## **Supporting Information for Publication**

## **Supplementary Figures and tables**

Supplementary table 1

| X-ray source                                    | LMB Bruker                 |                 |
|-------------------------------------------------|----------------------------|-----------------|
| Wavelength $\lambda$ (Å)                        | 1.54179                    |                 |
| Space group                                     | P21                        |                 |
| Unit cell (a Å, b Å, c Å)                       | 60.75 73.95 170.50         | 90.0 91.46 90.0 |
| Resolution shell (Å)                            | 50-2.07                    |                 |
| Measurements                                    | 3335855                    |                 |
| Average I/oI                                    | 8.26                       | 0.75            |
| Unique reflections                              | 140066                     | 9539            |
| Completeness (%)                                | 76.8                       | 52.3            |
| $R_{\rm merge}  (\%)^{\$}$                      | 10.6                       | 70.1            |
| R <sub>cryst</sub> (%)*                         | 25.0                       |                 |
| $R_{\mathrm{free}}\left(\% ight)^{\dagger}$     | 26.8                       |                 |
| RMS deviation                                   | 0.019Å (1.88°)             |                 |
| <i>B</i> factors <sup>‡</sup> (Å <sup>2</sup> ) | 37.35, 38.43, 32.92, 36.33 |                 |
| Residues                                        | 1540                       |                 |
| Water molecules                                 | 295                        |                 |
| PDB code                                        | 2vzk                       |                 |

Supplementary Figure 1



Supplementary Figure 2



Supplementary Figure 3



Supplementary Figure 4



Supplementary Figure 5



Wavenumber /cm

## Supplementary Figure 6



Supplementary Figure 7:



## **Supplementary figures and table legends:**

**Supp Table 1:** Data collection and statistics for the crystal structure of acyl-OAT2.

**Supp Figure 1:** <sup>13</sup>C NMR spectra showing the assigned acyl-enzyme complex at 176.9 ppm (indicated by an arrow). The other resonances in the spectrum correspond to the substrate <sup>13</sup>C- acyl-*N*- $\alpha$ -acetyl-L-glutamate resonance at 174.6 ppm, and product <sup>13</sup>C acetate resonance at 181.4 ppm.

**Supp Figure 2:** NMR experiments with chymotrypsin. (a) Spectrum for the imidazole derivative of <sup>13</sup>C-phenyl propiolic acid. (b) The reaction of chymotrypsin with <sup>13</sup>C-phenyl propiolic acid at t = 0, and (c) after incubation of the reaction mixture for 10 min. The arrow indicates the resonance corresponding to the assigned chymotrypsin acyl-enzyme complex. The broad resonance between 170-180 ppm in (b) and (c) corresponds to protein background.

**Supp Figure 3:** View from the acyl-OAT2 crystal structure showing the four subunits/eight chains of OAT2 acyl-enzyme complex. The AB, CD, EF and GH molecules are shown in different colours corresponding to the eight different chains. Thr-181 is in blue sticks.

**Supp Figure 4:** Comparison of the unmodified OAT2 and acyl-OAT2 crystal structures showing the active site regions. (a) The entrance of the OAT2 active site is blocked by the *C*-terminal domain of a neighbouring molecule (shown in a surface view) in the unmodified OAT2 structure. (b) In the acyl-OAT2 structure the entrance to the active site is open to solvent. Thr-181 is in blue sticks.

**Supp Figure 5:** Difference ( ${}^{12}C=O$  minus  ${}^{13}C=O$ ) IR spectra of the OAT2 acyl-enzyme complex produced by reaction with *N*- $\alpha$ -acetyl-L-glutamate. The broad absorption band at 1690-1710cm<sup>-1</sup> is assigned as the acyl-enzyme complex of OAT2.

**Supp Figure 6:** Kinetic analysis of the OAT2 reaction with *N*- $\alpha$ -acetyl-L-glutamate as measured by IR, indicating the steady state nature of the acyl-enzyme complex (upto 1700 sec). The plot was generated by GEPASI {Mendes, 1997 #527}. Experimental values of initial substrate [S] and enzyme [e] concentration along with the acyl-enzyme degradation time course [ea] were inputted into GEPASI which generated the curves for product formation [p] and enzyme regeneration [e]. The inset shows the mechanistic model employed.

**Supp Figure 7:** R.m.s.d values for  $\alpha$ -helix and  $\beta$ -sheet regions of acyl-OAT2 compared to the crystallographic coordinates for the three molecules, AB, CD and GH over an molecular dynamics simulation of 4 ns.