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Table S1 Physical-chemical properties at 0 ºC of the organic contaminants used in 

this study. 

 solubility in 
water (μg/L)b 

log (KIA/m) log KHA/W
 log KAW

 log (KIW/m) 

Atrazine 15,000 1.5 2.4 -7.3 -6.3 

Naphthalene 13,700 -3.2 3.2 -2.5 -5.7 

Lindane 2,500 -0.2 3.5 -4.8 -5.0 

Phenanthrene 390 -1.4 4.5 -3.2 -4.6 

Pyrene 49 -0.2 4.9 -3.8 -4.0 

Fluoranthene a 0.26 -0.8 5.3 -4.3 -5.1 

Benzo(ghi)perylene 0.049 2.1 6.6 -5.2 -3.1 
a fluoranthene was used by Schöndorf and Herrmann (1987) 
b from Mackay et al. (2006). 
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Calculation of the Partition Coefficients for Figure 1 

Snow-air partition coefficient log (KI/A/m) 
The poly-parameter linear free energy relationship (pp-LFER) for the calculation of the 

snow - air partition coefficient was taken from Roth et al. (2004): 

log K IA (-6.8 ºC) = 3.53Pα 2
H + 3.38Pβ2

H + 0.639 log L16
@ 6.85, 

where log L16 is the hexadecane/air partition coefficient at 25 ºC, ∑α2
H  is the electron 

acceptor; and ∑β2
H is the electron donor of the particular substance. The solute descriptors 

are shown in Table S2. The log KIA values were temperature corrected using: 

logK IA ( T ) = logK IA (T ref ) +
ΔHIA
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where ΔHIA is the enthalpy of sorption (Table S2). 

Air-water partition coefficient log KAW  

The log KAW value of lindane was calculated from a FAV by Xiao et al. (2004) and that of 

atrazine was taken from Mackay et al. (2006). The log KAW values of the PAHs except 

pyrene were calculated from Henry’s law constant expressions in Mackay et al. (2006) 

(van’t Hoff eq. derived from literature data, Staudinger and Roberts, 2001). The log KAW 

value of pyrene was calculated from a Henry’s law constant expression in Mackay et al. 

(2006) (gas stripping-GC, Bamford et al., 1999). 

Humic acid-water partition coefficient log [KHA/W/(L/kg)]  
The humic acid-water partition coefficients of all substances were calculated using the pp-

LFER from Niederer et al. (2006): log [KHA/W/(L/kgHA)] = 0.29 L + 2.50 V – 3.29 B – 0.21 

A – 0.79 S + 0.01. The solute descriptors are shown in Table S2. 

Snow-water  partition coefficient log (KI/W/m) 
The snow-water partition coefficient of all chemicals was calculated using the equation: 

log (KI/W/m) = log (KI/A/m) + log KAW 
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Table S2 Solute descriptors and enthalpies used in the calculations. 
Substance A 

(∑α2
H) 

B 
(∑β2

H) 
L  
(log L16) 

V S ΔHIA  
[kJ mol-1]g 

Atrazinea 0.17 1.01 7.783 1.6196 1.29 -129.0 

γ-HCHb 0.00 0.68 7.467 1.5798 0.91 -95.9 

Naphthalenec 0.00 0.20 5.161 1.0854 0.92 -60.1 

Phenanthrenec 0.00 0.26 7.63 1.454 1.29 -81.9 

Pyrenec 0.00 0.29 8.83 1.585 1.71 -98.6 

Fluoranthene 0.00d 0.20d 8.83e 1.585d 1.53d -60.1 

Benzo(ghi)perylene 0.00f 0.35f 13.25e 1.547f 0.70f -122.7 
a from Abraham et al. (2007). 
b from Abraham et al. (2002). 
c from Goss (2005), Supplementary Data 
d from Poole and Poole (1999). 
e from Abraham (1993). 
f from Luehrs et al. (1996). 
g calculated from eq. 8 in Lei and Wania (2004) based on the pp-LFER by Roth et al. (2002) 
and an empirical relationship by Goss and Schwarzenbach (1999). 
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Comparison with the Results from the Study by Schöndorf and Herrmann (1987). 

In the only other published laboratory study that investigated the fractionated release of 

organic contaminants in melting snow (Schöndorf and Herrmann, 1987), the observed 

elution patterns closely resemble those reported here (Fig. S1). PYR and fluoranthene (FLT) 

have similar partition coefficients (Table S1), hence, their snowmelt behavior should not 

differ very much. Although Schöndorf and Herrmann (1987) did not distinguish between 

dissolved and particulate phases, we may infer that the two concentration peaks of LIN at 

the beginning and at the end of the melt period refer to the dissolved and the particulate 

fraction, respectively (Fig. S1). Their study shows a stronger amplification of LIN within 

the first melt water sample compared to this study. The snow column Schöndorf and 

Herrmann used in their experiments promotes such a first chemical flush. A snow pack 

with a depth of 100 cm contains a larger fraction of LIN that is concentrated at the snow 

grain surfaces and that can be taken up by the first melt water. Furthermore, the small 

horizontal area of 154 cm2 such as used in their study prevents the development of distinct 

flow fingers that could flatten this concentration peak. In both studies the bulk of the more 

hydrophobic substances FLT, PYR, and BghiP was retained in the snow pack until the very 

end of the melt period while attached to the particles. The concentration ratios of the three 

substances provide hints on how the partitioning properties affect the melt behavior (Fig. 

S1). Both ratios FLT/LIN and PYR/LIN increase in the second half of the melt period 

reflecting the higher water solubility of LIN. The latter was washed out in notable 

concentrations over the entire melt period. The release of FLT and PYR, on the other hand 

is characterized by a stronger Type 2 enrichment. The ratios of FLT and PYR, respectively, 

to BghiP are very similar in both studies. At the beginning of the melt period a slightly 

enhanced particle load is washed out until an increasing snow density and stronger particle 

coagulation hamper a further release of particles. Both FLT and PYR are more water 

soluble than BghiP. Accordingly, their concentrations in relation to BghiP increase until a 

peak is reached. The subsequently decreasing ratios may be explained by decreasing 

amounts of FLT and PYR at the snow grain surfaces, that are available to become 

dissolved in the aqueous melt water phase. Furthermore, the transfer of FLT or PYR from 

the particulate into the dissolved phase decreases because parts of those substances are 
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more strongly bound due to the formation of chemical bonds or by inclusion into 

coagulates (Schöndorf and Herrmann, (1987). 
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Figure S1  Relative elution sequences of lindane (LIN), fluoranthene (FLT), pyrene 

(PYR) and benzo-ghi-perylene (BghiP) reported in (Schöndorf and 

Herrmann, 1987) (A) compared with those of this study (B). The horizontal 

line refers to the concentration ratio of 1. The particulate and dissolved 

fractions of this study were combined. 
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Figure S2 regression of log (KIA/m) vs. percentage evaporation loss during dry and wet 

snow metamorphism for five target chemicals. 
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Figure S3 Relative dielectric permittivity reflecting melt water content and dry snow 

density vs. time for different snow depths; describes the early melt phase in 

the applied melt scenario (scenario B in Meyer et al., this issue). 
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Figure S4 R-value that quantifies the fraction of the chemical which is present in the 

liquid melt water phase of the snow pack, and indicates Type 1 and Type 2 

chemical enrichment. 
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