Life Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment

Sheikh M. Rahman¹, Matthew J. Eckelman¹*, Annalisa Onnis-Hayden¹, and April Z. Gu^{1†}

1 Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington Ave, Boston, MA 02115, USA

* Corresponding Author: m.eckelman@neu.edu, Tel: +1 617 373 4256; Fax: +1 617 373 4419

† Co-corresponding Author: april@coe.neu.edu, Tel: +1 617 373 3631; Fax: +1 617 373 4419

Number of pages: 9

Number of tables: 9

Contents

Table S1. Characteristics of Treatment Plant Alternatives

Table S2. Design Criteria and Material, Chemical, and Energy Inventory Basis of the Treatment

 Processes

Table S3. Life cycle inventories per m³ of influent wastewater

Table S4. Chemical Doses and P Removal Rate in Tertiary Processes

 Table S5. List of Matched U.S.-EI 2.2 Unit Processes

Table S6. List of LCA Impact Categories Analyzed in the Current Study

 Table S7. Ranges of Parameters for Uncertainty Analysis

Table S8. LCA Impact Values of the Base-case scenario with Activated Sludge Process

Table S9. Normalized score of the level 1 plant with id BNR1

Treatment Level	Plant ID	Chemical Addition	Secondary with Nutrient Removal process	Tertiary processes
	NRP_Chem1	FeCl ₃ in Primary clarifier	Modified Ludzack- Ettinger (MLE)	
	NRP_Chem2	FeCl ₃ in Secondary with nutrient removal process	Modified Ludzack- Ettinger (MLE)	
11	NRP_Chem3	FeCl ₃ in Primary clarifier and Secondary with nutrient removal process	Modified Ludzack- Ettinger (MLE)	
Leve	BNR1		5-stage Bardenpho	
	BNR2		University of Cape Town process	
	BNR_Chem1	FeCl ₃ in Primary clarifier	5-stage Bardenpho	
	BNR_Chem2	FeCl ₃ in Primary clarifier	University of Cape Town process	
	BNR1_EC_Fil1	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Filtration
	BNR2_EC_Fil1	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Filtration
2 le	BNR1_EC_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, FeCl ₃ in tertiary process	5-stage Bardenpho	Filtration with continuous backwash
Lev	BNR2_EC_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, FeCl ₃ in tertiary process	University of Cape Town process	Filtration with continuous backwash
	BNR1_EC_Sed1	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Sedimentation
	BNR2_EC_Sed1	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Sedimentation

Table S1. Characteristics of treatment selected treatment plants with process configurations and technology alternatives to achieve different nutrient treatment levels

Treatment Level	^{it} Plant ID Chemical Addition		Secondary with Nutrient Removal process	Tertiary processes
	BNR1_EC_Sed2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, $Al_2(SO_4)_3$ in tertiary process	5-stage Bardenpho	Ballasted Sedimentation
	BNR2_EC_Sed2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, $Al_2(SO_4)_3$ in tertiary process	University of Cape Town process	Ballasted Sedimentation
	MBR1_EC	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, $Al_2(SO_4)_3$ in tertiary process	5-stage Bardenpho	Membrane Filtration
	MBR2_EC	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, $Al_2(SO_4)_3$ in tertiary process	University of Cape Town process	Membrane Filtration
	BNR1_EC_Fil1_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Filtration with continuous backwash; Filtration
	BNR2_EC_Fil1_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Filtration with continuous backwash; Filtration
el 3	BNR1_EC_Sed1_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Sedimentation; Filtration with continuous backwash
Lev	BNR2_EC_Sed1_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Sedimentation; Filtration with continuous backwash
	BNR1_EC_Sed2_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Ballasted Sedimentation; Filtration with continuous backwash
	BNR2_EC_Sed2_Fil2	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Ballasted Sedimentation; Filtration with continuous backwash

Treatment Level	Plant ID	Chemical Addition	Secondary with Nutrient Removal process	Tertiary processes	
	BNR1_EC_Sed2_MF	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Sedimentation; Membrane Filtration	
	BNR2_EC_Sed2_MF	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	ier, University of Cape Sed Town process Mer	Sedimentation; Membrane Filtration	
	BNR1_EC_MF_RO	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	5-stage Bardenpho	Membrane filtration; Reverse Osmosis	
	BNR2_EC_MF_RO	FeCl ₃ in Primary clarifier, methanol in Secondary with nutrient removal, Al ₂ (SO ₄) ₃ in tertiary process	University of Cape Town process	Membrane filtration; Reverse Osmosis	

Process	Design criteria	Material inventory and basis
Primary clarifier	Surface overflow rate: 800- 1000 gal/ ft ² .d Retention time: 2-2.5 hrs.	Concrete & steel: based on size of the clarifier. Volume of concrete and steel were normalized to the per m ³ of wastewater treated by dividing with total volume of water treated in its lifetime of 20 years Operation energy: energy required to operate the clarifier collected from literature ¹⁻² Chemical: when chemical P removal was intended FeCl ₃ is added as coagulant. Loading of Ferric are estimated from the BioWin design data
Secondary with nutrient removal process	SRT: 10 days MLSS: 2000-2500 mg/L	Concrete & steel: based on size of the reactor designed in BioWin. Volume of concrete and steel were normalized to the per m ³ of wastewater treated by dividing with total volume of water treated in its lifetime of 20 years Operation Energy: Energy for recycle flows, aeration, are calculated based on the BioWin design data Chemical: Methanol is added when external carbon is required for advanced nutrients (both N and P) removal. The loads are estimated using BioWin model data Ferric is added for chemical P removal (when necessary).
Secondary clarifier	Surface overflow rate: 400- 700 gal/ ft ² .d Retention time: 2-2.5 hrs.	Concrete, Steel and Operation energy are estimated as the primary clarifier. No chemical is added.
Filtration	Filtration rate: 80-400 L/m ² .min; Sand layer depth: 360 mm (conventional); 1200 mm (deep-bed)	Energy is estimated from the literature ¹⁻² Chemical: Alum is added to traditional filtration and FeCl ₃ is added to filtration with continuous backwash process. The chemical loads are collected from the literature ³⁻⁵
Enhanced Sedimentation	Flow rate: 10-15 gal/ft ² .min	Energy is estimated from the literature ¹⁻² Chemical: Alum is added for P removal which is collected from literatures ^{3-4,6-7}
Membrane filtration	Flux rate: 10-40 gal/ft ² .d	Energy is estimated from the literature ¹⁻² Chemical: Alum is added for P removal which is collected from literatures ³⁻⁴ , NaOCl for membrane cleaning ⁸
Keverse osmosis	riux rate: 8-12 gal/ft ² .d	Energy is collected from the literature

Table S2. Design Criteria and Material, Chemical and Energy Inventory Basis of the Treatment

 Processes

Reactor sizes are determined from the BioWin design. By using typical reactor wall thickness and roof properties, and reinforcement steel usages, volume and weight of concrete and steels are estimated from the designed rector size.

Laval	Plant ID	Electricity	Concrete	Steel	FeCl ₃	Al ₂ (SO ₄) ₃	Methanol	NaOCl
Levei	Flant ID	kWh	m ³	kg	g	g	g	g
	NRP_Chem1	0.28	1.345E-05	2.110E-03	26.12			
-	NRP_Chem2	0.28	1.345E-05	2.110E-03	26.12			
	NRP_Chem3	0.28	1.345E-05	2.110E-03	26.12			
evel	BNR1	0.29	1.804E-05	2.831E-03				
Le	BNR2	0.35	1.710E-05	2.684E-03				
	BNR_Chem1	0.29	1.804E-05	2.831E-03	8.71			
	BNR_Chem2	0.35	1.710E-05	2.684E-03	8.71			
	BNR1_EC_Fil1	0.30	1.817E-05	2.851E-03	8.71	30.40	15.50	
	BNR2_EC_Fil1	0.35	1.723E-05	2.704E-03	8.71	30.40	17.00	
	BNR1_EC_Fil2	0.30	1.831E-05	2.874E-03	31.05		15.50	
	BNR2_EC_Fil2	0.35	1.738E-05	2.726E-03	31.05		17.00	
el 2	BNR1_EC_Sed1	0.30	1.819E-05	2.854E-03	8.71	136.80	15.50	
Lev	BNR2_EC_Sed1	0.35	1.725E-05	2.707E-03	8.71	136.80	17.00	
	BNR1_EC_Sed2	0.30	1.818E-05	2.852E-03	8.71	153.90	15.50	
	BNR2_EC_Sed2	0.35	1.724E-05	2.705E-03	8.71	153.90	17.00	
	MBR1_EC	0.40	1.804E-05	2.831E-03	8.71	6.30	15.50	5.00
	MBR2_EC	0.45	1.710E-05	2.684E-03	8.71	6.30	17.00	5.00
	BNR1_EC_Sed1_Fil2	0.30	1.846E-05	2.897E-03	31.05	136.80	22.00	
	BNR2_EC_Sed1_Fil2	0.36	1.752E-05	2.750E-03	31.05	136.80	23.60	
	BNR1_EC_Sed2_Fil2	0.30	1.845E-05	2.895E-03	31.05	153.90	22.00	
	BNR2_EC_Sed2_Fil2	0.36	1.751E-05	2.748E-03	31.05	153.90	23.60	
el 3	BNR1_EC_Fil1_Fil2	0.30	1.844E-05	2.893E-03	31.05	30.40	22.00	
Lev	BNR2_EC_Fil1_Fil2	0.36	1.750E-05	2.746E-03	31.05	30.40	23.60	
	BNR1_EC_Sed2_MF	0.41	1.818E-05	2.852E-03	8.71	160.20	22.00	5.00
	BNR2_EC_Sed2_MF	0.46	1.724E-05	2.705E-03	8.71	160.20	23.60	5.00
	BNR1_EC_MF_RO	2.40	1.804E-05	3.321E-03	8.71	6.30	22.00	5.00
	BNR2_EC_MF_RO	2.45	1.710E-05	3.174E-03	8.71	6.30	23.60	5.00

Table S3. Life cycle inventories per m³ of influent wastewater

The strengt Descent	FeCl ₃	Al ₂ (SO ₄) ₃	NaOCl	Removal Rate
I reatment Processes	g/ m ³ WW	g/ m ³ WW	g/ m ³ WW	%
Filtration		30.		81
Filtration with continuous backwash	22			96
Sedimentation		137		97
Ballasted Sedimentation		154		93
Membrane Filtration		6	5	94
Reverse Osmosis				99

Table S4. Chemical Doses and P Removal Rate in Tertiary Processes³⁻⁴

Table S5. List of Matched U.S.-EI 2.2 Unit Processes

Item	U.SEI 2.2 unit processes used in LCA model
Electricity	Electricity mix/US with US electricity
Concrete	Concrete, normal, at plant/ CH U with US electricity
Reinforcing steel	Reinforcing Steel, at plant/ RER U with US electricity
FeCl ₃	Iron (III) chloride, 40% in H ₂ O, at plant/ CH with US electricity U
$Al_2(SO_4)_3$	Aluminium sulphate, powder, at plant/ RER with US electricity U
Methanol	Methanol, at plant/ GLO with US electricity U
NaOCl	Sodium hypochlorite, 15% in H_2O , at plant/RER with US electricity U

Impact	Unit	Rationale/Approach	References
Categories			
Eutrophication	kg N eq.	Based on the potency of causing eutrophication in water	9-10
potential		body. It measures the equivalent eutrophication of a	
		chemical in terms of nitrogen	
Acidification	$mol H^+ eq.$	Based on the potential wet or dry acid deposition in	9-11
potential		atmosphere. Acidification potential is characterized by	
		equivalent mol of H ^{+.}	
Global warming	kg CO ₂ eq.	Global warming based on chemical's radiative force and	9-11
potential		lifetime in atmosphere. Global warming potency of a	
		chemical is expressed as that of equivalent CO ₂	
Ozone depletion	kg CFC-11 eq.	Based on chemical's reactivity and potential to destroy	9-11
potential		ozone in atmosphere. Ozone depletion is characterized by	
		comparing to CFC-11 equivalency.	
Ecotoxicity	CTUe	Based on the potency of causing ecological harm in air,	9,12
Potential		water, soil. It estimates the potentially affected fraction of	
		species (PAF) integrated over time	
Human-	CTUh	Based on the potential of causing cancer when a chemical	9,12
carcinogenic		is released to the air, water or soil. It is estimated by	
potential		cancer related morbidity increase in the total human	
		population per unit mass of an emitted chemical.	
Human	CTUh	Potential of non-cancer related health effects from	9,12
non-carcinogenic		chemical emission. It is estimated by morbidity increase	
potential		due to non-cancer related effects in the total human	
		population per unit mass of an emitted chemical	

Table S6. List of LCA	Impact	Categories	Analvzed	in the	Current	Study
						~ • • • • • •

Table S7. Ranges of parameters for Uncertainty Analysis

	FeCl ₃		Al ₂ (SO ₄) ₃		Additional	Electricity
Processes	g/ m ³ WW		g/ m ³ WW		kWh/m ³	
	Min	Max	Min	Max	Min	Max
Filtration			24	36	0.003	0.005
Filtration with continuous backwash	17.9	26.8			0.004	0.007
Sedimentation			72	200	0.004	0.008
Ballasted Sedimentation			57	250	0.004	0.008
Membrane filtration			5	8	0.07	0.14
Reverse Osmosis					1.5	3

Additionally, methanol is added to simulate the uncertainty involved with influent C to P ratio (C/P). Design C/P ratio is 25 and C/P of the worst case scenario is assumed to be 15. Methanol requirement to raise the C/P ratio from 15 to 25 is 80 mg/L for the influent selected in the study. Hence the range of uncertainty for methanol addition is 0 to 80 mg/L for each of the plants.

Impact category	Total	Material	Chemical Secondary	Electricity Secondary	Effluent	Chemical Primary	Electricity Primary	Direct Emission
Eutrophication (kg N eq)	0.0546	0	0	0.0005	0.0541	0	0	0
Global warming (kg CO2 eq)	0.2300	0.0065	0	0.1373	0	0	0.0042	0.0819
Acidification (kg SO2 eq)	9.9E-4	2.2E-5	0	9.4E-4	0	0	2.8E-5	0
Ozone depletion (kg CFC-11 eq)	6.7E-9	2.9E-10	0	6.2E-9	0	0	1.9E-10	0
Ecotoxicity (CTUe)	0.138	0.029	0	0.105	0	0	0.003	0
Carcinogenics (CTUh)	1.0E-8	2.9E-9	0	7.0E-9	0	0	2.1E-10	0
Non carcinogenics (CTUb)	7.2E-9	2.0E-9	0	5.1E-9	0	0	1.5E-10	0

Table S8. Life Cycle Impact Assessment Results for the Base-case scenario with Activated

 Sludge Process

Base-case scenario is designed with activated sludge process only to remove BOD only. The effluent TN and TP of the scenario are 25.5 mg/L and 3.96 mg/L respectively.

Impact category	Unit	Impact Score per m3	Impact Score per year	Normalization factor per year*	Normalized score
Eutrophication	kg N eq	0.0165	228666.67	6.60E+09	3.46E-05
Carcinogenics	CTUh	1.64E-08	0.226	1.16E+05	1.95E-06
Non carcinogenics	CTUh	3.10E-08	0.428	3.21E+05	1.33E-06
Ecotoxicity	CTUe	0.246	3395997.76	3.32E+12	1.02E-06
Global warming	kg CO2 eq	0.994	15227345.58	7.40E+12	1.86E-06
Ozone depletion	kg CFC-11 eq	1.08E-08	0.149	4.90E+07	3.04E-09
Acidification	kg SO2 eq	0.0016	21941.79	2.80E+10	7.84E-07

Table S9. Normalized score of the Level 1 plant with id BNR1

* Normalization factors are collected from Ryberg et al., which is based on 2008 US inventory data.¹³

We have estimated the normalized score of all the impact categories for a Level 1 plants with id BNR1 as reported in Table S9. Normalized score is calculated by dividing the impact score by the normalization factors, which are the total impacts in each category in the US based on 2008 inventory data as reported in Ryberg *et al.*¹³ These normalized scores allow for comparison of plant-level results across impact categories, relative to US totals.

References

(1) EPRI Water and sustainability: U.S. electricity consumption for water supply & treatment—The next half century; Palo Alto, CA: 2000. 1006787, 2002.

(2) Pasqualino, J. C.; Meneses, M.; Castells, F., Life cycle assessment of urban wastewater reclamation and reuse alternatives. *J. Ind. Ecol.* **2011**, *15* (1), 49-63.

(3) Benisch, M.; Clark, D.; Neethling, J. B.; Fredrickson, H. S.; Gu, A., Tertiary phosphorus removal pilot tests technology limits in Coeur D'Alene, ID. *Water Pract.* **2007**, *1* (5), 1-13.

(4) Gu, A. Z.; Liu, L.; Onnis-Hayden, A.; Smith, S.; Gray, H.; Houweling, D.; Takács, I. *Phosphorus fractionation and removal in wastewater treatment- implications for minimizing effluent phosphorus*; Water Environment Research Foundation, Report no. NUTR1R061: 2014.
 (5) Bluewater-technologies https://http://www.bluewater-

(5) Bluewater-technologies https://<u>http://www.bluewater-</u>technologies.com/products/bluepro.html (accessed January, 2013).

(6) Degremont Technologies <u>http://www.degremont-</u> technologies.com/IMG/pdf/DENSADEG US Infilco.pdf (accessed January, 2013).

 (7) Evoqua
 Water
 Technologies

 http://www.evoqua.com/en/products/separation_clarification/ballasted-clarifiers/Pages/comag system.aspx (accessed January, 2013).

(8) Igos, E.; Benetto, E.; Venditti, S.; Kohler, C.; Cornelissen, A.; Moeller, R.; Biwer, A., Is it better to remove pharmaceuticals in decentralized or conventional wastewater treatment plants? A life cycle assessment comparison. *Sci. Total Environ.* **2012**, *438* (0), 533-540.

(9) Bare, J. C., TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. *Clean Technol. Environ. Policy* **2011**, *13* (5), 687-696.

(10) Bare, J. C.; Norris, G. A.; Pennington, D. W.; McKone, T., TRACI: The tool for the reduction and assessment of chemical and other environmental impact. *J. Ind. Ecol.* **2002**, *6* (3-4), 49-78.

(11) Norris, G. A., Impact characterization in the Tool for the Reduction and Assessment of Chemical and other environmental Impacts. *J. Ind. Ecol.* **2002**, *6* (3 4), 79-101.

(12) Rosenbaum, R.; Bachmann, T.; Gold, L.; Huijbregts, M.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.; MacLeod, M.; Margni, M.; McKone, T.; Payet, J.; Schuhmacher, M.; van de Meent, D.; Hauschild, M., USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. *Int. J. Life Cycle Assess.* **2008**, *13* (7), 532-546.

(13) Ryberg, M.; Vieira, M. D. M.; Zgola, M.; Bare, J.; Rosenbaum, R. K., Updated US and Canadian normalization factors for TRACI 2.1. *Clean Technol. Environ. Policy* **2013**, *16* (2), 329-339.