Stereocontrolled New efficient asymmetric synthesis of taranabant, a CB1R inverse agonist for the treatment of obesity

Debra J. Wallace, ${ }^{*}$ Kevin R. Campos, ${ }^{*}$ C. Scott Shultz, ${ }^{*}$ Artis Klapars, Daniel Zewge, Brian R. Crump, Brian D. Phenix, J. Christopher McWilliams, Shane Krska, Yongkui Sun, Cheng-yi Chen, and Felix Spindler ${ }^{\S}$
Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065
${ }^{\dagger}$ Department of Chemical Process Development \& Commercialization, Merck Research Laboratories, Rahway, New Jersey 07065
${ }^{\text {s }}$ Solvias AG, P.O. Box 4002, Basel, Switzerland

Table of Contents:
S2 - General Information
S2 - Direct synthesis of 1 via asymmetric hydrogenation of cyanoenamide 6
S4- ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-NMR spectra of 3-[1-(4-chlorobenzyl)-2-oxopropyl]benzonitrile (9)
S6 - ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-NMR spectra of (1Z)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylprop-1-en-1-yl 4-methylbenzenesulfonate (12)

S8 - ${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$-NMR spectra of 2-methyl-2-\{[5-(trifluoromethyl)pyridin-2-
yl]oxy\}propanamide (8)
S10 - ${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$-NMR spectra of (N-[(1Z)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylprop-1-en-1-yl]-2-methyl-2-\{[5-(trifluoromethyl)pyridin-2-
yl]oxy\}propanamide (6)
S12- ${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$-NMR spectra of 3-\{(1Z)-1-(4-chlorobenzyl)-2-[(2-methyl-2-\{[5-(trifluoromethyl)pyridin-2-yl]oxy\}propanoyl)amino]prop-1-en-1-yl\}benzamide

S14- ${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$-NMR spectra of 3-\{(1S,2S)-1-(4-chlorobenzyl)-2-[(2-methyl-2-\{[5(trifluoromethyl) pyridin-2-yl]oxy\}propanoyl)amino] propyl\}benzamide (18) S16- ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-NMR spectra of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-\{[5-(trifluoromethyl)pyridin-2-yl]oxy\}propanamide

General

All reagents were used directly from a commercial source without any further purification. Solvents were found to contain 50 ppm water or less via Kf titration. All reactions were performed under a nitrogen atmosphere using glassware stored at ambient temperature and humidity. Flash column chromatography was performed with Silica gel $60(0.04-0.063 \mathrm{~mm}$ particle size). Thin layer chromatography was performed with Silica Gel $60 \mathrm{~F}_{254}$ precoated plates ($2.5 \times 7.5 \mathrm{~cm}, 250$ um thickness). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using an internal deuterium lock. Chemical shifts are quoted in parts per million (ppm) and referenced to the solvent signal $\left(\mathrm{CHCl}_{3}\right.$ and CDCl_{3} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively. ${ }^{13} \mathrm{C}$ NMR spectra were recorded with composite pulse (Waltz16) proton decoupling. Chemical ionization and high resolution mass spectra were acquired using electrospray ionization in the positive ion mode. Optical rotations were recorded at $20^{\circ} \mathrm{C}$ using a cell length of $1.0 \mathrm{dm} .[\alpha]_{\mathrm{D}}$ was calculated according to the following equation:

$$
[\alpha]_{\mathrm{D}}=\alpha_{(\text {observed })} /(\mathrm{d} * c)
$$

where d refers to the cell length in decimeters and c refers to the concentration in g / mL. Chiral stationary phase HPLC signals were recorded at both 210 nm and 250 nm .

Direct synthesis of 1 via asymmetric hydrogenation of cyanoenamide 6

In a N_{2}-filled glove box, ligand $16(364 \mathrm{mg}, 0.61 \mathrm{mmol})$ and $\mathrm{COD}_{2} \mathrm{Rh}_{\mathrm{BF}}^{4}$ (23.8 mg , 0.59 mmol) were added to a 50 mL vial containing a stir bar, followed by 1,2dichloroethane $(10 \mathrm{~mL})$. The resulting solution was aged at RT with stirring for 1 hour, and transferred to rinse chamber stainless steel bomb. An extra 15 mL of 1,2-
dichloroethane was used to rinse the vial and this was also charged to the rinse chamber of the bomb.

In a N_{2}-filled glove box, a solution of enamide $\mathbf{6}(12.0 \mathrm{~g}, 23.4 \mathrm{mmol})$ in 100 ml of 1,2-dichloroethane was charged to the main chamber of the stainless steel bomb followed by a rinse of 25 mL of 1,2-dichloroethane. The stainless steel bomb was removed from the glove box and connected to a stainless steel autoclave. The autoclave was degassed with N_{2} five times and then placed under partial vacuum. The substrate solution was drawn into the autoclave followed by the catalyst solution. The autoclave was sealed and degassed with N_{2} purges three times. The autoclave was then degassed with H_{2} purges three times, and pressurized up to 500 psi . The stirrer was initiated, and the temperature was raised to $80^{\circ} \mathrm{C}$. The reaction was aged at $500 \mathrm{psi}, 80^{\circ} \mathrm{C}$ for 7 hours. The reaction was cooled to room temperature, and the resulting solution was assayed for ee and purity (11.5 g assay of $\mathbf{1}, 95 \%$ yield, 95.0 LCAP, 84.0% ee). Separation of enantiomers by HPLC (Chiralcel OD-H, 93% hexane, $7 \% \mathrm{EtOH}, 0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{Tr}=10.5,12.8 \mathrm{~min})$. Treatment of an MTBE solution ($10 \mathrm{~mL} / \mathrm{g}$) of this crude hydrogenation product with Ecosorb C-941, followed by crystallization via addition of heptane, afforded $\mathbf{1}$ as an MTBE hemisolvate (12.2 g isolated, 88% yield from 6). Subsequent ee upgrade and isolation of the anhydrous form of $\mathbf{1}$ was performed as described in reference 4.

$26 \cdot 62$
$56 \cdot\llcorner\varepsilon$

算
201
$\begin{array}{lc}\text { F2 - Processing parameters } \\ \text { SI } & 16384 \\ \text { SF } & 399.8700207 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 0.30 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.00\end{array}$

[^0]

F2

$\underset{\text { F2 }}{\text { SI }}$ - Processing parameters 32768
100.5473900 MHz
EM
EM
0
1.00 Hz
0
1D NMR plot parameters 23.50 cm
eters
23.50 cm
10.00 cm
10.00 cm
240.000 ppm
24131.38 Hz
$1069.65320 \mathrm{~Hz} / \mathrm{cm}$
M. Mrnu
200
220

$\begin{array}{llllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & \mathrm{ppm}\end{array}$
LO•Sて

ppm
$9 L^{\circ} 9 L$
$80^{\circ} \mathrm{LL}$
$00^{\circ} \mathrm{LL}$
$79^{\circ} \mathrm{L} 8$

Compound 8
${ }^{13} \mathrm{C}-\mathrm{NMR}$
60
20
아

$S L \cdot 9 I$ \qquad －
\qquad

$$
\varpi \varnothing \cdot 8 \varepsilon
$$

40
60

$\varepsilon \tau^{\circ}$
$G \sigma^{\circ} L$
$\varepsilon 0^{\circ}$ Z

TL・てL
てと・8L
7

$\varepsilon L \cdot 6 T$
$8 \nabla^{\circ} \cdot 0 乙$

ヶ七•七て
もぁ・てて
とし・乌て
を8・して
し・8て
SL•6てI
$9^{\circ} 0$ ع

૬ย・とદ
$6 \tau \cdot 9 \varepsilon$
$\imath 乙 \cdot 9 \varepsilon$
8．9と
マと・ワもT
をG•غ9T

$\begin{array}{lr}============ & \text { CHANNEL } \mathrm{f} 1 \mathrm{l}============= \\ \text { NUC1 } & 13 \mathrm{C} \\ \text { P1 } & 3.00 \mathrm{usec} \\ \text { PL1 } & 5.00 \mathrm{~dB} \\ \text { SFO1 } & 100.5584112 \mathrm{MHz}\end{array}$
$============$ CHANNEL f 2 2 $==============$
CPDPRG2 $\begin{aligned} & \text { waltz16 }\end{aligned}$
$\begin{array}{lr}\text { CPDPRG2 } & \text { waltz1 } \\ \text { NUC2 } & 1 \mathrm{H} \\ \text { PCPD2 } & 100.00 \text { usec } \\ \text { PI2 } & 120.00 \mathrm{~dB}\end{array}$
$\begin{array}{lr}\text { PL2 } & 120.00 \mathrm{~dB} \\ \text { PL12 } & 14.70 \mathrm{~dB} \\ \text { SFO2 } & 399.8719994 \mathrm{MHz}\end{array}$
F2－Processing parameters 32768
100.5473900 MHz
Hz
0
1.40
D NMR plot parameters
23.50 cm
23.50 cm
10.00 cm

200
09 I

$87 \cdot 9 I$ \qquad
99° ぁて \qquad

$08 \cdot 9 L$
$2 I \cdot L L$
$O \sigma^{\circ} \angle L$
$0 I \cdot 28$

$$
\bar{\sigma}
$$

Current
NAME
EXPNO
PROCNO
F2 - Acqui
Date-
Time
INSTRUM
PROBHD
PULPROG
TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
D1

F2 - Acquisition Parameters
Date 20041015

[^1]

ぁて・8を \qquad
$95 \cdot 87$
L9•عG

$\begin{array}{lll}1 & 1 & 20\end{array}$
6
80

100

20
12

140
$160 \quad 1$

002	0てて

[^0]:

[^1]:

