α - to β -(*dmes*)BiI₅ (*dmes* = dimethyl(2-ethylammonium)sulfonium dication): Umbrella Reversal of Sulfonium in Solid State, and Short I...I Interchain Contacts: Crystal Structures, Optical Properties and Theoretical Investigations of 1D iodobismuthates.

Nicolas Louvain,¹ Nicolas Mercier,*¹ Florent Boucher²

Supporting Information

I- (HO₂C(C₆H₄)CH₂NH₃)BiI₄ (compound 3)

I-A- Checkcif

Bond pr	recision:	C-C	= 0.012	9 A	Wa	velength=0.71073
Cell:	a=8.1071(1	6)	b=9.871	(2)	c=12.271(3)	
	alpha=68.9	7(3)	beta=83	.37(3)	gamma=83.48	(3)
		Calcul	ated			Reported
Volume		907.7(4)			907.7(3)
Space g	froup	P -1				P -1
Hall gr	roup	-P 1				?
Moiety	formula	C8 H15	N 02, H	Bi I4		?
Sum for	rmula	C8 H15	Bi I4 N	N 02		C8 H15 Bi I4 N O2
Mr		873.79				873.79
Dx,g cm	ı–3	3.197				3.197
Z		2				2
Mu (mm-	-1)	16.505				16.505
F000		762.0				762.0
F000'		750.81				
h,k,lma	ıx	11,13,	17			11,13,17
Nref		5301				5280
Tmin,Tm	ıax	0.150,	0.438			0.141,0.463
Tmin'		0.040				
Correct	ion method	= AbsCo	orr=MULT	I-SCAN		
Data cc 0.996	ompleteness	= Ratio) =	Theta(ma:	x) = 30.020	
R(reflector) S = 1.0	ections)= 0 036	.0411(Np	3632) ar= 146	wR2(r	eflections)	= 0.0924(5280)

Alert level A

 PLAT761_ALERT_1_A
 CIF Contains no X-H Bonds
 ?

 PLAT762_ALERT_1_A
 CIF Contains no X-Y-H or H-Y-H Angles
 ?

Alert level C

PLAT242_ALERT_2_CCheck LowUeq as Compared to Neighbors for BiPLAT250_ALERT_2_CLarge U3/U1 Ratio for Average U(i,j) Tensor .. 2.12PLAT342_ALERT_3_CLow Bond Precision on C-C Bonds (x 1000) Ang .. 13PLAT420_ALERT_2_CD-H Without AcceptorNPLAT764_ALERT_4_COvercomplete CIF Bond List Detected (Rep/Expd) . 1.12Ratio

I-B- Summary of crystallographic data

Empirical formula		C8 H15 Bi I4 N O2
Formula weight		873.79
Temperature		293(2) K
Wavelength		0.71073 A
Crvstal system, space (aroup	triclinic, P-1
Unit cell dimensions	a = 8	.1071(16) A alpha = $68.97(3)$ deg.
	b = 9	.871(2) A beta = $83.37(3)$ deg.
	c = 1	2.271(3) A gamma = $83.48(3)$ deg.
Volume		907.7(3) A^3
Z, Calculated density		2, 3.197 Mg/m^3
Absorption coefficient		16.505 mm^-1
F(000)		762
Crvstal size		0.20 x 0.10 x 0.05 mm
Theta range for data co	ollection	3.48 to 30.02 deg.
Limiting indices		-11<=h<=11, -13<=k<=13, -17<=l<=17
Reflections collected	/ unique	22988 / 5280 [R(int) = 0.0484]
Completeness to theta	= 30.02	99.6 %
Absorption correction		None
Max. and min. transmis	sion	0.1369 and 0.0831
Refinement method		Full-matrix least-squares on F^2
Data / restraints / pa	rameters	5280 / 0 / 146
Goodness-of-fit on F ²		1.036
Final R indices [I>2sid	qma(I)]	R1 = 0.0411, $wR2 = 0.0835$
R indices (all data)		R1 = 0.0788, WR2 = 0.0924
Largest diff. peak and	hole	1.580 and -2.519 e.A ^{-3}
Largest urri, peak and	nore	1.500 and 2.515 E.A 5

I-C- Tables

Table 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Z	U(eq)
Bi	2465(1)	6196(1)	4251(1)	35(1)
I(1)	1417(1)	7554(1)	1871(1)	65(1)
I(2)	1045(1)	3194(1)	4464(1)	49(1)
I(3)	6004(1)	5815(1)	3241(1)	44(1)
I(4)	3058(1)	9010(1)	4441(1)	56(1)
0(1)	297(7)	3362(7)	1032(5)	56(2)
0(2)	2167(7)	4808(8)	-117(6)	73(2)
Ν	9089(9)	793(8)	2859(7)	57(2)
C(1)	1752(10)	3638(9)	735(8)	45(2)
C(2)	3181(10)	2616(9)	1329(8)	44(2)
C(3)	4055(11)	1824(11)	562(9)	57(2)
C(4)	4398(9)	3434(8)	1675(8)	40(2)
C(5)	5419(10)	725(10)	1209(9)	51(2)
C(6)	5751(9)	2351(9)	2357(7)	40(2)
C(7)	6645(9)	1436(9)	1674(8)	45(2)
C(8)	7858(11)	242(10)	2385(10)	59(3)

Bi-I(1)	2.9241(12)	Bi-I(2)#1	3.1947(11)
Bi-I(4)	2.9663(9)	Bi-I(2)	3.2130(10)
Bi-I(3)	3.0294(10)	Bi-I(3)#2	3.2999(14)
O(1)-C(1)	1.226(10)	C(3)-C(5)	1.530(12)
O(2)-C(1)	1.296(10)	C(4)-C(6)	1.533(10)
N-C(8)	1.454(11)	C(5)-C(7)	1.543(11)
C(1)-C(2)	1.514(10)	C(6)-C(7)	1.516(11)
C(2)-C(3)	1.500(12)	C(7)-C(8)	1.521(11)
C(2)-C(4)	1.526(11)		
O(1)-C(1)-O(2)	122.3(7)	N-C(8)-C(7)	113.1(7)
O(1)-C(1)-C(2)	121.9(7)	O(2)-C(1)-C(2)	115.8(7)
Bi#1-I(2)-Bi	94.83(3)	Bi-I(3)-Bi#2	96.33(4)

 Table 2. Selected bond distances (Å) and angles (°) for 3.

#1 -x,-y+1,-z+1 #2 -x+1,-y+1,-z+1

Table 3. Anisotropic displacement parameters (A^2 x 10^3) for 3. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Bi	34(1)	31(1)	39(1)	-12(1)	-3(1)	1(1)
I(1)	63(1)	82(1)	43(1)	-21(1)	-12(1)	27(1)
I(2)	44(1)	46(1)	65(1)	-31(1)	10(1)	-8(1)
I(3)	37(1)	50(1)	41(1)	-14(1)	-1(1)	1(1)
I(4)	71(1)	42(1)	56(1)	-14(1)	0(1)	-13(1)
0(1)	29(3)	62(4)	59(4)	4(3)	-10(3)	-10(3)
0(2)	31(3)	74(5)	79(5)	16(4)	-5(3)	-7(3)
Ν	37(4)	52(4)	62(5)	6(4)	-16(4)	0(3)
C(1)	38(4)	41(4)	48(5)	-6(4)	-16(4)	4(4)
C(2)	33(4)	50(5)	47(5)	-13(4)	-11(4)	0(3)
C(3)	52(5)	70(6)	67(7)	-45(5)	-18(5)	9(5)
C(4)	33(4)	34(4)	53(5)	-17(4)	-10(4)	8(3)
C(5)	39(4)	54(5)	72(6)	-40(5)	-7(4)	2(4)
C(6)	30(4)	44(4)	48(5)	-18(4)	-10(4)	0(3)
C(7)	29(4)	52(5)	56(5)	-23(4)	-5(4)	8(3)
C(8)	41(5)	41(5)	85(7)	-14(5)	-14(5)	18(4)

Table 4 - Hydrogen bonds with H..A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>A</th></dha<>	d(DA)	A
N-H1A	0.890	2.008	177.32	2.897	O1 [x+1, y, z]
N-H1B	0.890	3.073	149.02	3.863	I4 [x+1, y-1, z]
N-H1C	0.890	2.755	164.16	3.619	I4 [-x+1, -y+1, -z+1]

I-C- TGA-DSC

I-F- UV-VIS spectrum of 3

II-(*dmes*)SbI₅ (compound 2)

II-A- Checkcif

```
Bond precision: C-C = 0.0120 A
                                                Wavelength=0.71073
                      b=12.8193(15) c=15.694(2)
Cell: a=8.4951(10)
       alpha=90
                       beta=90
                                      gamma=90
                 Calculated
                                                  Reported
Volume
                 1709.1(4)
                                                  1709.1(4)
                 P 21 21 21
                                                  P 21 21 21
Space group
Hall group
                P 2ac 2ab
               C4 H13 N S, I5 Sb
Moiety formula
                                                  ?
Sum formula
               C4 H13 I5 N S Sb
                                                  C4 H13 I5 N S Sb
Mr
                 863.48
                                                  863.46
                 3.356
                                                  3.356
Dx,g cm-3
Ζ
                 4
                                                  4
                                                  10.737
Mu (mm-1)
                 10.737
F000
                 1504.0
                                                  1504.0
                 1493.33
F000'
                 11,18,22
                                                  11,17,22
h,k,lmax
Nref
                 2824(4987)
                                                  4944
Tmin,Tmax
                 0.326,0.472
                                                  0.270,0.432
Tmin'
                 0.187
Correction method= AbsCorr=MULTI-SCAN
Data completeness= 1.75(0.99) Theta(max) = 30.010
R(reflections) = 0.0315( 3906)
                                wR2(reflections) = 0.0578( 4944)
S = 1.028
                     Npar= 109
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level A

<u>PLAT761_ALERT_1_A</u> CIF Contains no X-H Bonds?? <u>PLAT762_ALERT_1_A</u> CIF Contains no X-Y-H or H-Y-H Angles

Alert level C

```
ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without

a literature citation. This should be contained in the

_exptl_absorpt_process_details field.

Absorption correction given as multi-scan

PLAT048_ALERT_1_C MoietyFormula Not Given ...... ?

PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..... 1.09

PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given .. ?

PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Sb

PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 12

PLAT420_ALERT_2_C D-H Without Acceptor N - H00B ?

PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) . 13

PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.06
```

II-B- Summary of crystallographic data

```
Empirical formula
                                   C4 H13 I5 N S Sb
Formula weight
                                   863.46
                                   293(2) K
Temperature
                                   0.71073 A
Wavelength
Crystal system, space group
                                  orthorhombic, P 21 21 21
                                   a = 8.4951(10) A alpha = 90 deg.
Unit cell dimensions
                                   b = 12.8193(15) A beta = 90 deg.
                                   c = 15.694(2) A gamma = 90 deg.
Volume
                                   1709.1(4) A^3
{\tt Z}\,\text{,} Calculated density
                                   4, 3.356 Mg/m^3
Absorption coefficient
                                   10.737 mm^-1
F(000)
                                   1504
Crystal size
                                   0.16 x 0.09 x 0.07 mm
Theta range for data collection 3.88 to 30.01 deg.
Limiting indices
                                   -11<=h<=11, -12<=k<=17, -20<=l<=22
                                  24196 / 4944 [R(int) = 0.0338]
Reflections collected / unique
                                  99.4 %
Completeness to theta = 30.01
Absorption correction
                                   None
Refinement method
                                   Full-matrix least-squares on F^2
Data / restraints / parameters 4944 / 0 / 109
Goodness-of-fit on F^2
                                   1.028
Goodness-of-fit on F^{*2}1.020Final R indices [I>2sigma(I)]R1 = 0.0315, wR2 = 0.0523
R indices (all data)
                                   R1 = 0.0543, wR2 = 0.0578
Absolute structure parameterRI = 0.Largest diff. peak and hole1.792 a
                                   1.792 and -1.529 e.A^-3
```

II-C- Tables

Table 1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
Sb	12339(1)	11042(1)	-4113(1)	28(1)
I(2)	9464(1)	12318(1)	-4816(1)	49(1)
I(3)	12560(1)	12505(1)	-2610(1)	40(1)
I(4)	12220(1)	9719(1)	-5692(1)	51(1)
I(5)	15084(1)	9919(1)	-3487(1)	51(1)
I(1)	10263(1)	9677(1)	-3235(1)	51(1)
S	8203(3)	11468(2)	-908(2)	69(1)
Ν	6749(8)	12850(6)	-3080(4)	65(2)
C(4)	7887(12)	10111(7)	-1022(7)	77(3)
C(1)	7671(9)	12200(6)	-2506(5)	55(2)
C(2)	6927(9)	12104(8)	-1656(6)	70(3)
C(3)	7067(15)	11726(10)	31(6)	102(4)

Sb-I(1)	2.8406(6)	Sb-I(3)	3.0196(6)
Sb-I(5)	2.9111(6)	Sb-I(2)	3.1394(6)
Sb-I(4)	3.0036(7)	Sb-I(2)#1	3.2410(5)
S-C(4)	1.770(9)	N-C(1)	1.456(10)
S-C(3)	1.792(11)	C(1)-C(2)	1.481(11)
S-C(2)	1.795(8)		
C(4)-S-C(3)	100.5(6)	C(1)-C(2)-S	111.7(6)
C(4)-S-C(2)	106.8(5)	N-C(1)-C(2)	112.0(7)
C(3)-S-C(2)	97.4(5)	I(2)-Sb-I(2)#1	162.47(2)

Table 2. Selected bond distances (\AA) and angles $(^{\circ})$ for 2.

#1 x+1/2,-y+5/2,-z-1

Table 3. Anisotropic displacement parameters (A^2 x 10^3) for 3. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Sh	27(1)	25(1)	32(1)	6(1)	3(1)	2(1)
I(2)	39(1)	63(1)	44(1)	12(1)	-3(1)	22(1)
I(3)	43(1)	42(1)	37(1)	-10(1)	-1(1)	4(1)
I(4)	61(1)	45(1)	48(1)	-16(1)	7(1)	-2(1)
I(5)	36(1)	49(1)	68(1)	12(1)	-5(1)	15(1)
I(1)	47(1)	41(1)	67(1)	15(1)	18(1)	-8(1)
S	55(1)	63(2)	89(2)	26(1)	-26(1)	-9(1)
Ν	64(4)	78(5)	52(4)	20(4)	20(3)	17(4)
C(4)	88(7)	41(5)	103(8)	3(5)	9(6)	2(5)
C(1)	46(4)	59(5)	59(5)	-7(4)	8(4)	-4(4)
C(2)	43(4)	90(7)	77(6)	25(5)	-3(4)	11(4)
C(3)	129(11)	100(8)	76(7)	-28(7)	-9(7)	31(8)

Table 4 - Hydrogen bonds with H..A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>A</th></dha<>	d(DA)	A
N-HOOA	0.890	2.806	155.44	3.634	12
N-H00B 1/2]	0.890	3.182	144.16	3.938	I5 [-x+2, y+1/2, -z-
N-H00B	0.890	3.251	112.65	3.686	I4 [x-1/2, -y+5/2, -z-

Intensity (a.u.) -1000 20 (°)

exp / theo XRPD of (NS)SbI5

II-D- XRPD: theoretical (red) and experimental (blue)

N-H00C

<u>III- α-(*dmes*)BiI₅ (compound 1a)</u>

III-A- Checkcif

Bond precision:	C-C =	0.0160 A		Wavelength=0.71073
Cell: a=8.4752(3	3) b=	=12.6137(15) c=16.385(2)
alpha=90	be	eta=90	gamma=90	
	Calculat	ed		Reported
Volume	1751.6(3	3)		1751.6(3)
Space group	P21cn			P 21 c n
Hall group	P -2n 2a	1		P -2n 2a
Moiety formula	C4 H13 N	N S, Bi I5		?
Sum formula	C4 H13 B	Bi I5 N S		C4 H13 Bi I5 N S
Mr	950.70			950.69
Dx,g cm-3	3.605			3.605
Z	4			4
Mu (mm-1)	18.967			18.967
F000	1632.0			1632.0
F000'	1608.34			
h,k,lmax	11,17,23	3		11,17,23
Nref	2718(51	14)		4664
Tmin,Tmax	0.291,0.	366		0.228,0.440
Tmin'	0.003			
Correction method	d= AbsCor:	r=MULTI-SCA	N	
Data completeness	s= 1.72(0	.91) Theta	a(max) = 30.02	0
R(reflections) = (0.0333(3	247) wi	R2(reflection	ns)= 0.0604(4664)
S = 0.977	Npar	c= 110		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been g	jiven without
a literature citation. This should be contained in	the
<pre>_exptl_absorpt_process_details field.</pre>	
Absorption correction given as multi-scan	
PLAT048_ALERT_1_C MoietyFormula Not Given	?
PLAT062_ALERT_4_C Rescale T(min) & T(max) by	
PLAT128_ALERT_4_C Non-standard setting of Space group Pna21	P21cn
PLAT147_ALERT_1_C su on Symmetry Constrained Cell Angle(s)	?
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors	for S
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors	for Bi
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang	16
PLAT420_ALERT_2_C D-H Without Acceptor N - H1E	?
PLAT480_ALERT_4_C Long HA H-Bond Reported H1E I4	3.07 Ang.

III-B- Summary of crystallographic data

]	Empirical formula C4	4 H13 Bi I5 N S
	Formula weight	950.69
	Temperature	293(2) K
	Wavelength	0.71073 A
	Crystal system, space group	orthorhombic, P 21 c n
	Unit cell dimensions a = 8	8.4752(3) A alpha = 90.000(11) deg.
	b = 12.6	5137(15) A beta = $90.000(7)$ deg.
	c = 16.38	35(2) A gamma = 90.000(7) deg.
	Volume	1751.6(3) A^3
	Z, Calculated density	4, 3.605 Mg/m^3
	Absorption coefficient	18.967 mm^-1
	F(000)	1632
	Crystal size	0.3 x 0.05 x 0.05 mm
	Theta range for data collection	3.15 to 30.02 deg.
	Limiting indices	-9<=h<=11, -17<=k<=17, -22<=1<=23
	Reflections collected / unique	34672 / 4664 [R(int) = 0.0784]
	Completeness to theta = 30.02	99.6 %
	Absorption correction	multi-scan
	Refinement method	Full-matrix least-squares on F^2
	Data / restraints / parameters	4664 / 1 / 110
	Goodness-of-fit on F [^] 2	0.977
	Final R indices [I>2sigma(I)]	R1 = 0.0333, $wR2 = 0.0533$
	R indices (all data)	R1 = 0.0765, $wR2 = 0.0604$
	Absolute structure parameter	0.256(5)
	Largest diff. peak and hole	1.264 and -1.333 e.A^-3

III-C- Tables

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 1a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
Bi	7950(1)	3413(1)	4230(1)	28(1)
I(3)	8131(1)	4814(1)	2695(1)	38(1)
I(2)	10835(1)	2259(1)	3705(1)	49(1)
I(4)	4980(1)	4758(1)	4862(1)	46(1)
I(1)	5689(1)	1895(1)	3519(1)	43(1)
I(5)	7875(1)	2239(1)	5862(1)	52(1)
S	7291(3)	6139(2)	8636(2)	59(1)
C(2)	8683(12)	5971(9)	7824(6)	63(3)
C(3)	8337(16)	5519(8)	9498(6)	75(4)
C(4)	7609(18)	7521(8)	8871(7)	91(5)
Ν	7238(9)	4831(6)	6825(5)	48(2)
C(1)	8534(12)	4939(9)	7399(6)	60(3)

Bi-I(1)	2.9484(7)	Bi-I(3)	3.0774(7)
Bi-I(2)	2.9717(8)	Bi-I(4)	3.2077(7)
Bi-I(5)	3.0576(7)	Bi-I(4)#1	3.2405(7)
S-C(2)	1.790(10)	C(2)-C(1)	1.481(14)
S-C(4)	1.806(10)	N-C(1)	1.453(11)
S-C(3)	1.842(11)		
C(2)-S-C(4)	100.1(6)	N-C(1)-C(2)	116.8(9)
C(2)-S-C(3)	101.7(6)	C(1)-C(2)-S	113.4(8)
C(4)-S-C(3)	100.1(6)	Bi-I(4)-Bi#2	160.33(3)
114 410 4 4	<u> </u>		

Table 2. Selected bond distances (Å) and angles (°) for 1a.

#1 x+1/2,-y+1,-z+1 #2 x-1/2,-y+1,-z+1

Table 3. Anisotropic displacement parameters (A^2 x 10^3) for 1a. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Bi	26(1)	26(1)	32(1)	-3(1)	1(1)	0(1)
I(3)	36(1)	45(1)	34(1)	6(1)	-1(1)	-6(1)
I(2)	32(1)	49(1)	66(1)	-8(1)	7(1)	11(1)
I(4)	42(1)	57(1)	39(1)	-11(1)	1(1)	23(1)
I(1)	33(1)	39(1)	57(1)	-13(1)	-3(1)	-7(1)
I(5)	63(1)	49(1)	43(1)	15(1)	0(1)	1(1)
S	51(2)	57(2)	69(2)	-9(1)	9(1)	-6(1)
C(2)	54(7)	80(9)	54(7)	-12(6)	1(5)	-21(6)
C(3)	127(13)	46(7)	51(6)	-1(5)	-1(7)	-1(8)
C(4)	101(12)	40(7)	131(12)	-35(7)	38(10)	-5(7)
Ν	35(4)	69(6)	38(5)	1(4)	-5(4)	-2(4)
C(1)	43(7)	94(9)	43(6)	-5(6)	-8(5)	-6(6)

Table 4- Hydrogen bonds with H..A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>A</th></dha<>	d(DA)	A
N-H1C	0.890	2.793	168.62	3.670	15
N-H1E	0.890	3.072	124.33	3.648	I4 [x+1/2, -y+1, -z+1
N-H1E	0.890	3.327	111.29	3.744	I4
N-H1D	0.890	2.752	159.06	3.597	I3 [x-1/2, -y+1, -z+1

(NS)BiI5 theo/exp

<u>IV- β-(*dmes*)BiI₅ (compound 1b)</u>

IV-A- Checkcif

Bond precision: C-C = 0.0200 AWavelength=0.71073 a=8.5334(2) b=12.7319(10) c=16.195(2) Cell: alpha=90 beta=90 gamma=90 Temperature: 293 K Calculated Reported Volume 1759.5(3) 1759.5(3)P 21 21 21 P 21 21 21 Space group P 2ac 2ab Hall group P 2ac 2ab Moiety formula C4 H13 N S, Bi I5 ? Sum formula C4 H13 Bi I5 N S C4 H13 Bi I5 N S 950.70 950.69 Mr 3.589 Dx,g cm-3 3.589 Ζ 4 4 18.882 Mu (mm-1) 18.881 F000 1632.0 1632.0 F000' 1608.34 11,16,21 h,k,lmax 10,16,20 Nref 2310 4044 3849 0.272,0.411 Tmin,Tmax 0.335,0.389 Tmin' 0.009 Correction method= AbsCorr=MULTI-SCAN Data completeness= 1.67[0.95] Theta(max) = 27.530 R(reflections) = 0.0310(3113) wR2(reflections) = 0.0446(3849) S = 1.051Npar= 110

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level A

 PLAT241_ALERT_2_A
 Check High
 Ueq as Compared to Neighbors for

 C2
 PLAT093_ALERT_1_A
 No su's on H-atoms, but refinement reported as .

 mixed
 PLAT761_ALERT_1_A
 CIF Contains no X-H Bonds

 PLAT762_ALERT_1_A
 CIF Contains no X-Y-H or H-Y-H Angles

Alert level B

PLAT232_ALERT_2_B	Hirshfeld	Test Diff	(M-X) Bi	I5	12.33 su
PLAT242_ALERT_2_B	Check Low	Ueq as	Compared	to Neighbors	for S
PLAT242_ALERT_2_B	Check Low	Ueq as	Compared	to Neighbors	for C1

Alert level C

<u>ABSTY02_ALERT_1_C</u> An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the

_exptl_absorpt_process_details field. Absorption correction given as multi-scan STRVA01_ALERT_4_C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.476 From the CIF: _refine_ls_abs_structure_Flack_su 0.005 13 9.13 su -- I4 8 °° PLAT232_ALERT_2_CHirshfeld Test Diff (M-X)Bi--I3PLAT232_ALERT_2_CHirshfeld Test Diff (M-X)Bi--I4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Вi PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang 20 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C1 - C2 1.41 Ang. PLAT420_ALERT_2_CD-HWithoutAcceptorN-HOBPLAT420_ALERT_2_CD-HWithoutAcceptorN-HOC .? ? PLAT033_ALERT_4_C Flack Parameter Value Deviates from Zero .. PLAT033_ALERT_4_C Flack Falameter 0.48 ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by 0.95 PLAT194_ALERT_1_C Missing _cell_measurement_reflns_used datum ? PLAT195_ALERT_1_C Missing _cell_measurement_theta_max datum PLAT196_ALERT_1_C Missing _cell_measurement_theta_min datum PLAT720_ALERT_4_C Number of Unusual/Non-Standard Labels ? ? 3

IV-B- Summary of crystallographic data

Empirical formula C4 H13 Bi I5 N S
Formula weight 950.69
Temperature 353(2) K
Wavelength 0.71073 A
Crystal system, space group orthorhombic, P 21 21 21
Unit cell dimensions $a = 8.5334(2) \text{ A}$ alpha = 90 deg.
b = 12.7319(10) A beta = 90 deg.
c = 16.195(2) A gamma = 90 deg.
Volume 1759.5(3) A^3
Z, Calculated density 4, 3.589 Mg/m ³
Absorption coefficient 18.881 mm ⁻¹
F(000) 1632
Crystal size 0.25 x 0.05 x 0.05 mm
Theta range for data collection 2.70 to 27.53 deg.
Limiting indices -10<=h<=10, -12<=k<=16, -20<=l<=20
Reflections collected / unique $19568 / 3849 [R(int) = 0.0382]$
Completeness to theta = 27.53 99.2 %
Absorption correction None
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 3849 / 0 / 110
Goodness-of-fit on F^2 1.051
Final R indices [I>2sigma(I)] $R1 = 0.0310, wR2 = 0.0396$
R indices (all data) $R1 = 0.0503, wR2 = 0.0446$
Absolute structure parameter $0.476(5)$
Largest diff. peak and hole 0.699 and -0.681 e.A^-3

IV-C- Tables

Table 1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 1b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
Bi	7266(1)	10952(1)	4175(1)	39(1)
I(2)	10020(1)	9728(1)	3589(1)	69(1)
I(3)	7138(1)	9731(1)	5802(1)	73(1)
I(5)	7529(1)	12403(1)	2668(1)	56(1)
I(4)	4449(1)	12363(1)	4833(1)	70(1)
I(1)	5009(1)	9560(1)	3388(1)	79(1)
S	6646(4)	6357(3)	3860(2)	107(1)
C(1)	7413(14)	7266(10)	2431(7)	95(4)
Ν	8412(10)	7718(8)	1835(6)	99(3)
C(4)	7127(18)	5013(8)	3966(8)	122(5)
C(3)	7650(20)	6886(12)	4692(9)	180(8)
C(2)	8052(14)	6735(14)	3120(10)	152(7)

Table 2. Selected bond distances (Å) and angles (°) for 1b.

Bi-I(1)	2.9111(7)	Bi-I(5)	3.0687(7)
Bi-I(2)	2.9744(7)	Bi-I(4)	3.1851(7)
Bi-I(3)	3.0623(8)	Bi-I(4)#1	3.2640(7)
S-C(2)	1.762(12)	C(2)-C(1)	1.414(15)
S-C(4)	1.768(11)	N-C(1)	1.411(12)
S-C(3)	1.735(15)		
C(2)-S-C(4)	99.9(7)	N-C(1)-C(2)	120.1(11)
C(2)-S-C(3)	94.8(9)	C(1)-C(2)-S	113.8(9)
C(4)-S-C(3)	100.6(8)	Bi-I(4)-Bi#2	165.08(2)

#1 x+1/2,-y+5/2,-z+1 #2 x-1/2,-y+5/2,-z+1

Table 3. Anisotropic displacement parameters (A² x 10³) for 1b The anisotropic displacement factor exponent takes the form: $-2 \operatorname{pi^2} [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12	
Bi	37(1)	35(1)	47(1)	-7(1)	-3(1)	2(1)	
I(2)	51(1)	70(1)	86(1)	-8(1)	8(1)	23(1)	
I(3)	87(1)	69(1)	65(1)	24(1)	-2(1)	0(1)	
I(5)	61(1)	58(1)	50(1)	10(1)	-2(1)	8(1)	
I(4)	59(1)	84(1)	66(1)	-19(1)	5(1)	32(1)	
I(1)	67(1)	62(1)	110(1)	-22(1)	-30(1)	-14(1)	
S	89(2)	99(3)	132(3)	42(2)	36(2)	12(2)	
C(1)	69(8)	134(11)) 82(8)	-9(8)	5(8)	6(8)	
Ν	76(6)	131(9)	89(7)	45(7)	-6(5)	-12(6)	
C(4)	156(13)	51(7)	159(12	2) -4(7)) 11(1	2) 7(8)	
C(3)	250(20)	143(14	4) 147(1	13) -300	(11) -14	4(17) -87(17)	
C(2)	59(8)	224(18)) 175(14	4) 98(1	4) 47(9) 31(9)	

Table 4 - Hydrogen bonds with $H_A < r(A) + 2.000$ Angstroms and <DHA > 110 deg. D-H $d(D-H) \quad d(H..A) \quad <DHA$ d(D..A) A N-H0A 0.890 2.972 136.53 3.669 I4 [-x+1, y-1/2, -z+1/2] N-H0A 0.890 3.036 131.21 3.684 I3 [-x+3/2, -y+2, z-1/2] N-H0B 0.890 3.206 119.14 3.722 I4 [-x+3/2, -y+2, z-1/2] N-H0B 0.890 3.295 150.50 4.094 I2 [-x+2, y-1/2, -z+1/2] N-H0C 0.890 3.130 113.39 3.578 I5 [-x+2, y-1/2, -z+1/2] N-H0C 0.890 3.248 153.20 4.062 I2

IV-D- XRPD: theoretical (blue) and experimental (red)

IV-E-XRPD=f(T)

2- Decreasing of temperature, from 70°C to 60°C (12-15°20 range)

V – ONL properties

The properties of the Second Harmonic Generation (SHG) were studied for a fundamental wavelength at 1064 nm generated by a Q-switch Nd:YAG laser (Model Continuum Leopard D-10) with a pulse duration of 16 ps and a average density power of 0.2 mJ per pulse at the repetition frequency of 10 Hz using Kurtz and Perry test, on sample of **1a** and **2**. The power of the fundamental beam was changed with a half-wave plate and a Glan polarizer. The beam was focused on the sample by a convergent lens with a focal length of 250 mm. The sample was rotated by using a stepped motor monitored by a power station of acquisition with an angle resolution up to 0.04° . The SH signal was detected by a photomultiplier tube (Hamamatsu R1828-01), then integrated by a boxcar integrate and processed by a computer. A *y-cut* quartz substrate was used as reference sample to calibrate the experimental setup.

The experimental setup for the SHG is described on the following figure:

VI- Calculations VI-A Structural optimizations

It was necessary to optimize the geometries in order to check whether the DFT level of theory was accurate enough or not to reproduce the structures, this step being necessary before arguing about the electronic structures of compounds 1 and 3. Hybrid compounds possess organic and inorganic parts, so there will be three points to distinguish between the initial and optimized geometries: differences within the organic cations, differences concerning the Bi-I distances and finally the non-bonding hydrogen interactions at the interface of the organic and inorganic moieties.

Structural optimizations of the organic molecules were successful. The main average bond lengths are: $d_{C-C}=1.52$ Å, $d_{C-N}=1.49$ Å, $d_{C-S}=1.80$ Å, $d_{C-H}=1.10$ Å and $d_{N-H}=1.05$ Å. For the C-C, C-N and C-S distances, the deviation compared to the experimental values is less than 2% whereas for the C-H and N-H distances, the optimized bond lengths are more than 10% longer than the crystallographic ones. This discrepancy for hydrogen atoms is totally normal as the accuracy on their position obtained from the X-ray diffraction is very low. Indeed, the C-H (or N-H) bond lengths are usually underestimated by X-ray diffraction according to their mean square atomic displacement which makes these atoms appear artificially nearer than they are. Looking at the Bi-I distances, the results of the DFT optimization are also satisfying since the average difference is less than 1% (equatorial distances d_{Bi-I1}=2.98 Å, d_{Bi-I2}=3.00 Å, d_{Bi-} $_{I4}$ =3.21 Å, $d_{Bi-I4\#1}$ =3.24 Å, axial distances d_{Bi-I3} =3.10 Å, d_{Bi-I5} =3.09 Å for compound **1a**). The last point to discuss is the interactions between the organic and inorganic parts. Those hybrid salts are based on strong electrostatic interactions highlighted by hydrogen bonds at the interface. The optimized hydrogen bonds after the structural relaxations are, in average, shorter by less than 4% than the initial ones. A special feature of the 1a compound is the short I...I contact between BiI₅ ribbons so it was important to check the interchains I...I distances are correctly modelled. The optimized distances are d_{I1-I3}=3.90 Å and d_{I3-I5}=3.94 Å and according to the crystallographic ones (d_{I1-I3} =3.94 Å, d_{I3-I5} =3.97 Å, Figure 1) the understimation is less than 1% which is very satisfying. In average, the deviation compared to the experimental value is less than 3% for the bond distances for each part and this crystallographic features analysis allows us to conclude that the DFT calculations are accurate enough to describe the structures of these hybrid compounds and also that reliable parameters could be extracted from the electronic and band structures analysis.

VI-C Model compounds: input files and band structures

VI-C1-CIF File of 1a

data 1a _cell_length_a 8.4750 _cell_length_b 12.6140 _cell_length_c 16.3850 cell angle alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _symmetry_space_group_name_H-M 'P21cn' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Bi Bi 0.7957596 0.3419483 0.4237520 0.5683988 0.1858073 0.3536374 ΙΙ 0.0894471 0.2264894 0.3723455 ΙΙ ΙΙ 0.8159567 0.4812964 0.2681314 0.4928297 0.4735101 0.4842543 ΙΙ ΙΙ 0.7821327 0.2264420 0.5896341 Na Na 0.7228588 0.4820525 0.6825179 Na Na 0.7324356 0.6150181 0.8664275 VI-C2-CIF File of 1a+2.5% data 1a+2.5% _cell_length_a 8.4750 _cell_length_b 12.9293 _cell_length_c16.7946 cell angle alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _symmetry_space_group_name_H-M 'P 21 c n' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Bi1 Bi 0.7958 0.1542 -0.0744 I1 I 0.5684 0.3065 -0.1428 I2 I 1.0895 0.2668 -0.1245 I3 I 0.8160 0.0182 -0.2262 I4 I 0.9928 -0.0258 0.0154 I5 I 0.7821 0.2669 0.0874 Nal Na 0.7229 0.0175 0.1781 Na2 Na 0.2324 0.3756 0.1303

VI-C3-CIF File of 1a+5% data_1a+5% _cell_length_a 8.4750 _cell_length_b 13.2447 _cell_length_c17.2042 _cell_angle_alpha 90.000 _cell_angle_beta 90.000 _cell_angle_gamma 90.000 _symmetry_space_group_name_H-M 'P 21 c n' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Bi1 Bi 0.7958 0.1505 -0.0726 I1 I 0.5684 0.2992 -0.1394 I2 I 1.0895 0.2605 -0.1216 I3 I 0.8160 0.0178 -0.2208 I4 I 0.9928 -0.0252 0.0150 I5 I 0.7821 0.2605 0.0854 Na1 Na 0.7229 0.0171 0.1738 Na2 Na 0.2324 0.3666 0.1272

VI - B4 - Figure. Band structures of 1 (a) and of relative model compounds 1a2.5 (b) and

1a5.0 (c). The bottom of the VB is chosen as energy reference.

<u>VI-D compound 3: (HO₂C(C₆H₄)CH₂NH₃)BiI₄</u>

Figure Isosurface of the charge density corresponding to the highest occupied states for compound **3** showing the anti bonding interactions between the iodine 5p states and the bismuth 6s orbitals.

