Supporting Information for Publication

Supplementary Figures and tables

Supplementary table 1

${ }^{8} R_{\text {merge }}=\sum_{j} \sum_{h} \mid I_{h, j}-\left\langle I_{h}\right\rangle / / \sum_{j} \sum_{h}\left\langle I_{h}\right\rangle \times 100$
$* R_{\text {cryst }}=\sum| | \mathrm{F}_{\text {obsl }}-\left|\mathrm{F}_{\text {calc }}\right|\left|/ \sum\right| \mathrm{F}_{\text {obs }} \mid \times 100$
${ }^{\dagger} R_{\text {free }}=$ based on 5% of the total reflections.
${ }^{4}$ RMS deviation from ideality for bonds (followed by the value for angles).
${ }^{\ddagger}$ Average B factors in order: main chain, side chain, substrate and solvent.

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Supplementary Figure 4

Supplementary Figure 5

Wavenumber /cm

Supplementary Figure 6

Supplementary Figure 7:

Supplementary figures and table legends:

Supp Table 1: Data collection and statistics for the crystal structure of acyl-OAT2.

Supp Figure 1: ${ }^{13} \mathrm{C}$ NMR spectra showing the assigned acyl-enzyme complex at 176.9 ppm (indicated by an arrow). The other resonances in the spectrum correspond to the substrate ${ }^{13} \mathrm{C}$ - acyl- N - α-acetyl-L-glutamate resonance at 174.6 ppm , and product ${ }^{13} \mathrm{C}$ acetate resonance at 181.4 ppm .

Supp Figure 2: NMR experiments with chymotrypsin. (a) Spectrum for the imidazole derivative of ${ }^{13} \mathrm{C}$-phenyl propiolic acid. (b) The reaction of chymotrypsin with ${ }^{13} \mathrm{C}$-phenyl propiolic acid at $\mathrm{t}=0$, and (c) after incubation of the reaction mixture for 10 min . The arrow indicates the resonance corresponding to the assigned chymotrypsin acyl-enzyme complex. The broad resonance between $170-180 \mathrm{ppm}$ in (b) and (c) corresponds to protein background.

Supp Figure 3: View from the acyl-OAT2 crystal structure showing the four subunits/eight chains of OAT2 acyl-enzyme complex. The AB, CD, EF and GH molecules are shown in different colours corresponding to the eight different chains. Thr-181 is in blue sticks.

Supp Figure 4: Comparison of the unmodified OAT2 and acyl-OAT2 crystal structures showing the active site regions. (a) The entrance of the OAT2 active site is blocked by the C terminal domain of a neighbouring molecule (shown in a surface view) in the unmodified OAT2 structure. (b) In the acyl-OAT2 structure the entrance to the active site is open to solvent. Thr-181 is in blue sticks.

Supp Figure 5: Difference (${ }^{12} \mathrm{C}=\mathrm{O}$ minus ${ }^{13} \mathrm{C}=\mathrm{O}$) IR spectra of the OAT2 acyl-enzyme complex produced by reaction with N - α-acetyl-L-glutamate. The broad absorption band at $1690-1710 \mathrm{~cm}^{-1}$ is assigned as the acyl-enzyme complex of OAT2.

Supp Figure 6: Kinetic analysis of the OAT2 reaction with N - α-acetyl-L-glutamate as measured by IR, indicating the steady state nature of the acyl-enzyme complex (upto 1700 $\mathrm{sec})$. The plot was generated by GEPASI \{Mendes, 1997 \#527\}. Experimental values of initial substrate [S] and enzyme [e] concentration along with the acyl-enzyme degradation time course [ea] were inputted into GEPASI which generated the curves for product formation [p] and enzyme regeneration [e]. The inset shows the mechanistic model employed.

Supp Figure 7: R.m.s.d values for α-helix and β-sheet regions of acyl-OAT2 compared to the crystallographic coordinates for the three molecules, AB, CD and GH over an molecular dynamics simulation of 4 ns .

