Crystal structure of $\mathrm{Cu}_{3} \mathrm{Mo}_{2} \mathrm{O}_{9}$

$\mathrm{Cu}_{3} \mathrm{Mo}_{2} \mathrm{O}_{9}$ has an orthorhombic structure which can be described by a space group Pnma with lattice constants of $a=7.667 \AA, b=6.862 \AA$, and $c=14.6 \AA$. There are four molecules in one unit cell, as shown in Figure S1. In this structure, there are three Cu sites labeled by $\mathrm{Cu}_{1}, \mathrm{Cu}_{2}, \mathrm{Cu}_{3}$, seven O sites by $\mathrm{O}_{1}-\mathrm{O}_{7}$, and two Mo sites by $\mathrm{Mo}_{1}, \mathrm{Mo}_{2}$. Also, included in this structure are two sorts of almost regular $\mathrm{Mo}_{1}-4 \mathrm{O}$ and $\mathrm{Mo}_{2}-4 \mathrm{O}$ tetrahedra, one sort of compressed $\mathrm{Cu}_{1}-6 \mathrm{O}$ octahedra, one sort of $\mathrm{Cu}_{2}-5 \mathrm{O}$ polyhedra, and one sort of $\mathrm{Cu}_{3}-5 \mathrm{O}$ polyhedra. $\mathrm{A} \mathrm{Cu}_{2}-5 \mathrm{O}$ polyhedron can be taken as a pentahedron in which one Cu atom and four O atoms $\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right.$ and $\left.2 \mathrm{O}_{5}\right)$ are nearly coplanar. However, in the case of Cu_{3}, a sixth O atom is situated at a distance of $\sim 2.56 \AA$. Thus, $\mathrm{Cu}_{3}-6 \mathrm{O}$ can also be regarded as a distorted octahedron. For this crystal structure an interesting feature is the unusual compressed $\mathrm{Cu}_{1}-6 \mathrm{O}$ octahedral environment round the Jahn-Teller active ion Cu^{2+}. The $\mathrm{Cu}_{1}-6 \mathrm{O}$ compressed octahedra are connected by corners to form strings running along the [010] direction. $\mathrm{Cu}_{2}-5 \mathrm{O}$ and $\mathrm{Cu}_{3}-6 \mathrm{O}$ polyhedra are linked to the $\mathrm{Cu}_{1}-6 \mathrm{O}$ octahedra of a string by egde sharing whereas the Mo-4O tetrahedra are linked to them by corner sharing, as Figure S1 shows. The $\mathrm{Cu}_{1}-\mathrm{O}_{1}$ bonds along the [010] direction are the shortest among all Cu-O bonds, suggesting the compression of $\mathrm{Cu}_{1}-6 \mathrm{O}$ octahedra along this direction.

Figure S1 Schematic illustrations of a $\mathrm{Cu}_{3} \mathrm{Mo}_{2} \mathrm{O}_{9}$ unit cell. Noting two sorts of $\mathrm{Mo1,2-4O}$ tetrahedra, one sort of compressed Cu1-6O octahedra forming strings running along b, one sort of $\mathrm{Cu} 2-5 \mathrm{O}$ pentahedra in which a Cu atom and four O atoms are nearly coplanar, and one sort of $\mathrm{Cu} 3-6 \mathrm{O}$ distorted octahedra.

