chiralcel OD 100.5 250x 4.6 mm
hexano/isopropanol $90 / 10$
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 254 nm

Injection Date	04/09/08 6:16:33 PM		
Sample Name	Reacc H5F31	Vial :	1
Acq. Operator	carmen		
Acq. Method	C: \HPCHEM \1 \METHODS \QUIRAL.M		
Last changed	04/09/08 5:41:33 PM by carmen (modified after loading)		
Analysis Method	C : \HPCHEM \I \METHODS $\backslash$ QUIRAL. M		
Last changed	11/09/08 11:09:31 AM by carmen (modified after loading)		
para Le legadec			




## Area Percent Report








Reacc332
080619-coa-04


Data File C:IHPCHEMI1IDATAIOSCARIMS000256.D Sample Name: Reacc332
HPLC IQ 20/06/08 2:39:48 PM carmen
Chiralcel OD $25 \times 4.6 \mathrm{~mm}$
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

Injection Date : 20/06/08 11:53:01 AM
Sample Name : Reacc332 Vial: 1
Acq. Operator : carmen
Acq. Method : C:IHPCHEMI1MMETHODSIQUIRAL.M
Last changed :20/06/08 9:08:55 AM by carmen
(modified after loading)
Analysis Method : C:IHPCHEM11METHODSIQUIRAL.M
Last changed : 20/06/08 12:36:04 PM by carmen (modified after loading)
para Le legadec
 Area Percent Report

Sorted By	Signal
Multiplier	1.0000
Dilution	1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!




Reacc331-quiral
080617-coa-08


Data File C:\HPCHEM\1\DATAIOSCARIMS000242.D Sample Name: Reacc331-quiral HPLC IQ 18/06/08 5:59:19 PM carmen
Chiralcel OD 25x 4.6 mm
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
Injection Date : 17/06/08 12:40:26 PM
Sample Name : Reacc331-quiral
Vial: 1
Acq. Operator : carmen
Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M
Last changed : 17/06/08 9:44:12 AM by carmen
(modified after loading)
Analysis Method : C:\HPCHEM 11 IMETHODS\QUIRAL.M
Last changed : 18/06/08 4:02:34 PM by carmen (modified after loading)

Area Percent Report			
Sorted By $:$ Signal   Multiplier $:$ 1.0000   Dilution $:$ 1.0000			
Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!			
Peak RetTime Type Width Area Height Area \# [min] [min] [mAU*s] [mAU] \%			
$1 \text { 5.222 VV } 0.2482 \text { 4.34641e4 } 2694.71753 \quad 67.4740$			
26.029 VV 0.19932 .09520 e 41574.0626232 .5260			




Reacc395
080616-coa-07


Data File C:\HPCHEM\1\DATA\OSCAR\MS000230.D Sample Name: Reacc395
HPLC IQ 18/06/08 4:34:31 PM carmen
Chiralcel OD 25x 4.6 mm
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210

```
Injection Date : 16/06/08 4:57:00 PM
Sample Name : Reacc395 Vial: 1
Acq. Operator : carmen
Acq. Method : C:\HPCHEM\1LMETHODSIQUIRAL.M
Last changed : 16/06/08 3:24:23 PM by carmen
 (modified after loading)
Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M
Last changed : 18/06/08 4:02:34 PM by carmen
 (modified after loading)
para Le legadec
```



Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off
Results obtained with enhanced integrator!

```
Peak RetTime Type Width Area Height Area
 \# [min] [min] [mAU*s] [mAU] \%
----|------|---|----------------|---------|-------|
 16.959 VV 0.24373 .84775 e 42554.9719267 .4206
 2 7.649 VV 0.2128 1.85934e4 1349.13049 32.5794
Totals: \(\quad 5.70709 \mathrm{e} 43904.10242\)
```







Reacc418F27
080616-coa-06


Data File C:LHPCHEMI1IDATAIOSCARIMS000229.D Sample Name: Reacc418F27
HPLC IQ 18/06/08 4:29:26 PM carmen
Chiralcel OD 25x 4.6 mm
hexano/isopropanol 92/8
flujo $1 \mathrm{ml} / \mathrm{min}$
UV 210
Injection Date : 16/06/08 4:42:14 PM
Sample Name : Reacc418F27
Vial : 1
Acq. Operator : carmen
Acq. Method : C:\HPCHEM 1 IMETHODSIQUIRAL.M
Last changed : 16/06/08 3:24:23 PM by carmen
(modified after loading)
Analysis Method : C:LHPCHEMIIMETHODSIQUIRAL.M
Last changed : 18/06/08 4:02:34 PM by carmen
(modified after loading)

Area Percent Report			
Sorted By $:$ Signal   Multiplier $:$ 1.0000   Dilution $:$ 1.0000			
Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!			
Peak RetTime Type Width Area Height Area			
\# [min] [min] [mAU*s] [mAU] \%			
15.619 VV 0.1852 2.12812e4 1809.3059167 .1939			
2 6.050 VV 0.1864 1.03901 e 4 851.18237   Totals : 3.16713 e 2660.48828			


[^0]:    UNAM, INSTITUTO DE QUIMICA, apg
    

