Supporting Information

Stable Pre-formed Chiral Palladium Catalysts for the One-Pot Asymmetric Reductive Amination of Ketones

Laura Rubio-Pérez,* F. Javier Pérez-Flores, Pankaj Sharma, Luis Velasco and Armando Cabrera

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F., México.

laurarpz@correo.unam.mx

Table of Contents.

General and materials	S2-3
The preparation of chiral palladium complexes	S3
General procedure for asymmetric reductive amination reaction of alkyl ketones	S4
Characterization for these products	S4-16
General procedure for asymmetric reductive amination reaction of aryl ketones	S16
Characterization for these products	S17-20
References	S20
Copies of NMR, GC-MS or HPLC for all products	S21

General: All reactions and manipulations were carried out under nitrogen atmosphere by using Schlenk-type techniques. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were obtained on a JEOL GX300 Bruker-Avance 300, Varian Unity 300 (300, 75 and 121 MHz respectively), and Varian Inova Plus 500 (500 for ¹H and 125 MHz for ¹³C) spectrometers using TMS as the internal reference in CDCl₃ as solvent at 25°C. All chemical shifts are reported in ppm (δ). Coupling constants (J) are reported in Hz to apparent peak multiplications. 2D NOESY and ¹H/¹³C HSOC sequences were used for help the assignments of the ¹H and ¹³C spectra. IR spectra were recorded on a Nicolet FTIR Magna 750 spectrophotometer. Optical rotations were measured on a Perkin-Elmer 343 spectropolarimeter. Mass spectra were obtained using a JEOL JMS-SX102A instrument with m-nitrobenzyl alcohol as the matrix (FAB⁺ mode), and a JEOL JMS-AX505-A GC/MS-EI at 70 eV. Elemental compositions were calculated within an uncertainty of 5 ppm by using the program installed in the computer system. Elemental analyses for some compounds were obtained on a Elemental Analyzer CE-440. GC-MS analyses were conducted on a Hewlett Packard 5890 (series II) instrument coupled with a JEOL JMS-AX505-A GC/MS-EI at 70 eV instrument equipped with a FID detector and a chiral capillary column Cyclodex-β (0.32 mm x 0.32 mm x 50 m) using He as a carrier gas. HPLC analyses were performed on a Hewlett Packard 1100 system with UV-DAD. Separations were achieved on a Daicel Chiracel OD-H (25 x 4.6mm) column. Flash column chromatography was performed on silica gel (70-230 mesh). X-ray determination was collected on a Bruker SMART APEX CCD area diffractometer by the ω-scan method.

Materials: All reagents were obtained from commercial suppliers and used without further purification. Molecular sieves (5 Å) were activated by flame under vacuum and stored at 200 °C. Diethyl ether and benzene were distilled from sodium-benzophenone under nitrogen. Chloroform (CHCl₃) was distilled from P₂O₅ under nitrogen. All other solvents **HPLC** PdBr₂ (palladium were grade. dibromide), BINAP [(rac)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (R)-BINAP [(+)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (S)-BINAP [(-)-2,2'-Bis(diphenylphosphine)-1,1'-binaphthyl], (R)-Tol-BINAP [(+)-2,2'-Bis(di-*p*-tolylphosphine)-1,1'- binaphthyl] and (S,S)-CHIRAPHOS [(2S,3S)-Bis(diphenylphosphino)butane] were purchased from Strem Chemical Co. The [(MeCN)₂]PdBr₂ complex was prepared similar to [(MeCN)₂]PdCl₂ according to the previous published procedure.¹

General procedure for [(rac)-BINAP]PdBr₂ (1a), [(R)-BINAP]PdBr₂ (1b), [(S)-BINAP]PdBr₂ (1c), [(R)-Tol-BINAP]PdBr₂ (1d) and [(S,S)-CHIRAPHOS]PdBr₂ (1e) complexes: These complexes were prepared by modified method described for the synthesis of [(R)-BINAP]PdCl₂ reported in the literature.² In a Schlenk tube, [(MeCN)₂]PdBr₂ (174 mg, 0.5 mmol) was suspended in 10 mL of benzene. Chiral diphosphine (0.5 mmol) was added. The suspension was stirred at room temperature for 24 h. The yellow-orange (1a-1d) or pinkish (1e) precipitate was collected by filtration, washed several times with diethyl ether and dried in vacuum. Each complex was pure enough for further purposes, but it can be crystallized by the slow diffusion of diethyl ether into a concentrated solution of the solid in a mixture of dichloromethane:acetone (1:1) to obtain red crystals for 1a-1d and yellow crystals for 1e.

[(*R*)-BINAP]PdBr₂ (1b): Prepared according to the general procedure from $[(MeCN)_2]PdBr_2$ (174 mg, 0.5 mmol) and [(R)-BINAP] (311 mg, 0.5 mmol) at room temperature for overnight, to provide the title compound as yellow solid (85%); ³¹P NMR (121 MHz, CDCl₃) δ 25.57 (s, 2P, BINAP); ¹H NMR (300 MHz, CDCl₃) δ 7.80-6.59 (m, 32H, Ar**H**); FAB MS (positive ion mode): m/z: 809 [M⁺ - Br]; HRMS-FAB (m/z): calcd for C₄₄H₃₂Br₂Pd [M –Br]⁺ 809.0177, found: 809.01850; Anal. Calcd. for C₄₄H₃₂Br₂P₂Pd: C, 59.45; H, 3.63. Found: C, 59.35; H 3.60; [α]²⁰_D +630 (c 0.18, acetone).

[(S)-BINAP]PdBr₂ (1c): $[\alpha]^{20}_{D}$ -635 (c 0.18, acetone).

[(*R*)-Tol-BINAP]PdBr₂ (1d): Prepared according to the general procedure from $[(MeCN)_2]PdBr_2$ (174 mg, 0.5 mmol) and [(R)-Tol-BINAP] (472 mg, 0.5 mmol) at room temperature for 24 h, to provide the title compound as orange solid (88%); ³¹P NMR (121 MHz, CDCl₃) δ 28.35 (s, 2P, Tol-BINAP); ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.68 (m, 4H, ArH), 7.56 – 7.11 (m, 18H, ArH), 6.75 (d, 2H, J = 7.15 Hz, ArH), 6.44 (d, 2H, J = 8.5 Hz, ArH), 2.36 (s, 6H, -CH₃), 1.98 (s, 6H, -CH₃); FAB MS (positive ion mode): m/z: 865

[M⁺ - Br]; Anal. Calcd. for $C_{48}H_{40}Br_2P_2Pd$: C, 61.01; H, 4.27. Found: C, 60.11; H 4.25; $\left[\alpha\right]^{20}_{D}$ +641.1 (c 0.18, acetone).

[(*S*,*S*)-CHIRAPHOS]PdBr₂ (1e): Prepared according to the general procedure from $[(MeCN)_2]PdBr_2$ (174 mg, 0.5 mmol) and [(S,S)-CHIRAPHOS] (213 mg, 0.5 mmol) at room temperature for 24 h, to provide the title compound as pinkish solid (78%); ³¹P NMR (121 MHz, CDCl₃) δ 64.3 (s, 2P, BINAP); ¹H NMR (300 MHz, CDCl₃) δ 7.69 – 7.23 (m, 20H, ArH), 2.41 (m, 2H, -CHCH₃), 1.06 (dd, 6H, J = 4.9, 7.9 Hz, -CHCH₃); FAB MS (positive ion mode): m/z: 613 [M⁺ - Br]; Anal. Calcd. for C₂₈H₂₈Br₂P₂Pd: C, 48.55; H, 4.07. Found: C, 48.29; H 4.05; $[α]^{20}_{D}$ +113.75 (c 0.2, CH₃CN/CH₂Cl₂).

General procedure for asymmetric reductive amination of alkyl ketones: 1.0 mmol of the carbonyl compound, 1.5 mmol of aniline derivative were added to a stirred solution of 0.025 mmol of chiral palladium complex in 10 mL of dry CHCl₃ (in a Schlenk tube) and stirred under nitrogen atmosphere for 10 minutes. The solution was transferred to a 45 ml stainless steel autoclave (PARR), which contains 150 mg of activated molecular sieves 5Å previously purged with vacum-N₂. Subsequently, the reaction was taken to the desired pressure (800 psi H₂), stirred in an oil bath at 70°C for 24 h. At the end of this period, the gas was liberated. The solution was analyzed by GC-MS to quantify the remaining substrate, and was later concentrated under reduced pressure, affording a crude residue, which was purified by column chromatography over silica gel (70-230 mesh), and eluted with hexane-ethyl acetate (99/1) to isolate the product.

(-)-N-(4-methoxyphenyl)-[1-(methyl)-hexyl]amine (4a) (Table 1): Prepared according to the general procedure from 2-heptanone (140 μ L, 1.0 mmol), *p*-anisidine (185 mg, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as a yellow oil (78%); ¹H NMR (300 MHz, CDCl₃) δ 6.77 (d, 2H, J = 9.0

Hz, ArH), 6.55 (d, 2H, J = 8.7 Hz, ArH), 3.74 (s, 3H, -OCH₃), 3.36 (sext, 1H, J = 6.0 Hz, -CHCH₃), 2.99 (bs, 1H, -NHCH), 1.57-1.28 (m, 8H, -CH₂), 1.14 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.89 (t, 3H, J = 6.6 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 151.7, 141.9, 114.9, 114.6, 55.8, 49.5, 37.1, 31.9, 25.8, 22.6, 20.7, 14.0; IR(neat) 3405, 2959, 2929, 1618, 1518, 1181, 807 cm⁻¹; EIMS (70 eV) m/z 221 (M⁺); HRMS-EI m/z calcd for C₁₄H₂₃ON (M⁺) 221.1780, found 221.1775; $[\alpha]^{20}_{D}$ -2.0 (c 0.4, CHCl₃); 76% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 95/5, flow rate = 1 mL/min, t_R = 3.1 min (major), t_R = 4.5 min (minor).

With [(R)-Tol-BINAP]PdBr₂ (1d): 77% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ i PrOH = 98/2, flow 1 mL/min, t_r = 4.2 min (minor), t_r = 7.4 min (major). [(S,S)-CHIRAPHOS]PdBr₂ (1e): 14% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ i PrOH = 98/2, flow 1 mL/min, t_R = 4.2 min (minor), t_R = 7.5 min (major).

(-)-N-(4-methylphenyl)-[1-(methyl)-hexyl]amine (4b) (Table 2, entry 1): Prepared according to the general procedure from 2-heptanone (140 μL, 1.0 mmol), p-toluidine (161 mg, 1.5 mmol) and [(R)-BINAP]PdBr₂, 1b, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (84%); ¹H NMR (300 MHz, CDCl₃) δ 6.99 (d, 2H, J = 7.9 Hz, ArH), 6.52 (d, 2H, J = 8.2 Hz, ArH), 3.43 (sext, 1H, J = 6.0 Hz, -CHCH₃), 3.28 (bs, 1H, -NHCH), 2.25 (s, 3H, -CH₃), 1.59-1.30 (m, 8H, -CH₂), 1.17 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.91 (t, 3H, J = 6.7 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.5, 129.8, 126.0, 113.4, 48.8, 37.3, 32.0, 25.9, 22.7, 20.9, 20.4, 14.1; IR(neat) 3402, 2958, 2927, 1618, 1181, 806 cm⁻¹; EIMS (70 eV) m/z 205 (M⁺); Anal. Calcd (%) for C₁₄H₂₃N (205.1830): C, 82.13; H, 11.49; N, 6.39. Found: C, 82.11; H, 11.50; N, 6.38; HRMS-EI m/z calcd for C₁₄H₂₃N (M⁺) 205.1830, found 205.1830; [α]²⁰_D -2.0 (c 0.4, CHCl₃); 73% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/¹PrOH = 92/8, flow rate = 1 mL/min, t_R = 3.1 min (minor), t_R = 3.4 min (major).

(*γ*)-*N*-(3-trifluoromethylphenyl)-[1-(methyl)-hexyl]amine (4c) (Table 2, entry 2): Prepared according to the general procedure from 2-heptanone (140 μL, 1.0 mmol), *m*-trifluoromethyl aniline (180 μL, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, 1b, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (51%); ¹H NMR (300 MHz, CDCl₃) δ 7.21 (d, 1H, J = 7.9 Hz, ArH), 6.87 (d, 1H, J = 8.2 Hz, ArH), 6.75 (s, 1H, ArH), 6.69 (d, 1H, J = 8.2 Hz, ArH), 3.65 (bs, 1H, -NHCH), 3.47 (sext, 1H, J = 6.3 Hz, -CHCH₃), 1.57-1.28 (m, 8H, -CH₂), 1.18 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.89 (t, 3H, J = 6.6 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.8, 131.6 (Cq, J = 32.3Hz), 129.7, 124.4 (Cd, J = 272.3 Hz), 115.9, 113.1(Cq, J = 4.0Hz), 109.1(Cq, J = 4.0Hz), 48.5, 37.1, 31.9, 25.8, 22.7, 20.6, 14.1; IR(neat) 3426, 2961, 2931, 1614, 1517, 1162, 857 cm⁻¹; EIMS (70 eV) m/z 259 (M⁺); HRMS-EI m/z calcd for C₁₄H₂₀NF₃ (M⁺) 259.1548, found 259.1545; [α]²⁰_D -1.6 (c 0.4, CHCl₃); 95% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 3.0 min (minor), t_R = 3.6 min (major).

(+)-N-phenyl-[1-(ethyl)-pentyl]amine (4d) (Table 2, entry 3): Prepared according to the general procedure from 3-heptanone (140 μL, 1.0 mmol), aniline (0.13 μL, 1.5 mmol) and [(R)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (86%); ¹H NMR (300 MHz, CDCl₃) δ 7.15 (td, 2H, J = 8.7, 1.5 Hz, ArH), 6.64 (tt, 1H, J = 1.2, 7.2 Hz, ArH), 6.57 (dd, 1H, J = 1.2, 8.5 Hz, ArH), 3.46 (bs, 1H, -NHCH), 3.28 (quint, 1H, J = 6.0 Hz, -CHCH₂), 1.74 – 1.26 (m, 8H, CH₂), 0.92 (t, 3H, J = 7.5 Hz, -CH₂CH₃), 0.89 (t, 3H, J = 7.2 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 148.1, 129.2, 116.4, 112.8, 54.0, 34.0, 28.1, 27.2, 22.8, 14.0, 10.0; IR(neat) 3405, 2959, 2929, 1602, 1504, 1179, 865 cm⁻¹; EIMS (70 eV) m/z 191 (M⁺); $[α]^{20}_D$ +2.72 (c 0.44,

CHCl₃); 49% ee by GC-MS (EI) (column: Ciclodex- β , flow rate = 1 grade/min, t_R = 28.4 min (minor), t_R = 28.7 min (major).

(-)-N-(4-methylphenyl)-[1-(ethyl)-pentyl]-amine (4e) (Table 2, entry 4): Prepared according to the general procedure from 3-heptanone (140 μL, 1.0 mmol), *p*-toluidine (161 mg, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (82%); ¹H NMR (300 MHz, CDCl₃) δ 6.97 (d, 2H, J = 8.5 Hz, ArH), 6.50 (d, 1H, J = 8.4 Hz, ArH), 3.31 (bs, 1H, -NHCH), 3.25 (quint, 1H, J = 6.0 Hz, -CHCH₂), 3.04 (s, 3H, -CH₃), 1.63 – 1.27 (m, 8H, -CH₂), 0.92 (t, 3H, J = 7.2 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.9, 129.7, 125.6, 113.0, 54.3, 34.1, 28.1, 27.2, 22.8, 20.3, 14.0, 10.0; IR(neat) 3404, 2959, 2929, 1618, 1518, 1151, 806 cm⁻¹; EIMS (70 eV) m/z 205 (M⁺); HRMS-EI m/z calcd for C₁₄H₂₃N 205.1830 (M⁺), found 205.1833; [α]²⁰_D -1.5 (c 0.54, CHCl₃); 59% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 3.0 min (minor), t_R = 3.4 min (major).

N-phenyl-[1-(ethyl)-propyl]amine (4f) (Table 2, entry 5): Prepared according to the general procedure from 3-pentanone (100 μL, 1.0 mmol), aniline (130 μL, 1.5 mmol) and [(rac)-BINAP]PdBr₂, 1a, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as light yellow oil (77%); ¹H NMR (300 MHz, CDCl₃) δ 7.17 (td, 2H, J = 8.5, 1.1 Hz, ArH), 6.61 (t, 1H, J = 8.2 Hz, ArH), 6.59 (d, 2H, J = 8.5 Hz, ArH), 3.44 (bs, 1H, -NHCH), 3.25 (quint, 1H, J = 5.8 Hz, -CHCH₂), 1.65 – 1.45 (m, 4H, -CH₂), 0.94 (t, 6H, J = 7.4 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 148.3, 129.3, 116.6, 113.0, 55.4, 26.8,

10.2; IR(neat) 3403, 2963, 2930, 1602, 1505, 1179, 865 cm⁻¹; EIMS (70 eV) m/z 163 (M⁺); HRMS-EI m/z calcd for $C_{11}H_{17}N$ (M⁺) 163.1361, found 163.1360.

(-)-N-sec-butyl-(p-tolyl)amine (4g) (Table 2, entry 6): Prepared according to the general procedure from 2-butanone (90 μL, 1.0 mmol), p-toluidine (161 mg, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (77%); ¹H NMR (300 MHz, CDCl₃) δ 6.97 (d, 2H, J = 8.2 Hz, ArH), 6.51 (d, 2H, J = 8.5 Hz, ArH), 3.36 (sext, 1H, J = 6.4 Hz, -CHCH₃), 3.26 (bs, 1H, -NHCH), 2.23 (s, 3H, CH₃), 1.64 – 1.55 (m, 1H, -CH₂CH₃), 1.50 – 1.39 (m, 1H, -CH₂CH₃), 1.16 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.94 (t, 3H, J = 7.4 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.5, 129.8, 126.0, 113.4, 50.1, 29.7, 20.4, 20.3, 10.4; IR(neat) 3399, 2964, 2924, 1618, 1518, 1160, 807 cm⁻¹; EIMS (70 eV) m/z 163 (M⁺); [α]²⁰_D -1.0 (c 0.44, CHCl₃); >99% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 95/5, flow rate = 1 mL/min, t_R = 5.0 min (major), t_R = 5.9 min (minor).

(-)-N-sec-butyl-(4-ethylphenyl)amine (4h) (Table 2, entry 7): Prepared according to the general procedure from 2-butanone (90 μL, 1.0 mmol), p-ethyl aniline (190 μL, 1.5 mmol) and [(R)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (77%); ¹H NMR (300 MHz, CDCl₃) δ 7.03 (d, 2H, J = 8.5 Hz, ArH), 6.55 (d, 2H, J = 8.5 Hz, ArH), 3.44 – 3.33 (m, 2H, -NHCH + -CHCH₃), 2.55 (q, 2H, J = 7.5 Hz, -CH₂CH₃), 1.66 – 1.55 (m, 1H, -CH₂CH₃), 1.52 – 1.40 (m, 1H, -CH₂CH₃), 1.22 (d, 3H, J = 7.6 Hz, -CH₂CH₃), 1.18 (d, 3H, J = 6.3 Hz, -CH₂CH₃); ¹³C NMR (75 MHz,

CDCl₃) δ 145.7, 132.7, 128.6, 113.3, 50.1, 29.7, 28.0, 20.4, 16.0, 10.5; IR(neat) 3402, 2963, 2927, 1616, 1518, 1158, 819 cm⁻¹; EIMS (70 eV) m/z 177 (M⁺); $[\alpha]^{20}_{D}$ -2.80 (c 0.5, CHCl₃); 92% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 90/10, flow rate = 1 mL/min, t_R = 3.2 min (minor), t_R = 3.7 min (major).

(+)-*N*-sec-butyl-(2-trifluoromethylphenyl)amine (4i) (Table 2, entry 8): Prepared according to the general procedure from 2-butanone (90 μL, 1.0 mmol), *o*-trifluoromethyl aniline (180 μL, 1.5 mmol) and [(*S*)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (76%); ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, 1H, J = 7.7 Hz, ArH), 7.33 (t, 1H, J = 7.9 Hz, ArH), 6.71 (d, 1H, J = 8.5 Hz, ArH), 6.65 (t, 1H, J = 7.6 Hz, ArH), 4.13 (bs, 1H, -NHCH), 3.48 (sext, 1H, J = 6.5 Hz, -CHCH₃), 1.53 – 1.51 (m, 2H, -CH₂CH₃), 1.20 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.96 (t, 3H, J = 7.4 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.3, 133.0, 126.8 (Cq, J = 5.3 Hz), 123.5, 115.2, 113.2 (Cq, J = 29.4 Hz), 112.3, 49.7, 29.5, 20.1, 10.2; IR(neat) 3468, 2969, 2929, 1615, 1586, 1168, 941 cm⁻¹; EIMS (70 eV) m/z 217 (M⁺); [α]²⁰_D +3.33 (c 0.36, CHCl₃); 82% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 3.8 min (major), t_R = 4.6 min (minor).

(*S*)-*N*-sec-butyl-(3-trifluoromethylphenyl)amine (4j) (Table 2, entry 9): Prepared according to the general procedure from 2-butanone (90 μ L, 1.0 mmol), *m*-trifluoromethyl (180 μ L, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (71%); ¹H NMR (300 MHz, CDCl₃) δ 7.23 (t,

1H, J = 7.9 Hz, ArH), 6.87 (d, 1H, J = 7.4 Hz, ArH), 6.76 (s, 1H, ArH), 6.70 (d, 1H, J = 8.2 Hz, ArH), 3.65 (bs, 1H, -NHCH), 3.42 (sext, 1H, J = 6.0 Hz, -CHCH₃), 1.64 – 1.45 (m, 2H, -CH₂CH₃), 1.18 (d, 3H, J = 6.0 Hz, -CHCH₃), 0.96 (t, 3H, J = 7.4 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.9, 131.5 (Cq, J = 31.7Hz), 129.7, 122.7, 115.9, 113.1 (Cq, J = 4.0 Hz), 109.1 (Cq, J = 4.0 Hz), 49.8, 29.6, 20.1, 15.8; IR(neat) 3425, 2970, 2932, 1614, 1517, 1163, 859 cm⁻¹; EIMS (70 eV) m/z 217 (M⁺); HRMS-EI m/z calcd for C₁₁H₁₄NF₃ (M⁺) 217.1078, found 217.1083; $\left[\alpha\right]^{20}_{D}$ -3.01 (c 0.53, CHCl₃); 75% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 3.0 min (minor), t_R = 3.8 min (major).

To determine the absolute configuration of this compound was derivatized by hydrogenolysis in presence of Pd/C and salt formation with HCl in methanol to obtain 2-butylamine hydrochloride. The obtained ammonium salt (2-butylamine hydrochloride) has optical rotation $[\alpha]^{20}_D$ –4.8 (c 0.25, EtOH). This was compared with the optical rotation of reported 2-butylamine hydrochloride.⁴

(-)-N-phenyl-[1-(methyl)-butyl]amine (4k) (Table 2, entry 10): Prepared according to the general procedure from 3-penten-2-one (100 μL, 1.0 mmol), aniline (130 μL, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (78%); ¹H NMR (300 MHz, CDCl₃) δ 7.02 (d, 2H, J = 8.2 Hz, ArH), 6.55 (d, 2H, J = 8.2 Hz, ArH), 3.48 (quint, 1H, J = 6.0 Hz, -CHCH₃), 3.31 (bs, 1H, -NHCH), 1.62 – 1.39 (m, 4H, -CH₂CH₃), 1.20 (d, 3H, J = 6.3 Hz, -CH₂CH₃), 0.97 (t, 3H, J = 7.0 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.6, 129.9, 126.0, 113.4, 48.6, 39.6, 20.9, 20.5, 19.4, 14.3; IR(neat) 3383, 2959, 2924, 1616, 1513, 1172, 806 cm⁻¹; EIMS (70 eV) m/z 177 (M⁺); HRMS-EI m/z calcd for C₁₂H₁₉N (M⁺) 177.1517, found 177.1518; $[\alpha]^{20}_{\rm D}$ -3.40 (c 0.47, CHCl₃); 10% ee by CG-MS (column: Ciclodex-β, flow rate = 1 grade/min, t_R = 20.9 min (major), t_R = 21.3 min (minor).

(-)-N-phenyl-[1-(methyl)-3-(methyl)-butyl]amine (4l) (Table 2, entry 11): Prepared according to the general procedure from 4-methyl-2-pentanone (120 μL, 1.0 mmol), aniline (130 μL, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (83%); ¹H NMR (300 MHz, CDCl₃) δ 7.17 (t, 2H, J = 7.4 Hz, ArH), 6.66 (t, 1H, J = 7.4 Hz, ArH), 6.58 (d, 2H, J = 7.6 Hz, ArH), 3.53 (sext, 1H, J = 6.3 Hz, -CHCH₃), 3.39 (bs, 1H, -NHCH), 1.80 – 1.71 (m, 1H, -CH₂CH₃), 1.52 – 1.43 (m, 1H, -CHCH), 1.31 – 1.23 (m, 1H, -CH₂CH), 1.16 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.95 (d, 3H, J = 6.6 Hz, -CHCH₃), 0.91 (d, 3H, J = 6.3 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.8, 129.3, 116.8, 113.0, 47.0, 46.5, 25.1, 23.0, 22.6, 21.1; IR(neat) 3402, 2958, 2927, 1602, 1504, 1160, 866 cm⁻¹; EIMS (70 eV) m/z 177 (M⁺); HRMS-EI m/z calcd for C₁₂H₁₉N (M⁺) 177.1517, found 177.1511; [α]²⁰_D -1.27 (c 0.47, CHCl₃); 51% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 4.0 min (major), t_R = 4.7 min (minor).

(-)-N-(4-methylphenyl-[1-(methyl)-3-(methyl)-butyl]amine (4m) (Table 2, entry 12): Prepared according to the general procedure from 4-methyl-2-pentanone (120 μL, 1.0 mmol), p-toluidine (161 mg, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (73%); ¹H NMR (300 MHz, CDCl₃) δ 6.97 (d, 2H, J = 8.7 Hz, ArH), 6.51 (d, 2H, J = 8.4 Hz, ArH), 3.49 (sext, 1H, J = 6.6 Hz, -CHCH₃), 3.26 (bs, 1H, -NHCH), 2.23 (s, 3H, CH₃) 1.81 – 1.68 (m, 1H, -CH₂CH₃), 1.50 – 1.41 (m, 1H, -CHCH), 1.28 – 1.19 (m, 1H, -CH₂CH), 1.14 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.93 (d, 3H, J = 6.6 Hz, -CHCH₃), 0.90 (d, 3H, J = 6.3 Hz, -CHCH₃); ¹³C NMR

(75 MHz, CDCl₃) δ 145.4, 129.7, 125.9, 113.2, 46.9, 46.8, 25.0, 22.9, 22.6, 22.5, 21.0; IR(neat) 3397, 2957, 2924, 1617, 1517, 1162, 880 cm⁻¹; EIMS (70 eV) m/z 191 (M⁺); $[\alpha]^{20}_{\rm D}$ -4.25 (c 0.40, CHCl₃); 90% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 95/5, flow rate = 1 mL/min, t_R = 4.9 min (major), t_R = 5.4 min (minor).

(*γ*)-*N*-(4-ethylphenyl)-[1-(methyl)-4-(methyl)-pentyl]amine (4n) (Table 2, entry 13): Prepared according to the general procedure from 5-methyl-2-hexanone (125 μL, 1.0 mmol), *p*-ethyl aniline (190 μL, 1.5 mmol) and [(*S*)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (80%); ¹H NMR (300 MHz, CDCl₃) δ 7.00 (d, 2H, J = 8.5 Hz, ArH), 6.52 (d, 2H, J = 8.5 Hz, ArH), 3.44 – 3.33 (m, 2H, -CHCH₃+-NH), 2.54 (q, 2H, J = 7.6 Hz, CH₂CH₃), 1.64 – 1.24 (m, 5H, -CH(CH₃)) + -CH₂CH₃), 1.19 (t, 3H, J = 7.6 Hz, -CH₂CH₃), 1.16 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.89 (d, 3H, J = 6.6 Hz, -CHCH₃), 0.88 (d, 3H, J = 6.6 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 148.7, 132.6, 128.6, 113.2, 49.1, 35.4, 35.1, 28.2, 27.9, 22.8, 22.7, 20.9, 16.0; IR(neat) 3403, 2959, 2928, 1616, 1518, 1158, 818 cm⁻¹; EIMS (70 eV) m/z 219 (M⁺); HRMS-EI m/z calcd for C₁₅H₂₅N (M⁺) 219.1987, found 219.1984; [α]²⁰_D -0.70 (c 0.43, CHCl₃); 83% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/iPrOH = 95/5, flow rate = 1 mL/min, t_R = 3.6 min (major), t_R = 4.9 min (minor).

(-)-N-(3-trifluoromethylphenyl)-[1-(methyl)-4-(methyl)-pentyl]amine (40) (Table 2, entry 14): Prepared according to the general procedure from 5-methyl-2-hexanone (125 μ L, 1.0 mmol), *m*-trifluoromethyl aniline (180 μ L, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c,

(22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (71%); 1 H NMR (300 MHz, CDCl₃) δ 7.25 (t, 1H, J = 7.7 Hz, ArH), 6.90 (d, 1H, J = 7.7 Hz, ArH), 6.79 (s, 2H, 1H, ArH), 6.71 (d, 1H, J = 7.9 Hz, ArH), 3.63 (bs, 1H, -NHCH), 3.47 (sext, 1H, J = 6.3 Hz, -CHCH₃), 1.64 – 1.25 (m, 5H, -CH(CH₃)₂ + -CH₂CH₃), 1.20 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.93 (d, 3H, J = 6.6 Hz, -CHCH₃), 0.92 (d, 3H, J = 6.6 Hz, -CHCH₃); IR(neat) 3425, 2960, 2931, 1614, 1516, 1164, 858 cm⁻¹; EIMS (70 eV) m/z 259 (M⁺); HRMS-EI m/z calcd for C₁₄H₂₀NF₃ (M⁺) 259.1548, found 259.1545; [α]²⁰_D -2.08 (c 0.24, CHCl₃); 82% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 90/10, flow rate = 1 mL/min, t_R = 3.8 min (major), t_R = 5.1 min (minor).

(-)-N-(3-trifluoromethylphenyl)-[1-(methyl)-2,2-(dimethyl)-propyl]-amine (4p) (Table 2, entry 15): Prepared according to the general procedure from 3,3-dimethyl-2-butanone (90 μL, 1.0 mmol), *m*-trifluoromethyl aniline (180 μL, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, 1b, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (89%); ¹H NMR (300 MHz, CDCl₃) δ 7.21 (t, 1H, J = 7.9 Hz, ArH), 6.85 (d, 1H, J = 7.4 Hz, ArH), 6.77 (s, 1H, ArH), 6.71 (d, 1H, J = 7.9 Hz, ArH), 3.63 (bs, 1H, NHCH), 3.26 (q, 1H, J = 6.0 Hz, -CHCH₃), 1.10 (d, 3H, J = 6.3 Hz, -CHCH₃), 0.97 (s, 9H, J = 6.6 Hz, -C(CH₃)₃); ¹³C NMR (75 MHz, CDCl₃) δ 148.6, 131.6 (Cq, J = 31.7Hz), 129.7, 122.7, 115.8, 112.9 (Cq, J = 4.0Hz), 109.0 (Cq, J = 4.0Hz), 57.1, 34.9, 26.5, 15.8; IR(neat) 3430, 2966, 1614, 1519, 1162, 855 cm⁻¹; EIMS (70 eV) m/z 245 (M⁺); HRMS-EI m/z calcd for C₁₃H₁₈NF₃ (M⁺) 245.1391, found 245.1397; [α]²⁰_D -24.72 (c 0.55, CHCl₃); 96% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 3.0 min (minor), t_R = 3.4 min (major).

(-)-N-(phenyl)-[2-sec-butylcyclohexyl]amine (4q) (Table 2, entry 16): Prepared according to the general procedure from 2-sec-butylcyclohexanone (Mixture of diastereomers with a slight 10% of diastereomeric excess, 170 µL, 1.0 mmol), aniline (130 μ L, 1.5 mmol) and [(R)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (80%); First diastereomer: ¹H NMR (500 MHz, CDCl₃) δ 7.14 (td, 2H, J = 2.0, 7.5 Hz, ArH), 6.62 (td, 1H, J = 2.0, 7.5 Hz, ArH), 6.58 (d, 2H, J = 2.0, 7.5 Hz, ArH), 3.77 (m, 1H, -CHNH), 3.71 (bs, 1H, -CHNH), 2.04 – 2.03 (m, 2H, cyclohexyl), 1.83 – 1.74 (m, 2H, cyclohexyl), 1.55 – 1.08 (m, 7H, cyclohexyl and butyl), 0.87 (d, 3H, J = 6.5 Hz, -CHC \mathbf{H}_3), 0.79 (t, 3H, J = 6.5 Hz, -CH₂C \mathbf{H}_3). ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 129.3, 116.3, 112.8, 48.5, 45.1, 35.4, 29.5, 26.4, 25.9, 25.0, 20.3, 16.6, 10.6; Second diastereomer: ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 7.14 (td, 2H, J = 2.0, 7.5 Hz, ArH), 6.62 (td, 1H, J = 2.0, 7.5 Hz, ArH), 6.58 (d, 2H, J = 2.0, 7.5 Hz, ArH), 3.77 (m, 1H, -CHNH), 3.71 (bs, 1H, -CHNH), 2.02 – 2.00 (m, 2H, cyclohexyl), 1.83 – 1.74 (m, 2H, cyclohexyl), 1.55 - 1.08 (m, 7H, cyclohexyl and butyl), 0.85 (d, 3H, J = 6.5 Hz, -CHCH₃), 0.82 (t, 3H, J = 6.5 Hz, -CH₂CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 129.3, 116.3. 112.8, 48.3, 44.8, 35.8, 29.5, 26.3, 26.2, 24.9, 20.3, 16.1, 10.5; IR(neat) 3429, 3051, 2926, 1601, 1154, 860 cm⁻¹; EIMS (70 eV) m/z 231 (M⁺); HRMS-EI m/z calcd for $C_{16}H_{25}N$ (M⁺) 231.1987, found 231.1991; $[\alpha]_{D}^{20}$ -36.2 (c 0.16, CHCl₃); 53 and 66% de by GC-MS (EI) [column: Ciclodex- β , flow rate = 1.2 grade/min, $t_R = 55.7$ min (minor), $t_R = 56.1$ min (major) and $t_R = 57.5$ min (minor), $t_R = 57.8$ min (major) respectively].

Notes:

1. The injection of 2-sec-butyleyclohexanone by GC-MS employing a non chiral column was detected two peaks with $t_R = 26.7$ min (major) and $t_R = 26.8$ min (minor) with a slight diastereomeric excess of 10%. When this substrate was aminated with aniline using [(rac)-BINAP]PdBr₂ (1a), two pairs of diastereomers of the desired product (4n) were detected by

GC-MS (EI) [column: Ciclodex- β , flow rate = 1.2 grade/min, t_R = 55.7 min (major), t_R = 56.0 min (major) and t_R = 57.5 min (minor), t_R = 57.7 min (minor) respectively] with the same intensity. See S80.

2. When [(S)-BINAP]PdBr₂ (**1c**) complex was used: $[\alpha]^{20}_D$ +33.0 (c 0.16, CHCl₃); 57 and 69% of diastereomeric excess was detected by GC-MS (EI) [column: Ciclodex-β, flow rate = 1.2 grade/min, t_R = 55.7 min (minor), t_R = 56.0 min (major) and t_R = 57.6 min (minor), t_R = 57.8 min (major) respectively]. These values are opposite to [(R)-BINAP]PdBr₂ (**1b**) was used. See S82.

(-)-N-(phenyl)-[1-(methyl)-2-(one)-propyl]amine (4r) (Table 2, entry 17): Prepared according to the general procedure from 2,3-butanedione (90 μL, 1.0 mmol), aniline (130 μL, 1.5 mmol) and [(S)-BINAP]PdBr₂, 1c, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (85%); ¹H NMR (300 MHz, CDCl₃) δ 7.18 (td, 2H, J = 7.4, 1.6 Hz, ArH), 6.72 (t, 1H, J = 7.4 Hz, ArH), 6.56 (d, 2H, J = 7.4 Hz, ArH), 4.39 (bs, 1H, -NHCH), 4.06 (q, 1H, J = 7.3 Hz, -CHCH₃), 2.21 (s, 3H, -COCH₃), 1.41 (d, 3H, J = 6.8 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 210.4 (-CO), 146.5, 129.5, 118.0, 113.0, 58.6, 25.8, 18.0; IR(neat) 3391, 2977, 2930, 1712(CO), 1602, 1505, 1177, 872 cm⁻¹; EIMS (70 eV) m/z 163 (M⁺); [α]²⁰_D -1.62 (c 0.43, CHCl₃); 20% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 90/10, flow rate = 1 mL/min, t_R = 8.6 min (major), t_R = 10.8 min (minor).

(-)-N-(2-trifluoromethylphenyl)-[1-(methyl)-2-(one)-propyl]amine (4s) (Table 2, entry 18): Prepared according to the general procedure from 2,3-butanedione (90 μL, 1.0 mmol), o-trifluoromethyl aniline (180 μL, 1.5 mmol) and [(R)-BINAP]PdBr₂, 1b, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as colorless oil (83%); ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, 1H, J = 7.4 Hz, ArH), 7.33 (t, 1H, J = 7.7 Hz, ArH), 6.73 (t, 1H, J = 7.7 Hz, ArH), 6.54 (d, 1H, J = 8.2 Hz, ArH), 5.12 (bs, 1H, -NHCH), 4.10 (q, 1H, J = 6.7 Hz, -CHCH₃), 2.19 (s, 3H, -CH₃), 1.44 (d, 3H, J = 7.1 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 209.1 (-CO), 143.9, 133.3, 127.0 (Cq, J = 5.6 Hz), 123.3, 119.9, 116.7, 114.0 (Cq, J = 29.4 Hz), 58.2, 20.3, 17.7; IR(neat) 3423, 2985, 2929, 1721(CO), 1614, 1520, 1145, 752 cm⁻¹; EIMS (70 eV) m/z 231 (M⁺); [α]²⁰_D -1.0 (c 0.4, CHCl₃); 2% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/[†]PrOH = 99/1, flow rate = 1 mL/min, t_R = 6.4 min (minor), t_R = 6.8 min (major).

General procedure for asymmetric reductive amination of aryl ketones: 1.0 mmol of the acetophenone derivative, 1.5 mmol of aniline derivative were added to a stirred solution of 0.025 mmol of chiral palladium complex in 10 mL of dry CHCl₃ (in a Schlenk tube) and stirred for 10 minutes. The solution was transferred to a 45 ml stainless steel autoclave (PARR) that contained 150 mg of molecular sieves 5Å previously purged with vacum-N₂. Subsequently, the reaction was taken to the desired pressure (800 psi H₂), stirred in an oil bath at 70°C for 24 h. At the end of this period, the gas was liberated. The solution was analyzed by GC-MS to quantify the remaining substrate, and was later concentrated under reduced pressure, affording a crude residue, which was purified by column chromatography over silica gel (70-230 mesh), and eluted with hexane-ethyl acetate (99/1) to isolate the product.

Absolute configurations of known compounds were assigned by comparison of optical rotations to literature values.

(*R*)-(-)-*N*-[1-(phenyl)-ethyl]aniline (6a) (Table 3, entry 1): Prepared according to the general procedure from acetophenone (110 μL, 1 mmol), aniline (130 μL, 1.5 mmol) and [(*S*)-BINAP]PdBr₂, 1b, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (64%); ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.21 (m, 5H, ArH), 7.11 (dd, 2H, J = 8.7 Hz, ArH), 6.66 (t, 1H, J = 7.8 Hz, ArH), 6.53 (d, 2H, J = 7.8 Hz, ArH), 4.51 (q, 1H, J = 6.6 Hz, -CHCH₃), 4.04 (bs, 1H, -NHCH), 1.54 (d, 3H, J = 7.0 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 147.2, 145.1, 129.0, 128.6, 126.8, 125.8, 117.2, 113.2, 53.4, 24.9; EIMS (70 eV) m/z 197 (M⁺); [α]²⁰_D -3.6 (c 0.5, CHCl₃); 43% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/iPrOH = 92/8, flow rate = 1 mL/min, t_R = 5.9 min (minor), t_R = 6.9 min (major).

The absolute configuration was determined by comparison with the reported literature as (R) with $\left[\alpha\right]^{20}_{D}$ -3.9 (c 1.0, CHCl₃) and 81% ee.³

(+)-*N*-(4-tolyl)-[1-(4-methylphenyl)-ethyl]amine (6b) (Table 3, entry 2): Prepared according to the general procedure from *p*-methyl acetophenone (130 μL, 1 mmol), *p*-toluidine (160.5 mg, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, 1c, (22 mg, 0.025mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (67%); ¹H NMR (300 MHz, CDCl₃) δ 7.28 (d, 2H, J = 8.1 Hz, ArH), 7.15 (d, 2H, J = 7.8 Hz, ArH), 6.93 (d, 2H, J = 8.1 Hz, ArH), 6.43 (d, 2H, J = 8.4 Hz, ArH), 4.46 (q, 1H, J = 6.6 Hz, -CHCH₃), 3.89 (bs, 1H, NHCH), 2.34 (s, 3H, -CH₃), 2.21 (s, 3H, -CH₃), 1.51 (d, 3H, J = 6.7 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 145.0, 142.3, 136.2, 129.5, 129.2, 126.2, 125.7, 113.4, 53.3, 24.9, 21.0,

20.3; IR(neat) 3409, 2966, 2921, 1618, 1519, 1140, 808 cm⁻¹; EIMS (70 eV) m/z 225 (M⁺); Anal. Calcd for $C_{16}H_{19}N$ (225.1517): C, 85.28; H, 8.50; N, 6.22. Found: C, 85.27; H, 8.46; N, 6.25; HRMS-EI m/z calcd for $C_{16}H_{19}N$ (M⁺) 225.1517, found 225.1515; $[\alpha]^{20}_D$ +10.18 (c 0.54, CHCl₃); 35% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 5.2 min (major), t_R = 6.0 min (minor).

(*R*)-(+)-*N*-(4-methoxyphenyl)-[1-(phenyl)-ethyl]amine (6c) (Table 3, entry 3): Prepared according to the general procedure from acetophenone (110 μL, 1.0 mmol), *p*-anisidine (184.5 mg, 1.5 mmol) and [(*R*)-Tol-BINAP]PdBr₂, 1d, (23.6 mg, 0.025mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (65%); ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H, ArH), 7.25 (d, 2H, J = 8.0 Hz, ArH), 6.71 (d, 2H, J = 8.8 Hz, ArH), 6.49 (d, 2H, J = 8.8 Hz, ArH), 4.43 (q, 1H, J = 6.6 Hz, -CHCH₃); 3.49 (bs, 1H, -NHCH), 3.70 (s, 3H, -OCH₃), 1.51 (d, 3H, J = 6.6 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 151.9, 145.6, 141.6, 128.7, 126.9, 126.0, 114.8, 114.6, 55.8, 54.3, 25.2; EIMS (70 eV) m/z 227 (M⁺); Anal. Calcd for C₁₅H₁₇NO (227.1310): C, 79.26; H, 7.54; N, 6.16. Found: C, 79.25; H, 7.56; N, 6.20; HRMS-EI m/z calcd for C₁₅H₁₇NO (M⁺) 227.1310, found 227.1314; [α]²⁰ = +5.6 (c 0.4, CHCl₃); 35% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 6.9 min (major), t_R = 7.6 min (minor).

The absolute configuration was determined by comparison with the reported literature as (R) with $[\alpha]^{20}_D + 6.0$ (c 0.3, CHCl₃) and 21% ee.⁵

(+)-N-(4-methoxyphenyl)-[1-(4-tolyl)-ethyl]amine (6d) (Table 3, entry 4): Prepared according to the general procedure from *p*-methyl acetophenone (130 μL, 1 mmol), *p*-anisidine (184.5 mg, 1.5 mmol) and [(*R*)-BINAP]PdBr₂, **1b**, (22 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (53%); ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, 2H, J = 7.7 Hz, ArH), 7.12 (d, 2H, J = 8.2 Hz, ArH), 6.69 (d, 2H, J = 8.8 Hz, ArH), 6.47 (d, 2H, J = 8.8 Hz, ArH), 4.39 (q, 1H, J = 6.6 Hz, -CHCH₃), 3.71 (bs, 1H, NHCH), 3.69 (s, 3H, -OCH₃), 2.32 (s, 3H, -CH₃), 1.48 (d, 3H, J = 6.6 Hz, -CHCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 151.9, 142.5, 141.7, 136.4, 129.3, 125.8, 114.8, 114.6, 55.8, 25.2, 21.1; EIMS (70 eV) m/z 241 (M⁺); [α]²⁰_D +6.73 (c 0.22, CHCl₃); 38% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ⁱPrOH = 92/8, flow rate = 1 mL/min, t_R = 23.3 min (major), t_R = 25.2 min (minor).

(+)-N-(4-methoxyphenyl)-[1-(phenyl)-propyl]amine (6e) (Table 3, entry 5): Prepared according to the general procedure from propiophenone (130 μL, 1.0 mmol), p-anisidine (184.5 mg, 1.5 mmol) and [(R)-Tol-BINAP]PdBr₂, 1d, (23.6 mg, 0.025 mmol) at 70 °C for 24 h, to provide the title compound as yellow oil (57%); ¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.21 (m, 5H, ArH), 6.68 (d, 2H, J = 8.8 Hz, ArH), 6.47 (d, 2H, J = 8.8 Hz, ArH), 4.15 (t, 1H, J = 6.6 Hz, -CHCH₃), 3.82 (bs, 1H, NHCH), 3.69 (s, 3H, -OCH₃), 1.81 (sext, 2H, J = 7.4 Hz, -CH₂CH₃), 0.94 (t, 3H, J = 7.4 Hz, -CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 151.9, 144.2, 141.9, 128.5, 126.9, 126.6, 114.8, 114.5, 60.6, 55.8, 31.8, 10.9; IR(neat) 3402, 2963, 2932, 1614, 1513, 1178, 819 cm⁻¹; EIMS (70 eV) m/z 241 (M⁺); [α]²⁰_D +9.44

(c 0.54, CHCl₃); 34% ee by HPLC (column: Daicel Chiracel OD-H; eluent hexane/ i PrOH = 92/8, flow rate = 1 mL/min, t_R = 5.6 min (major), t_R = 6.0 min (minor).

References

- 1. Andrews, M. A.; Chang, T. C. T.; Cheng, C. W. F.; Emge. T. J.; Kelly, K. P.; Koetzle, T. F. *J. Am. Chem. Soc.* **1984**, *106*, 5913.
- 2. Ozawa, F. Kubo, A.; Matsumoto, Y. Hayashi, T. Organometallics 1993, 12, 4188.
- 3. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089.
- 4. (a) Pallavicini, M.; Bolchi, C.; Fumagalli, L.; Valoti, E., Villa, L. *Tetrahedron: Asymmetry* **2002**, *13*, 2277. (b) Grishina, G.V.; Luk'yanenko, E. R.; Borisenko, A. A. Russ. *J. Org. Chem.* **2005**, *41*, 807. (c) Andrés, C.; Nieto, J.; Pedrosa, R.; Villamañán, N. *J. Org. Chem.* **1996**, *61*, 4130.
- 5. Tagashira, J.; Imao, D.; Yamamoto, T.; Ohta, T.; Furukawa, I.; Ito, Y. *Tetrahedron: Asymmetry*, **2005**, *16*, 2307.

Copies of NMR, GC-MS (EI) or HPLC for all compounds.

Reacc340 080616-coa-01

Data File C:\HPCHEM\1\DATA\OSCAR\MS000250.D Sample Name: Reacc340 HPLC IQ 19/06/08 10:23:33 AM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 95/5 flujo 1 ml/min

UV 210

Injection Date: 18/06/08 3:48:25 PM

Sample Name : Reacc340

Vial: 1

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 18/06/08 3:38:29 PM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 19/06/08 10:08:54 AM by carmen

(modified after loading)

Area Percent Report

1.0000

Sorted By : Signal Multiplier : 1.0000

Dilution

Totals:

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [min] [mAU*s] [mAU] %

1 3.115 BV 0.1834 1095.69629 91.72173 12.0154 2 4.529 VP 0.2551 8023.39697 511.09534 87.9846

9119.09326 602.81706

% cc = 75.96

Reacc390 080619-coa-02

Data File C:\HPCHEM\1\DATA\OSCAR\MS000253.D Sample Name: Reacc390

HPLC IQ 20/06/08 12:10:17 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

fluio 1 ml/min

UV 210

Method

Vial: 1

Injection Date: 20/06/08 11:10:51 AM

Sample Name : Reacc390 Acq. Operator : carmen

: C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 9:08:55 AM by carmen

(modified after loading)

Area Percent Report

Sorted By Multiplier

Signal 1.0000

Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [mAU*s] [mAU] -|-----|-----|-----|

1 3.101 BV 0.1371 3566.70728 395.91531 13.6440

2 3.437 VV 0.1612 2.25745e4 2246.77417 86.3560

Totals : 2.61412e4 2642.68948 ce= 72.71%

Data File D:\HPLC\HPCHEM\1\DATA\OSCAR\MS000261.D

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8 flujo 1 ml/min UV 210

Sample Name: Reacc409

Injection Date : 20/06/08 4:26:23 PM

Sample Name : Reacc409 Vial:

: carmen

Acq. Operator Acq. Method Last changed : C:\HPCHEM\1\METHODS\QUIRAL.M : 20/06/08 3:40:09 PM by carmen (modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 12/09/08 12:43:24 PM by 428 (modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal : Multiplier 1.0000 : Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	3.073			761.20813 3.23209e4	94.03625 2541.08276	2.2999
3	7.285	BP	0.1814	15.70433	1.33349	0.0474

Totals : 3.30978e4 2636.45250

[TIC]

Data : Dr-Cabrera-Armando-021

Sample: 595 G Reacc 391 JeolAX505HA

Note : 5 horas Inlet : GC

Ion Species : Normal Ion

Date: 11-Mar-120 15:50

Ion Mode : EI+

TIC Range : m/z 10 to 650

Reacc365 080619-coa-06

Data File C:\HPCHEM\1\DATA\OSCAR\MS000258.D Sample Name: Reacc365 HPLC IQ 20/06/08 2:44:03 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

flujo 1 ml/min UV 210

Vial: 1

Injection Date: 20/06/08 12:21:49 PM

Sample Name : Reacc365

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 9:08:55 AM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 12:36:04 PM by carmen

(modified after loading)

para Le legadec

Area Percent Report ______

Sorted By : Signal Multiplier

1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height

[min] [mAU*s] [mAU] |-----|----|-----|

1 3.092 BV 0.1243 682.65735 82.69392 20.4483

2 3.464 VV 0.1375 2655.80273 305.39322 79.5517

Totals: 3338.46008 388.08714 cc= 59.10%

Reacc349 rac 080617-coa07

Data File C:\HPCHEM\1\DATA\OSCAR\MS000241.D Sample Name: Reacc331rac HPLC IQ 09/09/08 5:50:01 PM carmen Chiralcel OD 25x 4.6 mm hexano/isopropanol 95/5 flujo 1 ml/min UV 254

Injection Date: 09/09/08 12:24:12 PM

Sample Name : Reacc349rac

Acq. Operator : carmen

Vial: 1

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 10/09/08 9:44:12 AM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 10/09/08 9:02:34 AM by carmen

(modified after loading)

Area Percent Report

Sorted By Signal Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % -|-----|------|------|-----|

1 5.122 VV 0.2500 4.91991e4 3021.12646 49.2589 2 5.894 VV 0.2743 5.06794e4 2981.29468 50.7411

Totals: 9.98785e4 6002,42114 Data File C:\HPCHEM\1\DATA\MS000421.D 080825-coa-07

> Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 95/5 flujo 1 ml/min UV 254 nm

Sample Name: Reacc 431F24

Injection Date : 11/09/08 12:13:20 PM

Sample Name Reacc349 Vial: 1

: 428 Acq. Operator

: C:\HPCHEM\1\METHODS\QUIRAL.M : 11/09/08 11:09:31 AM by carmen Acq. Method Last changed

(modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 08/09/08 7:24:29 PM by carmen

para Le legadec

Area Percent Report

Sorted By Signal Multiplier 1.0000 : Dilution 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] -----5.023 MM 0.1634 4033.52783 411.43063 99.1958 5.920 MM 0.1086 32.69881 5.01843 0.8042

Totals : 4066.22664 416.44907

Data File D:\HPLC\HPCHEM\1\DATA\OSCAR\MS000407.D 080825-coa-03

Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 90/10 flujo 1 ml/min UV 254 nm

Sample Name: Reacc 429F23

Injection Date : 04/09/08 1:10:41 PM

Sample Name : Reacc 429F23 Vial: 1

: carmen

Acq. Operator Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 04/09/08 11:49:21 AM by carmen

(modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M : 11/09/08 11:09:31 AM by carmen Last changed

(modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal Multiplier 1.0000 : Dilution 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	3.282	•		1359.57544 3.10769e4	117.16486	4.1915

Totals : 3.24365e4 2772.12458 ec= 91.61~92%

Reacc410F21 080616-coa-10

Data File C:\HPCHEM\1\DATA\OSCAR\MS000225.D Sample Name: Reacc410F21

HPLC IQ 18/06/08 3:50:52 PM carmen

Chiralcel OD 25x 4.6 mm

hexano/isopropanol 92/8

flujo 1 ml/min

UV 210

Injection Date: 16/06/08 3:32:37 PM

Sample Name : Reacc410F21

Vial: 1

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 16/06/08 3:24:23 PM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 18/06/08 3:38:29 PM by carmen

(modified after loading)

para Cabrera Armando

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [mAU*s] [mAU] %

1 3.894 VV 0.1715 3.12233e4 2856.57617 91.2217 2 4.616 VV 0.1480 3004.63037 302.16672 8.7783

Totals: 3.42279e4 3158.74289

Reacc406F21 080619-coa-08

Data File C:\HPCHEM\1\DATA\OSCAR\MS000260.D Sample Name: Reacc406F21

HPLC IQ 20/06/08 5:22:37 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

flujo 1 ml/min

UV 210

Vial: 1

Injection Date: 20/06/08 4:11:22 PM

Sample Name : Reacc406F21

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M : 20/06/08 3:40:09 PM by carmen

(modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 20/06/08 5:08:36 PM by carmen

(modified after loading)

para Le legadec

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [min] [mAU*s] [mAU]

1 3.079 BV 0.1435 892.61469 100.62816 12.2826

2 3.802 VV 0.1802 6374.69727 530.28589 87.7174

Totals: 7267.31195 630.91405

cc= 75.43%

[TIC]

Data: Dr-Cabrera-Armando-004 Date: 04-Mar-108 14:46

Sample: 453 G Reacc 385 JeolAX505HA
Note: 5 horas
Inlet: GC

Ion Mode : EI+

Ion Species : Normal Ion TIC Range : m/z 10 to 650

No.	RT [min]	Area	Area%	Height	Height%	Width[sec]	INTEG
		3966.79					
2	21.36	3274.27	45.22	239.55	39.65	12.83	VB

[TIC]
Data : Dr-Cabrera-Armando-004
Sample: 453 G Reacc 385 JeolRX505HA
Note : 5 horas
Inlet : GC
Ion Species : Normal Ion [MF-Linear]
TIC Range : m/z 10 to 550
3920546 Date : 04-Mar-108 14:46 Ion Mode : EI+

10

15

Output RT Range : 0.00 to 60.49 min

25

Reacc405 080619-coa-07

Data File C:\HPCHEM\1\DATA\OSCAR\MS000259.D Sample Name: Reacc405 HPLC IQ 20/06/08 4:18:56 PM carmen

Chiralcel OD 25x 4.6 mm

hexano/isopropanol 92/8

flujo 1 ml/min UV 210

Injection Date: 20/06/08 3:57:57 PM

Sample Name : Reacc405

Vial: 1

Acq. Operator : carmen

: C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 3:40:09 PM by carmen

(modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [mAU*s] [mAU] ----

1 4.015 VV 0.1700 6197.39795 574.00317 75.3456

2 4.717 VV 0.1564 2027.89673 190.14859 24.6544

Totals: 8225.29468 764.15176 ce= 50.69%

Data File C:\HPCHEM\1\DATA\MS000423.D 080825-coa-06

Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 95/5 flujo 1 ml/min UV 254 nm

Sample Name: Reacc 432F24

Vial: 1

Injection Date : 11/09/08 1:34:42 PM

Sample Name : Reacc 432F24

Acq. Operator : 428

Method : C:\HPCHEM\1\METHODS\QUIRAL.M
Last changed : 11/09/08 12:35:40 PM by 428
(modified after loading)

para Le legadec

Area Percent Report

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Totals: 5711.33911 546.07551

Data File C:\HPCHEM\1\DATA\MS000420.D 080825-coa-04

Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 95/5 flujo 1 ml/min UV 254 nm

Sample Name: Reacc 433f25

Injection Date : 11/09/08 12:02:30 PM

Sample Name : Reacc 433f25 Vial :

Acq. Operator : 428

Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 11/09/08 11:09:31 AM by carmen
(modified after loading)

para Le legadec

Area Percent Report

Sorted By : Signal

Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.663	MM	0.3768	2.89822e4	['] 1281.97351 [']	91.4137
2	4.932	MM	0.2406	2722,23267	188.55191	8.5863

Totals: 3.17044e4 1470.52542

Data File C:\HPCHEM\1\DATA\MS000416.D 080825-coa-05

Sample Name: Reacc 430

Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 90/10 flujo 1 ml/min UV 254 nm

Injection Date : 08/09/08 1:01:11 PM

Sample Name : Reacc 430 Vial: 1

: carmen

Acq. Operator Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 08/09/08 10:22:21 AM by carmen (modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 12/09/08 12:43:24 PM by 428 (modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.773	Fsho	0.0000	0.00000	12.74802	' o.oooo'
2	3.822	MM	0.3657	316.64301	14.43213	90.9401
3	4.224	Rsho	0.0000	0.00000	3.26390	0.0000
4	4.455	Rsho	. 0.0000	0.00000	1.68889	0.0000
5	5.013	Fsho	0.0000	0.00000	5.51193e-1	0.0000
6	5.177	MM	0.2628	31.54560	2.00050	9.0599

Data File D:\HPLC\HPCHEM\1\DATA\OSCAR\MS000232.D

Chiralcel OD 25x 4,6 mm hexano/isopropanol 92/8 flujo 1 ml/min UV 210

Sample Name: Reacc414F812

Vial :

Injection Date : 17/06/08 10:15:40 AM

Sample Name : Reacc414F812 Acq. Operator : carmen

: C:\HPCHEM\1\METHODS\QUIRAL.M : 17/06/08 9:44:12 AM by carmen Acq. Method Last changed (modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 12/09/08 12:43:24 PM by 428 (modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal

Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 2	3.054			632.72961 3.00066e4		2.0651 97.9349	

Totals : 3.06393e4 2814.61198

*** End of Report ***

Data File D:\HPLC\HPCHEM\1\DATA\OSCAR\MS000411.D 080825-coa-01

Sample Name: Reacc H5F31

Vial :

Chiralcel OD 100 5 250x 4.6 mm hexano/isopropanol 90/10 flujo 1 ml/min UV 254 nm

Injection Date : 04/09/08 6:16:33 PM

Sample Name : Reacc H5F31

Acq. Operator Acq. Method : carmen

: C:\HPCHEM\1\METHODS\QUIRAL.M : 04/09/08 5:41:33 PM by carmen Last changed (modified after loading)

Analysis Method : C:\HPCHEM\1\METHODS\QUIRAL.M : 11/09/08 11:09:31 AM by carmen Last changed

(modified after loading)

para Le legadec

------Area Percent Report

Sorted By Signal Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=254,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 2	8.641 10.849			8898.23145 5945.19336	581.41614 345.46396	59.9473 40.0527	

ec= 19.89 ~ 20% Totals : 1.48434e4 926.88010

*** End of Report ***

Reacc332 080619-coa-04

Data File C:\HPCHEM\1\DATA\OSCAR\MS000256.D Sample Name: Reacc332

HPLC IQ 20/06/08 2:39:48 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

flujo 1 ml/min UV 210

Injection Date: 20/06/08 11:53:01 AM

Sample Name : Reacc332 Vial : 1
Acq. Operator : carmen
Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 9:08:55 AM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M Last changed : 20/06/08 12:36:04 PM by carmen

(modified after loading)

para Le legadec

Area Percent Report

Sorted By Signal Multiplier 1.0000 Dilution 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [min] [mAU*s] [mAU] ----

1 5.998 VV 0.1615 3923 38159 364.84668 28.6245 2 6.944 VP 0.1830 9782.97656 821.06763 71.3755

Totals: 1.37064e4 1185.91431

Reacc331-quiral 080617-coa-08

Data File C:\HPCHEM\1\DATA\OSCAR\MS000242.D Sample Name: Reacc331-quiral

Vial: 1

HPLC IQ 18/06/08 5:59:19 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

flujo 1 ml/min

Injection Date: 17/06/08 12:40:26 PM

Sample Name : Reacc331-quiral

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 17/06/08 9:44:12 AM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\OUIRAL.M

Last changed : 18/06/08 4:02:34 PM by carmen

(modified after loading)

A roo Doront Donort

Area Percent Report

Sorted By : Signal

Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %

1 5.222 VV 0.2482 4.34641e4 2694.71753 67.4740 2 6.029 VV 0.1993 2.09520e4 1574.06262 32.5260

Totals: 6.44161e4 4268.78015

Reacc395 080616-coa-07

Data File C:\HPCHEM\1\DATA\OSCAR\MS000230.D Sample Name: Reacc395

HPLC IQ 18/06/08 4:34:31 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8

flujo 1 ml/min UV 210

Injection Date: 16/06/08 4:57:00 PM

Sample Name : Reacc395

Vial: 1

Acq. Operator : carmen

 $Acq.\ Method \quad : C: \ \ \ 'I\ METHODS \ \ \ \ \ 'UIRAL,M$

Last changed : 16/06/08 3:24:23 PM by carmen

(modified after loading)

Last changed : 18/06/08 4:02:34 PM by carmen

(modified after loading)

para Le legadec

Area Percent Report

%

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area

[min] [mAU*s] [mAU]

1 6.959 VV 0.2437 3.84775e4 2554.97192 67.4206

2 7.649 VV 0.2128 1.85934e4 1349.13049 32.5794

Totals: 5.70709e4 3904.10242

Data File C:\HPCHEM\1\DATA\OSCAR\MS000288.D 080630-coa-06

Chiralcel OD 250x 4.6 mm hexano/isopropanol 98/2 flujo 1 ml/min UV 230

Sample Name: Reacc 422

Vial :

Injection Date : 30/06/08 6:54:03 PM

Sample Name : Reacc 422

: carmen

Acq. Operator Method : C:\HPCHEM\1\METHODS\QUIRAL.M : 30/06/08 6:53:35 PM by carmen (modified after loading) Last changed

para Le legadec

-

Area Percent Report

Sorted By Signal Multiplier 1.0000 :

Dilution 1.0000

Signal 1: DAD1 A, Sig=230,16 Ref=off Results obtained with enhanced integrator!

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	23.307			2792.58521 1242.25806	69.48521 26.33048	

Totals : 4034.84326 95.81569

*** End of Report ***

Reacc418F27 080616-coa-06

Data File C:\HPCHEM\1\DATA\OSCAR\MS000229.D Sample Name: Reacc418F27 HPLC IQ 18/06/08 4:29:26 PM carmen

Chiralcel OD 25x 4.6 mm hexano/isopropanol 92/8 flujo 1 ml/min UV 210

Injection Date: 16/06/08 4:42:14 PM

Sample Name : Reacc418F27 Vial : 1

Acq. Operator : carmen

Acq. Method : C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 16/06/08 3:24:23 PM by carmen

(modified after loading)

Analysis Method: C:\HPCHEM\1\METHODS\QUIRAL.M

Last changed : 18/06/08 4:02:34 PM by carmen

(modified after loading)

Area Percent Report

Sorted By : Signal

Multiplier : 1.0000 Dilution : 1.0000

Signal 1: DAD1 A, Sig=210,16 Ref=off Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %

1 5.619 VV 0.1852 2.12812e4 1809,30591 67.1939 2 6.050 VV 0.1864 1.03901e4 851.18237 32.8061

Totals: 3.16713e4 2660.48828