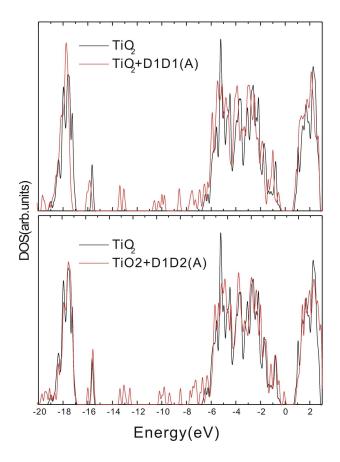

Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO₂ (110)


Shao-Chun Li¹, Jian-guo Wang², Peter Jacobson¹, X. –Q. Gong², Annabella Selloni^{2, *}, Ulrike Diebold^{1, *}

¹Department of Physics, Tulane University, New Orleans, LA 70118 (USA) ²Department of Chemistry, Princeton University Princeton, NJ 08544 (USA) E-mail:aselloni@princeton.edu, diebold@tulane.edu

Supplemental Computational Results:

Figure S1: Simulated empty state STM images as a function of bias (V=1.3, 1.5, 1.8 and 2.0 eV) for the structures in Fig.2. The same contrast scale is used for all the images. Bias voltages are referenced to the Fermi level, E_F . Note that, while E_F is located in the vicinity of the conduction band minimum in slightly-reduced TiO₂ samples, it is located at the valence band maximum in the theoretical calculations.

Figure S2. Total DOS of a 4×1 overlayer of catechol/TiO₂ (110) in D1_D1(A) and D1_D2(A) configuration. States well below the O-2p valence band are shown. The DOS for the clean surface is also reported (black curve).