Supporting Information

A Rapid, Asymmetric Synthesis of the Decahydrofluorene Core of the Hirsutellones

S. David Tilley, Keith P. Reber, Erik J. Sorensen*
Department of Chemistry, Princeton University, Frick Chemical Laboratory, Princeton, NJ 08544, USA

E-mail: ejs@princeton.edu

Table of Contents
Experimental Section 2
NMR spectra 20

Experimental Section

General Methods. All reactions were carried out under an atmosphere of argon with magnetic stirring unless otherwise indicated. Crabtree's catalyst was prepared according to a known literature procedure. ${ }^{1}$ Di- μ-chlorobis($\eta^{4}-1,5$-cyclooctadiene) diiridium(I) was purchased from Strem. In all other cases, commercial reagents of high purity were purchased from either Aldrich or Acros and used without further purification. Tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, toluene, benzene, acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, dimethyl sulfoxide (DMSO), triethylamine $\left(\mathrm{NEt}_{3}\right)$, and pyridine were dried by passing through activated alumina columns. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates ($60 \mathrm{~F}_{254}$) using UV light as a visualizing agent and aqueous potassium permanganate or ethanolic p-anisaldehyde solution and heat as developing agents. E. Merck silica gel 60 (230-400 mesh) was used for flash column chromatography.

Instrumentation. Optical rotations were recorded on a Perkin-Elmer model 241 polarimeter using a $1 \mathrm{~mL}, 1 \mathrm{dm}$ cell. Melting points were determined using a Fisher-Jones melting point apparatus and are uncorrected. FT-IR spectra were obtained on a PerkinElmer Paragon 500. Nuclear magnetic resonance (NMR) spectra were obtained on a 500 MHz Bruker AVANCE spectrometer and calibrated to the residual solvent peak. Coupling constant values were extracted assuming first-order coupling. The multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and br = broad signal. High resolution mass spectra were obtained on a Kratos MS 50 using electrospray ionization (ESI). High-performance liquid chromatography (HPLC) was performed on an Agilent 1200 series instrument equipped with a diode array UV detector.

(E)-4-(tert-butyldimethylsilyloxy)but-2-enoic acid (S1). To a solution of aldehyde (E)-4-(tert-butyldimethylsilyloxy)but-2-enal ${ }^{2}$ ($11.55 \mathrm{~g}, 57.6 \mathrm{mmol}, 1.00$ eq.) in 60 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added a solution of sodium dihydrogen phosphate monohydrate $(2.15 \mathrm{~g}, 15.6 \mathrm{mmol}$, 0.27 eq.) in 30 mL of water. The reaction mixture was cooled to $10^{\circ} \mathrm{C}$ in an ice/water bath, and a 35% aqueous hydrogen peroxide solution ($5.16 \mathrm{~mL}, 59.1 \mathrm{mmol}, 1.04 \mathrm{eq}$.) was added. The flask was then equipped with an additional funnel containing a solution of sodium chlorite (80% tech grade, $9.12 \mathrm{~g}, 80.7 \mathrm{mmol}, 1.40 \mathrm{eq}$.) in 90 mL of water, which was added dropwise to the reaction mixture over 30 minutes. After addition was complete, the reaction mixture was stirred at $10^{\circ} \mathrm{C}$ for an additional 2.5 hours at which time TLC (10:1 hexanes / EtOAc, KMnO_{4}) showed complete consumption of the starting aldehyde $\left(\mathrm{R}_{\mathrm{f}}=0.29\right)$. The reaction was quenched by the addition of solid sodium sulfite (500 mg) and diluted with water and EtOAc. The layers were separated, and the organic phase was washed with water and brine before drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure and thorough drying under high vacuum gave $\mathbf{S 1}$ as an amorphous offwhite solid ($11.30 \mathrm{~g}, 91 \%$) which was used in the next step without further purification. An analytical sample was obtained by recrystallization of the crude product from hexanes (m.p. $=75-76^{\circ} \mathrm{C}$).

IR (neat) v 1693, $1657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.07(6 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 4.36$ $(2 \mathrm{H}, \mathrm{t}, J=3.00 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J=15.43 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dt}, J=2.90 \mathrm{~Hz}, 15.44 \mathrm{~Hz}), 9.39$ (1H, br s); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta-5.4,18.4,25.9,62.2,119.0,150.3,172.0 ;$ HRMS (ESI+) calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 217.1260, found: 217.1253.

S1

94\%

5
(R,E)-3-(4-(tert-butyldimethylsilyloxy)but-2-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (5). To an oven-dried 1L flask was added a solution of acid $\mathbf{S 1}(11.30 \mathrm{~g}, 52.2 \mathrm{mmol}$, 1.20 eq.) in 250 mL of THF. This solution was cooled to $-40^{\circ} \mathrm{C}$ in a dry ice $/ \mathrm{CH}_{3} \mathrm{CN}$ bath, and neat NEt_{3} ($18.93 \mathrm{~mL}, 136 \mathrm{mmol}, 3.12 \mathrm{eq}$.) was added followed by the dropwise addition of trimethylacetyl chloride ($6.75 \mathrm{~mL}, 54.8 \mathrm{mmol}, 1.26$ eq.). The resulting white slurry was stirred at $-40^{\circ} \mathrm{C}$ for 1.5 hours before the addition of solid flame-dried lithium chloride (2.55 $\mathrm{g}, 60.2 \mathrm{mmol}, 1.38 \mathrm{eq}$.$) and solid (R$)-4-isopropyl-5,5-diphenyloxazolidin-2-one (12.25 g , 43.5 mmol, 1.00 eq.) in single portions. The cooling bath was removed, and the heterogeneous tan reaction mixture was left to stir at room temperature overnight. After this time TLC (10:1 hexanes / EtOAc, KMnO_{4}) showed formation of the product at $\mathrm{R}_{\mathrm{f}}=0.28$, and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with water and ether. The organic phase was isolated and washed with brine before drying over anhydrous MgSO_{4}. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (9:1 hexanes / EtOAc) to give 5 as a viscous colorless oil (19.59 g, 94\%).
$[\alpha]^{20}{ }_{D}=+102.7\left(c 0.79, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 2958, 2930, 2857, 1785, 1688, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)_{3}$: $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.77(3 \mathrm{H}, \mathrm{d}, J=6.74 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}$, $J=6.98 \mathrm{~Hz}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.99(1 \mathrm{H}, \mathrm{dtd}, J=3.32 \mathrm{~Hz}, 6.84 \mathrm{~Hz}, 13.70 \mathrm{~Hz}), 4.36(2 \mathrm{H}, \mathrm{m}), 5.47$ (1H, d, J = 3.27), $7.14(1 \mathrm{H}, \mathrm{dt}, J=3.42 \mathrm{~Hz}, 15.20 \mathrm{~Hz}), 7.27(2 \mathrm{H}, \mathrm{m}), 7.33(4 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}$, m), $7.48(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta-5.5,16.4,18.3,21.8,25.8,30.2,62.7$, 64.3, 89.1, 118.4, 125.7, 126.0, 127.9, 128.4, 128.6, 128.9, 138.3, 142.3, 149.8, 152.8, 164.9; HRMS (ESI+) calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 480.2570$, found 480.2567.

5
(R)-3-((1R,6R)-6-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohex-3-enecarbonyl) -4-isopropyl-5,5-diphenyloxazolidin-2-one (6). To an oven-dried 1L flask was added a solution of 5 ($19.59 \mathrm{~g}, 40.8 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 350 mL of toluene. The resulting solution was cooled to $-40^{\circ} \mathrm{C}$ in a dry ice / $\mathrm{CH}_{3} \mathrm{CN}$ bath, and neat isoprene ($40.85 \mathrm{~mL}, 409 \mathrm{mmol}$, 10.0 eq.) was added, followed by the dropwise addition of a 1.0 M solution of diethylaluminum chloride in hexanes ($61.26 \mathrm{~mL}, 61.3 \mathrm{mmol}, 1.50 \mathrm{eq}$.). The bright yellow reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 30 minutes, at which time TLC ($10: 1$ hexanes / $\mathrm{EtOAc}, \mathrm{KMnO}_{4}$) showed complete consumption of the starting material and formation of the product at $\mathrm{R}_{\mathrm{f}}=0.45$. The reaction was quenched at $-40^{\circ} \mathrm{C}$ with pH 7 phosphate buffer, diluted with EtOAc, and allowed to warm slowly to room temperature. The aluminum salts were removed by vacuum filtration through Celite, and the solids were washed with EtOAc. The layers of the filtrate were separated, and the aqueous phase was extracted with two portions of EtOAc. The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before removal of the solvent under reduced pressure. The residue was purified by column chromatography ($10: 1$ hexanes / EtOAc) to afford 6 as a viscous colorless oil (21.10 g , 94\%).
$[\alpha]^{20}{ }_{\mathrm{D}}=+53.3$ (c 1.88, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) v 2959, 2928, 2856, 1787, $1701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.12(3 \mathrm{H}, \mathrm{s}),-0.02(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{d}, J=6.87 \mathrm{~Hz}), 0.85(9 \mathrm{H}, \mathrm{s})$, $0.95(3 \mathrm{H}, \mathrm{d}, J=6.97 \mathrm{~Hz}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.89(1 \mathrm{H}, \mathrm{m}), 2.03(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 2.16(1 \mathrm{H}$, m), $2.23(1 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{dd}, J=7.50 \mathrm{~Hz}, 9.61 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{dd}, J=3.49$ $\mathrm{Hz}, 9.67 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{td}, J=5.65 \mathrm{~Hz}, 9.90 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{d}, J=3.20 \mathrm{~Hz})$, $7.35(3 \mathrm{H}, \mathrm{m}), 7.41(3 \mathrm{H}, \mathrm{m}), 7.48(2 \mathrm{H}, \mathrm{d}, J=7.50 \mathrm{~Hz}), 7.59(2 \mathrm{H}, \mathrm{d}, J=7.60 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,16.2,18.1,21.9,23.6,25.8,29.7,30.0,32.1,37.1,39.1,64.0$,
64.6, 89.0, 118.1, 125.6, 125.9, 127.9, 128.4, 128.7, 128.9, 133.5, 138.3, 142.4, 152.4, 176.0; HRMS (ESI+) calculated for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 548.3196, found 548.3194.

(1R,6R)-benzyl 6-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohex-3-enecarboxyl -ate (7). To a flame-dried flask equipped with a magnetic stirring bar was added a solution of benzyl alcohol ($750 \mu \mathrm{~L}, 7.21 \mathrm{mmol}, 1.50 \mathrm{eq}$.) in 25 mL of THF. This solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and a 2.5 M solution of n-butyllithium in hexanes $(2.88 \mathrm{~mL}, 7.21 \mathrm{mmol}$, 1.50 eq.) was added dropwise. After ten minutes at $0{ }^{\circ} \mathrm{C}$, a solution of $6(2.63 \mathrm{~g}, 4.80$ $\mathrm{mmol}, 1.00 \mathrm{eq}$.) in 10 mL of THF was added dropwise, and the reaction mixture was heated to $35{ }^{\circ} \mathrm{C}$ overnight at which point TLC (10:1 hexanes / EtOAc, KMnO_{4}) showed complete conversion to the product at $\mathrm{R}_{\mathrm{f}}=0.50$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the THF was removed under reduced pressure. Ether and water were added, and the resulting white suspension was stirred vigorously at room temperature for 15 minutes. The accumulated solids were isolated by vacuum filtration, sequentially washed with water, ether, and pentane, and dried under high vacuum to afford the recovered auxiliary as a fluffy white solid ($1.12 \mathrm{~g}, 83 \%$). The filtrate was diluted with ether, the layers were separated, and the organic phase was washed with brine before drying over anhydrous MgSO_{4}. Removal of the solvent under reduced pressure gave an oil that was purified by column chromatography (24:1 hexanes / EtOAc) to give 7 as a colorless oil (1.63 g, 91\%).
$[\alpha]^{20}{ }_{D}=-45.2\left(c 1.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 2956, 2928, 2856, $1734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-0.02(3 \mathrm{H}, \mathrm{s}),-0.01(3 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.89(1 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{dd}$, $J=5.04 \mathrm{~Hz}, 17.74 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{m}), 2.26(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}, \mathrm{td}, J=6.03 \mathrm{~Hz}, 9.30 \mathrm{~Hz}), 3.52$ ($2 \mathrm{H}, \mathrm{m}$), $5.10(1 \mathrm{H}, \mathrm{d}, J=12.43 \mathrm{~Hz}$), $5.13(1 \mathrm{H}, \mathrm{d}, J=12.46 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{s}), 7.35(5 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta-5.52,-5.49,18.3,23.5,25.9,28.2,32.0,37.8,41.2,65.0$, 66.0, 118.4, 128.1, 128.5, 133.3, 136.2, 175.9; HRMS (ESI+) calculated for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 375.2355$, found 375.2352.

((1R,6R)-6-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohex-3-enyl)methanol (8).
To an oven-dried 100 mL flask was added a solution of $7(1.60 \mathrm{~g}, 4.27 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice / isopropanol bath, and a 1.0 M solution of diisobutylaluminum hydride in hexanes ($12.80 \mathrm{~mL}, 12.8 \mathrm{mmol}, 3.00 \mathrm{eq}$.) was added slowly over 10 minutes. After two hours at $-78{ }^{\circ} \mathrm{C}$, TLC (10:1 hexanes / EtOAc, KMnO_{4}) showed complete consumption of the starting material and clean formation of the product at $\mathrm{R}_{\mathrm{f}}=0.17$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched at $-78{ }^{\circ} \mathrm{C}$ by the dropwise addition of pH 7 phosphate buffer. After warming to room temperature, the accumulated aluminum salts were removed by filtration through Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers of the filtrate were separated, and the organic phase was washed with brine before drying over anhydrous MgSO_{4}. Removal of the solvent under reduced pressure gave an oil that was purified by column chromatography ($9: 1$ hexanes / EtOAc) to afford 8 as a colorless oil ($1.01 \mathrm{~g}, 88 \%$). Enantiomeric excess was determined by HPLC using a Chiralpak AS-H column (Daicel Chemical Industries, Ltd.) with UV detection at 220 nm . Isocratic elution of a racemic sample with 0.5% isopropanol in hexanes yielded two peaks with retention times of 10.485 min and 11.074 min . Coinjection of 8 with the racemic sample resulted in increased absorption for the latter peak. Injection of pure 8 gave a single peak, corresponding to an enantiomeric excess of greater than 99%.
$[\alpha]^{20}{ }_{D}=-35.1\left(c \quad 0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) $3370,1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $0.09(6 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.54(1 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.66-1.98(5 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=$ $5.93 \mathrm{~Hz}, 11.46 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=3.07 \mathrm{~Hz}, 10.55 \mathrm{~Hz}), 3.67$
($1 \mathrm{H}, \mathrm{dd}, J=3.58 \mathrm{~Hz}, 11.47 \mathrm{~Hz}$), $5.36(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.5,-5.4$, 18.2, 23.3, 25.8, 29.1, 33.5, 39.8, 40.7, 65.9, 67.2, 120.6, 132.7; HRMS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 271.2093$, found 271.2086

((1R,2R,4R)-2-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohexyl)methanol
To an oven-dried 250 mL flask was added a solution of 8 ($494 \mathrm{mg}, 1.83 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and sparged with a stream of argon for 30 minutes. Solid Crabtree's catalyst ($36.9 \mathrm{mg}, 45.8 \mu \mathrm{~mol}, 0.025 \mathrm{eq}$) was added in a single portion, giving an orange solution. The flask was then evacuated and backfilled with hydrogen gas (1 atm, balloon). After two hours, TLC (4:1 hexanes / EtOAc, anisaldehyde) showed complete conversion of the starting material to the hydrogenated product at $R_{f}=0.49$. The solvent was removed under reduced pressure to give a yellow oil, which was purified by column chromatography (9:1 hexanes / EtOAc) to afford 9 as a colorless oil (431 mg, 87\%).
$[\alpha]^{20}{ }_{\mathrm{D}}=+4.71\left(c 0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v $3418 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06$ $(6 \mathrm{H}, \mathrm{s}), 0.65(1 \mathrm{H}, \mathrm{dd}, J=12.30 \mathrm{~Hz}, 12.32 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.51 \mathrm{~Hz}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.91$ $(1 \mathrm{H}, \mathrm{m}), 1.11(1 \mathrm{H}, \mathrm{ddd}, J=3.52 \mathrm{~Hz}, 12.67 \mathrm{~Hz}, 25.31 \mathrm{~Hz}), 1.19(1 \mathrm{H}, \mathrm{m}), 1.35(2 \mathrm{H}, \mathrm{m}), 1.51$ ($1 \mathrm{H}, \mathrm{dd}, J=1.93 \mathrm{~Hz}, 12.78 \mathrm{~Hz}$), $1.60(1 \mathrm{H}$, ddd, $J=3.05 \mathrm{~Hz}, 6.25 \mathrm{~Hz}, 12.72 \mathrm{~Hz}), 1.69(1 \mathrm{H}$, m), $3.45(1 \mathrm{H}, \mathrm{dt}, J=5.65 \mathrm{~Hz}, 11.39 \mathrm{~Hz}), 3.56(3 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{dd}, J=5.32 \mathrm{~Hz}, 8.36 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.6,-5.4,18.2,22.6,25.8,30.1,32.5,34.8,38.6,44.0,45.4$, 67.3, 68.7; HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}: 273.2250$, found: 273.2244 .

(1R,2R,4R)-2-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohexanecarbaldehyde
(S2). To a flame-dried flask was added a solution of oxalyl chloride ($1.69 \mathrm{~mL}, 19.7 \mathrm{mmol}$, 2.00 eq.) in 46 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice / isopropanol bath, and a solution of DMSO ($1.75 \mathrm{~mL}, 24.6 \mathrm{mmol}, 2.50$ eq.) in 46 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly via cannula. After 15 minutes, a solution of 9 (2.68, $9.83 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for one hour. After this time, neat NEt_{3} ($8.21 \mathrm{~mL}, 59.0 \mathrm{mmol}, 6.00 \mathrm{eq}$.) was added dropwise, and the flask was allowed to warm slowly to room temperature at which point TLC (10:1 hexanes / EtOAc, anisaldehyde) showed complete conversion to the product at $R_{f}=0.43$. The flask was again cooled to $-78{ }^{\circ} \mathrm{C}$, and the reaction was quenched sequentially with methanol and saturated NaHCO_{3} solution. After warming to room temperature, the organic phase was sequentially washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated, and dried under high vacuum to give $\mathbf{S 2}$ as a yellow oil that was used directly in the next step without further purification (2.66 g , quantitative).
$[\alpha]^{20} \mathrm{D}=-13.2\left(c 0.63, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v $1727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.01$ $(6 \mathrm{H}, \mathrm{d}, J=3.29 \mathrm{~Hz}), 0.68(1 \mathrm{H}, \mathrm{dd}, J=12.11 \mathrm{~Hz}, 24.64 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{d}, J=$ $6.55 \mathrm{~Hz}), 0.93(1 \mathrm{H}, \mathrm{m}), 1.34(1 \mathrm{H}, \mathrm{ddd}, J=3.75 \mathrm{~Hz}, 13.02 \mathrm{~Hz}, 25.46 \mathrm{~Hz}), 1.42(1 \mathrm{H}, \mathrm{m}), 1.70$ $(2 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{dd}, J=7.45 \mathrm{~Hz}, 9.86 \mathrm{~Hz}), 3.55$ $(1 \mathrm{H}, \mathrm{dd}, J=4.66 \mathrm{~Hz}, 9.93 \mathrm{~Hz}), 9.53(1 \mathrm{H}, \mathrm{d}, J=4.27 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $-5.63,-5.58,18.3,22.5,25.9,26.3,31.5,33.5,36.3,40.8,53.9,67.2,204.8$; HRMS (ESI+) calculated for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$271.2093, found 271.2088.

S2
11

tert-butyl(((1R,2R,5R)-2-(2-methoxyvinyl)-5-methylcyclohexyl)methoxy)

dimethylsilane (11). To a 500 mL flame-dried flask was added (methoxymethyl)triphenylphosphonium chloride ($6.48 \mathrm{~g}, 18.9 \mathrm{mmol}, 1.92$ eq.) and 50 mL of THF to give a white slurry. The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice / isopropanol bath, and a 0.5 M solution of potassium bis(trimethylsilyl)amide (KHMDS) in toluene ($36.60 \mathrm{~mL}, 18.3 \mathrm{mmol}, 1.86 \mathrm{eq}$.) was added dropwise. The reaction mixture immediately turned dark orange and then dark red upon warming to $0^{\circ} \mathrm{C}$ in an ice bath. After 30 minutes, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{S} 2(2.66 \mathrm{~g}, 9.83 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 40 mL of THF was added slowly via cannula. The cooling bath was allowed to expire, and the reaction mixture was left to stir at room temperature overnight. After this time, TLC (10:1 hexanes / EtOAc, anisaldehyde) showed formation of the desired product at $R_{f}=0.77$, and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with EtOAc. The organic phase was then washed twice with water, once with 3% aqueous hydrogen peroxide, ${ }^{3}$ and once with brine before drying over anhydrous MgSO_{4}. The solvent was removed under reduced pressure, and the residue was purified by column chromatography ($25: 1$ hexanes / EtOAc) to give 11 as a 6:1 mixture of the trans and cis enol ether isomers ($2.47 \mathrm{~g}, 84 \%$).

IR (neat) v 1652, $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) trans: $\delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.78(1 \mathrm{H}, \mathrm{dd}$, $J=12.07 \mathrm{~Hz}, 24.75 \mathrm{~Hz}), 0.84-0.90(13 \mathrm{H}, \mathrm{m}), 1.19(2 \mathrm{H}, \mathrm{m}), 1.36(1 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{m})$, $1.82(1 \mathrm{H}, \mathrm{dd}, J=1.68 \mathrm{~Hz}, 13.03 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{dd}, J=6.93 \mathrm{~Hz}, 9.75 \mathrm{~Hz}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.60$ ($1 \mathrm{H}, \mathrm{dd}, J=2.87 \mathrm{~Hz}, 9.71 \mathrm{~Hz}$), $4.51(1 \mathrm{H}, \mathrm{dd}, J=9.24 \mathrm{~Hz}, 12.56 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{d}, J=12.62$ $\mathrm{Hz})$; cis: $\delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.66(1 \mathrm{H}, \mathrm{dd}, J=12.19 \mathrm{~Hz}, 24.69 \mathrm{~Hz}), 0.84-0.90(10 \mathrm{H}, \mathrm{m}), 0.94$ $(3 \mathrm{H}, \mathrm{d}, J=6.27 \mathrm{~Hz}), 1.19(2 \mathrm{H}, \mathrm{m}), 1.36(1 \mathrm{H}, \mathrm{m}), 1.63(3 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{dd}, J=1.68 \mathrm{~Hz}$, 13.03 Hz), $3.25(1 \mathrm{H}, \mathrm{m}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=3.37 \mathrm{~Hz}, 9.86 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J=$ $6.31 \mathrm{~Hz}, 9.56 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.30 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) trans: $\delta-5.37$, $-5.35,18.4,22.85,26.00,32.3,35.0,35.2,38.3,38.47,44.92,55.9,66.2,107.6,146.7$; cis: 145.7; HRMS (ESI+) calculated for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 299.2406, found 299.2399.

6-(($R, E)$-3-((1R,2R,4R)-2-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohexyl)-3-hydroxyprop-1-enyl)-2,2-dimethyl-4H-1,3-dioxin-4-one (14). A solution of 11 (1.16 g, $3.89 \mathrm{mmol}, 1.00$ eq.) in 20 mL of acetone and 2.50 mL of water was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Solid N-methylmorpholine oxide ($684 \mathrm{mg}, 5.84 \mathrm{mmol}, 1.50 \mathrm{eq}$.) was added in a single portion followed by a 0.08 M solution of osmium tetroxide in t-butanol ($973 \mu \mathrm{~L}, 77.8 \mu \mathrm{~mol}$, 0.02 eq.). The reaction mixture turned from colorless to dull yellow and then to darker brown upon warming to room temperature. After 45 minutes, TLC (10:1 hexanes / EtOAc, anisaldehyde) showed essentially complete consumption of the starting material and formation of the α-hydroxyaldehyde 12 at $R_{f}=0.25$. The reaction mixture was partitioned between water and ether, and the aqueous phase was extracted with two additional portions of ether. The combined organics were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was removed by filtration, 24 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ was added, and the solution was concentrated to a volume of $\sim 24 \mathrm{~mL}$ under reduced pressure. A solution of phosphorane 13 ($2.35 \mathrm{~g}, 5.84 \mathrm{mmol}, 1.50 \mathrm{eq}$.) in 12 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added in a single portion; the reaction mixture turned dark brown and was left to stir at room temperature overnight. After this time, TLC ($4: 1$ hexanes / $\mathrm{EtOAc}, \mathrm{KMnO}_{4}$) showed the two product diastereomers near $R_{f}=0.21$. The dark black reaction mixture was concentrated under reduced pressure, and the resulting oil was purified by column chromatography (9:1 hexanes / EtOAc). This yielded $586 \mathrm{mg}(36 \%)$ of the major product diastereomer 14 (upper spot near $R_{f}=0.21$), and $228 \mathrm{mg}(14 \%)$ of a mixture of 14 with the minor product diastereomer, for an overall yield of 50% with $4: 1$ diastereoselectivity, as determined by NMR.
$[\alpha]^{20}{ }_{\mathrm{D}}=+5.8\left(c \quad 0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 3456, 1728, $1652 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.10(6 \mathrm{H}, \mathrm{d}, J=5.77 \mathrm{~Hz}), 0.74(1 \mathrm{H}, \mathrm{dd}, J=12.70 \mathrm{~Hz}, 13.01 \mathrm{~Hz}), 0.85(1 \mathrm{H}, \mathrm{m})$, $0.88(3 \mathrm{H}, \mathrm{d}, J=6.51 \mathrm{~Hz}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.54 \mathrm{~Hz}, 12.91 \mathrm{~Hz}, 25.61 \mathrm{~Hz})$, $1.40(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{m}), 1.68(1 \mathrm{H}, \mathrm{m}), 1.71(6 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.35 \mathrm{~Hz}, 10.36 \mathrm{~Hz})$, $3.61(1 \mathrm{H}, \mathrm{dd}, J=2.31 \mathrm{~Hz}, 10.41 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{d}, J=6.29 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{s})$, $6.18(1 \mathrm{H}, \mathrm{dd}, J=1.75 \mathrm{~Hz}, 15.52 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=4.67 \mathrm{~Hz}, 15.53 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.54,-5.45,18.3,22.5,25.0,25.1,25.9,27.4,32.5,34.7,39.1,41.3,48.2$, 68.7, 73.0, 94.2, 106.3, 121.8, 142.2, 162.1, 163.2; HRMS (ESI+) calculated for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si}$ $\left([M+H]^{+}\right): 425.2723$, found 425.2720.

6-((R,E)-3-hydroxy-3-((1R,2R,4R)-2-(hydroxymethyl)-4-methylcyclohexyl)prop-1-enyl)-

2,2-dimethyl-4H-1,3-dioxin-4-one (S3). To a solution of 14 ($18.0 \mathrm{mg}, 42.4 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) in 1.14 mL of $1: 1 \mathrm{THF} /$ water was added glacial acetic acid ($1.70 \mathrm{~mL}, 29.7 \mathrm{mmol}, 700 \mathrm{eq}$.). The reaction mixture was heated to $37^{\circ} \mathrm{C}$ in an oil bath overnight, at which point TLC (3:1 EtOAc / hexanes, KMnO_{4}) showed complete consumption of the starting material and formation of the product at $R_{f}=0.35$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (1:1 hexanes / EtOAc $\rightarrow 100 \%$ EtOAc) to give S3 as a colorless oil ($12.0 \mathrm{mg}, 92 \%$).

IR (neat) v 3407, 1706, 1653, $1588 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.80(1 \mathrm{H}, \mathrm{dd}, J=$ $11.99 \mathrm{~Hz}, 24.27 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.51 \mathrm{~Hz}), 0.90(1 \mathrm{H}, \mathrm{m}), 1.22(2 \mathrm{H}, \mathrm{m}), 1.40(1 \mathrm{H}, \mathrm{m})$, $1.46(1 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=6.37$ $\mathrm{Hz}, 10.78 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{dd}, J=2.80 \mathrm{~Hz}, 10.75 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{m}), 5.31(1 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}$, dd, $J=1.74 \mathrm{~Hz}, 15.55 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=4.43 \mathrm{~Hz}, 15.54 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 21.4,23.9,24.2,26.5,31.3,33.6,37.9,39.8,46.0,66.5,72.4,93.3,105.4,120.9$,
140.9, 161.2, 162.0; HRMS (ESI+) calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 311.1858, found 311.1850.

S3

15
(1R,5aR,7R,9aR)-1-((E)-2-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)vinyl)-7-methylocta-hydrobenzo[e][1,3]dioxepin-3-one (15). To an oven-dried 20 mL vial containing 30 mg of $4 \AA$ molecular sieves was added a solution of $\mathbf{S 3}(6.5 \mathrm{mg}, 21 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in 1.00 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice / acetone bath, and neat pyridine ($30 \mu \mathrm{~L}, 37 \mu \mathrm{~mol}, 1.76$ eq.) was added followed by the dropwise addition of $400 \mu \mathrm{~L}$ of a 0.03 M solution of triphosgene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 30 minutes at $-78{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temperature, and additional $400 \mu \mathrm{~L}$ portions of the phosgene solution were added every hour until the starting material had been consumed. After a total of five such additions of triphosgene ($19.2 \mathrm{mg}, 65 \mu \mathrm{~mol}, 3.10 \mathrm{eq}$.), TLC (3:1 EtOAc / hexanes, KMnO_{4}) showed clean formation of the product at $\mathrm{R}_{\mathrm{f}}=0.75$. The reaction was quenched with pH 7 phosphate buffer and filtered through Celite to remove the molecular sieves. The pad was then rinsed with an additional 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 20 mL of pH 7 phosphate buffer. The organic layer of the filtrate was isolated, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (10:1 hexanes / EtOAc $\rightarrow 1: 1$ hexanes / EtOAc) to give cyclic carbonate 15 as a colorless oil ($5.2 \mathrm{mg}, 73 \%$).

IR (neat) $v ; 2360,2342,1757,1728,1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.71(1 \mathrm{H}, \mathrm{q}$, $J=11.99 \mathrm{~Hz}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.54 \mathrm{~Hz}), 1.02(2 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}), 1.63(2 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}$, s), $1.73(3 \mathrm{H}, \mathrm{s}), 1.81(3 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{dd}, J=9.62 \mathrm{~Hz}, 11.88 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}, J=2.98$ $\mathrm{Hz}, 11.90 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{dd}, J=3.86 \mathrm{~Hz}, 7.50 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{s}), 6.23(1 \mathrm{H}, \mathrm{dd}, J=0.90 \mathrm{~Hz}$, $15.47 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{dd}, J=7.78 \mathrm{~Hz}, 15.48 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 22.2,24.6$,
$25.6,28.0,31.9,34.1,36.5,37.9,46.1,74.7,83.4,97.0,107.0,128.6,131.1,153.3,161.1$, 161.3; HRMS (ESI+) calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 359.1471$, found 359.1468.

(R,E)-1-((1R,2R,4R)-2-((tert-butyldimethylsilyloxy)methyl)-4-methylcyclohexyl)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)allyl methyl carbonate (16). A solution of 14 (152 mg, $0.36 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was dissolved in 11 mL of THF, transferred to an oven-dried flask, and cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice / isopropanol bath. A 2.5 M solution of n-butyllithium in hexanes ($143 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.00 \mathrm{eq}$.) was added dropwise, and the solution turned yellow/orange. After five minutes, neat methyl chloroformate ($42 \mu \mathrm{~L}, 0.54 \mathrm{mmol}, 1.50 \mathrm{eq}$.) was added dropwise, and the reaction mixture was allowed to warm to room temperature. After this time, TLC (4:1 hexanes / EtOAc, KMnO_{4}) showed consumption of the starting material and formation of the product at $R_{f}=0.31$. The reaction was quenched with pH 7 phosphate buffer and diluted with EtOAc. The layers were separated, and the organic phase was washed with brine before drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (9:1 hexanes / EtOAc) to give 16 as a pale yellow oil ($115 \mathrm{mg}, 66 \%$).
$[\alpha]^{20}{ }_{\mathrm{D}}=-23.7\left(c 2.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 1749, 1659, $1269 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.04(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.85-0.90(13 \mathrm{H}, \mathrm{m}), 0.97(1 \mathrm{H}, \mathrm{m}), 1.21-1.68(7 \mathrm{H}, \mathrm{m})$, $1.71(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 3.53(1 \mathrm{H}, \mathrm{dd}, J=2.28 \mathrm{~Hz}, 10.31 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=4.88 \mathrm{~Hz}$, $10.13 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{s}), 5.54(1 \mathrm{H}, \mathrm{m}), 5.99(1 \mathrm{H}, \mathrm{d}, J=15.66 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{dd}$, $J=4.93 \mathrm{~Hz}, 15.67 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.49,-5.45,18.4,22.6,25.0,25.2$, $25.5,25.9,32.1,34.6,38.9,40.1,42.0,55.0,65.0,77.0,95.2,106.6,122.6,138.1,155.3$, 161.7, 162.2; HRMS (ESI+) calculated for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{Si}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 483.2778$, found 483.2777.

(R, E)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-1-((1R,2R,4R)-2-(hydroxymethyl)-4-

 methylcyclohexyl)allyl methyl carbonate (S4). To an oven-dried vial equipped with a stir bar was added a solution of carbonate 16 ($115 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 6.4 mL of $1: 1$ THF / water. Neat glacial acetic acid ($9.6 \mathrm{~mL}, 168 \mathrm{mmol}, 700$ eq.) was added, and the reaction mixture was heated to $37^{\circ} \mathrm{C}$ overnight. After this time, TLC (1:1 hexanes / EtOAc, KMnO_{4}) showed complete consumption of the starting material and formation of the product at $R_{f}=0.26$. The reaction mixture was cooled to room temperature, diluted with EtOAc, and quenched with saturated NaHCO_{3} solution. The organic layer was then isolated, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography ($2: 1$ hexanes / EtOAc) to give the alcohol S4 as a colorless oil (70 mg, 80\%).$[\alpha]^{20}{ }_{D}=-28.9\left(c 1.71, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 1748, 1724, 1658, $1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.89(1 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.52 \mathrm{~Hz}), 0.95(1 \mathrm{H}, \mathrm{dd}, J=11.04 \mathrm{~Hz}, 23.38 \mathrm{~Hz})$, $1.26(2 \mathrm{H}, \mathrm{m}), 1.39(1 \mathrm{H}, \mathrm{m}), 1.48(2 \mathrm{H}, \mathrm{m}), 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 3.63$ ($1 \mathrm{H}, \mathrm{dd}, J=3.29 \mathrm{~Hz}, 11.04 \mathrm{~Hz}$), $3.73(1 \mathrm{H}, \mathrm{dd}, J=4.57 \mathrm{~Hz}, 11.03 \mathrm{~Hz}$), $3.81(3 \mathrm{H}, \mathrm{s}), 5.33$ (1H, s), $5.58(1 \mathrm{H}, \mathrm{m}), 6.05(1 \mathrm{H}, \mathrm{dd}, J=1.17 \mathrm{~Hz}, 15.66 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.98 \mathrm{~Hz}, 15.65$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.5,25.0,25.2,26.1,32.1,34.5,38.7,40.0,42.4,55.2$, 65.4, 77.7, 95.4, 105.6, 123.0, 137.2, 155.3, 161.7, 162.0; HRMS (ESI+) calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 369.1913$, found 369.1911.

(R, E)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-1-((1R,2R,4R)-2-(hydroxymethyl)-4methylcyclohexyl)allyl methyl carbonate (17). To an oven-dried vial was added a solution of $\mathbf{S 4}$ ($70 \mathrm{mg}, 0.19 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Solid Dess-Martin periodinane ($120 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.53 \mathrm{eq}$.) was added in a single portion, and the reaction mixture became cloudy. After 15 minutes, TLC ($1: 1$ hexanes / EtOAc, KMnO_{4}) showed clean conversion of the alcohol to the aldehyde at $R_{f}=0.49$. The reaction was quenched with saturated NaHCO_{3} and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated NaHCO_{3} and brine before drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (3:1 hexanes / EtOAc) to give 17 as a colorless oil ($65 \mathrm{mg}, 93 \%$).
$[\alpha]^{20}{ }_{D}=-6.4\left(c 1.82, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (neat) v 1749, 1724, 1659, $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 0.87(1 \mathrm{H}, \mathrm{dd}, J=12.47 \mathrm{~Hz}, 24.81 \mathrm{~Hz}), 0.89(1 \mathrm{H}, \mathrm{m}), 0.94(3 \mathrm{H}, \mathrm{d}, J=6.52 \mathrm{~Hz})$, $1.27(1 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 1.76(2 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{dd}, J=1.69$ $\mathrm{Hz}, 12.93 \mathrm{~Hz}), 2.02(1 \mathrm{H}, \mathrm{t}, J=11.62 \mathrm{~Hz}), 2.40(1 \mathrm{H}, \mathrm{t}, J=11.73 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 5.34(1 \mathrm{H}$, s), $5.42(1 \mathrm{H}, \mathrm{m}), 6.07(1 \mathrm{H}, \mathrm{dd}, J=1.47 \mathrm{~Hz}, 15.64 \mathrm{~Hz}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=5.34 \mathrm{~Hz}, 15.64 \mathrm{~Hz})$, $9.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.48 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.2,24.9,24.95,25.2,31.6,33.7$, 34.6, 40.5, 51.0, 55.2, 77.8, 95.8, 106.7, 123.9, 136.0, 155.0, 161.6, 161.8, 202.8; HRMS (ESI+) calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 367.1757, found 367.1748.

(R,E)-3-(2,2-dimethyl-4-oxo-4H-1,3-dioxin-6-yl)-1-((1R,2S,4R)-2-((1E,3E)-hexa-1,3,5-

 trienyl)-4-methylcyclohexyl)allyl methyl carbonate (19). To a solution of 17 (65 mg, $0.18 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in 6.25 mL of benzene was added solid phosphonium salt 18 (146 mg , $0.36 \mathrm{mmol}, 2.00$ eq.). Approximately 2.0 mL of 1 M aqueous NaOH solution was added, and the biphasic reaction mixture was stirred vigorously at room temperature. The organic layer turned dark red and gradually faded to a dull brown over 15 minutes. Two additional 63 mg ($0.15 \mathrm{mmol}, 0.83$ eq.) portions of 18 were added after 15 minute intervals, and the reaction mixture was stirred for an additional 15 minutes at room temperature. After this time, TLC ($3: 1$ hexanes / EtOAc, KMnO_{4}) showed almost complete conversion to the product at $R_{f}=0.43$. The organic phase was isolated and washed with pH 7 phosphate buffer and brine before drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (4:1 hexanes / EtOAc) to afford 19 as a bright yellow oil ($48.8 \mathrm{mg}, 66 \%$).$[\alpha]^{20}{ }_{D}=+10.4\left(c 2.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ IR (neat) $v 2925,1752,1727,1658,1596,1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)_{3}$: $\delta 0.80-0.90(2 \mathrm{H}, \mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.48 \mathrm{~Hz}), 1.20-1.50(3 \mathrm{H}$, m), $1.65-1.75(3 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{s}), 2.11(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=10.07 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, J=17.11 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{dd}, J=9.25$ $\mathrm{Hz}, 15.08 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{dd}, J=1.45 \mathrm{~Hz}, 15.62 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{m}), 6.13(1 \mathrm{H}, \mathrm{dd}, J=10.28$ $\mathrm{Hz}, 15.04 \mathrm{~Hz}), 6.18(1 \mathrm{H}, \mathrm{dd}, J=10.28 \mathrm{~Hz}, 15.04 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{ddd}, J=10.06 \mathrm{~Hz}, 10.06$ $\mathrm{Hz}, 16.88 \mathrm{~Hz}), 6.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.93 \mathrm{~Hz}, 15.65 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.4$, $24.9,25.0,25.3,31.8,34.4,42.1,43.1,45.0,55.1,77.6,95.2,106.6,117.0,122.6,131.2$, 132.1, 133.1, 137.0, 137.9, 138.1, 154.9, 161.8, 162.1; HRMS (ESI+) calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H} \text {-acetone }]^{+}\right): 359.1858$, found 359.1864

19

20
methyl 3 -((1S,2S,4aS,4bS,6R,8aR,9S,9aS)-9-(methoxycarbonyloxy)-6-methyl-2-vinyl$\mathbf{2 , 4 a , 4 b , 5 , 6 , 7 , 8 , 8 a , 9 , 9 a - d e c a h y d r o - 1 H - f l u o r e n - 1 - y l) - 3 - o x o p r o p a n o a t e ~ (2 0) . ~ T o ~ a n ~ o v e n - ~}$ dried 20 mL vial containing 4Å molecular sieves (approximately 1 gram) was added 8.0 mL of toluene and 1.5 mL of anhydrous methanol ($37.0 \mathrm{mmol}, 426 \mathrm{eq}$.). This solution was degassed with a stream of argon for 30 minutes. After this time, the solvent mixture was transferred to a dry 20 mL vial containing neat 19 ($36.2 \mathrm{mg}, 86.9 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.). The resulting light yellow solution was tightly capped and heated to $110^{\circ} \mathrm{C}$ in an oil bath for 1.5 hours. After this time, the vial was removed from the heating bath and allowed to cool slowly to room temperature. TLC ($3: 1$ hexanes / EtOAc) showed the desired product at $\mathrm{R}_{\mathrm{f}}=$ 0.45 . The solvent was removed under reduced pressure, and the residue was purified by column chromatography ($4: 1$ hexanes / EtOAc) to give 20 as a colorless oil ($28.9 \mathrm{mg}, \mathbf{8 5 \%}$).
$[\alpha]^{20}{ }_{D}=+70.1\left(c 0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) v 2923, 2854, 2360, 2342, 1750, 1716, 1442, 1267 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.51(1 \mathrm{H}, \mathrm{dd}, J=11.67 \mathrm{~Hz}, 23.31 \mathrm{~Hz}), 0.69(1 \mathrm{H}, \mathrm{ddd}, J=$ $2.39 \mathrm{~Hz}, 11.49 \mathrm{~Hz}, 22.55 \mathrm{~Hz}), 0.77(1 \mathrm{H}, \mathrm{m}), 0.81(3 \mathrm{H}, \mathrm{d}, J=6.50 \mathrm{~Hz}), 1.06(1 \mathrm{H}, \mathrm{m}), 1.15$ ($1 \mathrm{H}, \mathrm{ddd}, J=3.53 \mathrm{~Hz}, 12.63 \mathrm{~Hz}, 25.35 \mathrm{~Hz}$), $1.24(1 \mathrm{H}, \mathrm{m}), 1.61(1 \mathrm{H}, \mathrm{dd}, J=2.05 \mathrm{~Hz}, 12.65$ $\mathrm{Hz}), 1.68(1 \mathrm{H}, \mathrm{d}, ~ J=11.47 \mathrm{~Hz}), 1.77(1 \mathrm{H}, \mathrm{ddd}, J=1.64 \mathrm{~Hz}, 11.43 \mathrm{~Hz}, 11.56 \mathrm{~Hz}), 1.94(1 \mathrm{H}$, ddd, $J=7.40 \mathrm{~Hz}, 11.41 \mathrm{~Hz}, 11.42 \mathrm{~Hz}), 2.38(1 \mathrm{H}, \mathrm{d}, J=10.31 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}$, dd, $J=6.51 \mathrm{~Hz}, 11.29 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}, J=15.20 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{d}, J=14.98 \mathrm{~Hz}), 3.37(3 \mathrm{H}$, s), $3.39(3 \mathrm{H}, \mathrm{s}), 4.91(1 \mathrm{H}, \mathrm{d}, J=16.93 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{dd}, J=1.09 \mathrm{~Hz}, 9.93 \mathrm{~Hz}), 5.26(1 \mathrm{H}$, dd, $J=4.76 \mathrm{~Hz}, 7.08 \mathrm{~Hz}$), $5.33(1 \mathrm{H}$, ddd, $J=3.31 \mathrm{~Hz}, 6.75 \mathrm{~Hz}, 9.50 \mathrm{~Hz}), 5.66 \mathrm{~Hz}(1 \mathrm{H}, \mathrm{ddd}$, $J=8.87 \mathrm{~Hz}, 9.90 \mathrm{~Hz}, 17.02 \mathrm{~Hz}$), $5.77(1 \mathrm{H}, \mathrm{d}, J=9.63 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 22.6, 29.7, 32.7, 36.1, 38.1, 43.4, 44.6, 45.4, 48.8, 49.2, 51.8, 51.8, 54.2, 57.2, 79.8, 116.8, 128.5, 129.3, 137.2, 155.9, 167.1, 201.9; HRMS (ESI+) calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NaO}_{6}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 413.1940$, found 413.1938 .

References:

1. Crabtree, R. H., Morehouse, S. M. and Quirk, J.M. Inorganic Syntheses. 1986, 24, 173-176.
2. Marshall, J. and Garofalo, A., J. Org. Chem. 1996, 61, 8732-8738.
3. We found that commercial (methoxymethyl)triphenylphosphonium chloride contained excess triphenylphosphine as an impurity that was copolar with 11. Washing the organic layer with 3% aqueous hydrogen peroxide converted the triphenylphosphine to triphenylphosphine oxide (as monitored by TLC), which was easily removed by column chromatography.

$\stackrel{\text { N }}{\substack{n}}$

S1

$\left.\begin{array}{l}\angle t^{\circ} \mathrm{S} \\ 8 t^{\circ} \mathrm{S}\end{array}\right\rangle$
$\stackrel{\sim}{\sim}$

$<_{0.07}^{0.08}$

S2

$\stackrel{o}{m}$

范
|

$\stackrel{\circ}{\circ} \stackrel{n}{\infty}$
O
M
ت̆

$\stackrel{\underset{\sim}{\infty}}{\stackrel{\circ}{\infty}} \stackrel{\stackrel{\circ}{\dot{\sim}}}{\underset{\sim}{\sim}}$
|r
$\underbrace{\sim}$
$\stackrel{\text { ® }}{\substack{0 \\ \hline \\ \hline}}$
$\stackrel{8}{\circ}$

16

S4

