Asymmetric 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides Catalyzed by Chiral Binaphthyldiimine$\mathrm{Ni}(\mathrm{II})$ Complexes

Hiroyuki Suga, * ${ }^{\dagger}$ Yuki Adachi, ${ }^{\dagger}$ Kouhei Fujimoto, ${ }^{\dagger}$ Yasuhisa Furihata, ${ }^{\dagger}$ Teruko Tsuchida, ${ }^{\dagger}$ Akikazu Kakehi, ${ }^{\dagger}$ and Toshihide Baba ${ }^{\ddagger}$

${ }^{\dagger}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan and ${ }^{*}$ Department of Environmental Chemistry \& Engineering, Interdisciplinary Graduate School of Science \& Engineering, Tokyo Institute of Technology, G1-14, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Supporting Information

Table of Contents
Experimental Section (General Methods, Materials, and General Procedure for preparation of (R) -BINIM-4X-2QN)S2-S7
Spectroscopic Data of 5-Hydroxymethyl-4,5-dihydroisoxazoles S7-
S9
References. S9-S10
Figure 2 and 3 in text S11-S12

Supporting Information

Experimental Section

General. Melting points were determined on a melting point apparatus and are uncorrected. IR spectra were taken with a FT/IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are expressed in parts per million downfield from tetramethylsilane as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 100 MHz spectrometer using broadband proton decoupling. Chemical shifts are expressed in parts per million using the middle resonance of CDCl_{3} (77.0 ppm) as an internal standard. For preparative column chromatography, Wakogel C-300HG was employed. All reactions were carried out under an argon atmosphere in dried glassware.

Materials. 2,4,6-Trimethylbenzonitrile oxide (1a) was prepared according to the procedure in the previous paper. ${ }^{1}$ Hydroximoyl chlorides as the precursors for the corresponding nitrile oxides were prepared by the procedure in the literature. ${ }^{1 \text { a }}$ Chiral Binaphthyldiimine (BINIM) ligands were prepared by the procedure reported previously. ${ }^{2}$ 3-Crotonoyl-2-oxazolidinone (2), ${ }^{3} 3$-crotonoyl-5,5-dimethyl-2oxazozolidinone (3), ${ }^{3}$ 5,5-dimethyl-3-(2-pentenoyl)-2-oxazolidinone (11), ${ }^{3} 3$-acryloyl-5,5-dimethyl-2oxazolidinone (12), ${ }^{3}$ and 5,5-dimethy-3-[3-(ethoxycarbonyl)propenoyl]-2-oxazolidinone (13) ${ }^{4}$ were prepared according to the procedure reported by Evans. 1-Benzyl-2-crotonyl-5,5-dimethyl-3pyrazolidinone (4), ${ }^{5}$ 2-acryloyl-1-benzyl-5,5-dimethyl-3-pyrazolidinone (14), ${ }^{6}$ and 1-benzyl-2-[3-(ethoxycarbonyl)propenoyl]-5,5-dimethy-3-pyrazolidinone $(\mathbf{1 5})^{5}$ were prepared according to the procedure reported in the literature. Powdered $4 \AA$ molecular sieves (MS $4 \AA$) is commercially available (Aldrich) and dried in vacuo at $200{ }^{\circ} \mathrm{C}$ for 12 h before use. $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is commercially available, and used without further purification. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified by distillation first from CaCl_{2} and then CaH_{2} under argon before used.

General Procedure for the Preparation of (R)-BINIM-4X-2QN was Exemplified by the Reaction of (R)-1,1'-Binaphthyl-2,2'-diamine with 4-(3,5-Xylyl)-2-quinolinecarbaldehyde. A suspension of (R)-1, 1^{\prime}-binaphthyl-2,2'-diamine $\quad(0.341 \quad \mathrm{~g}, \quad 1.2 \mathrm{mmol}), \quad 4$-(3,5-xylyl)-2quinolinecarbaldehyde $(0.627 \mathrm{~g}, 2.4 \mathrm{mmol})$, and MS $4 \AA(10.0 \mathrm{~g})$ in benzene $(25 \mathrm{~mL})$ was heated under reflux for 10 h . After removal of MS $4 \AA$ by filtration, the solvent was evaporated in vacuo. The

Supporting Information

residual solid was recrystallized from diethyl ether-hexane to give the corresponding (R)-BINIM-4(3,5-xylyl)-2QN ($0.488 \mathrm{~g}, 52 \%$).
(\boldsymbol{R})- N, N '-Bis[4-(3,5-xylyl)-2-quinolylmethylene]-1,1'-binaphthyl-2,2'-diamine: Yellow prisms;
 mp 136.0-138.0 ${ }^{\circ} \mathrm{C}$; (diethyl ether-hexane), $[\alpha]_{\mathrm{D}}{ }^{25}=-120.4^{\circ}(c=0.50$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr) 3449, 3055, 2918, 1587, 1552, 1504, 1425, 1377, 1224, 1026, 956, 854, 823, 767, $746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.14(12 \mathrm{H}$, s), $6.76(4 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{s}), 6.93-7.30(10 \mathrm{H}, \mathrm{m}), 7.53-7.65(6 \mathrm{H}, \mathrm{m})$, $7.84(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.95(2 \mathrm{H}, \mathrm{s}), 8.16(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 9.01(2 \mathrm{H}$, s); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 118.86(\mathrm{CH}), 118.92(\mathrm{CH}), 125.3$ $(\mathrm{CH}), 126.2(\mathrm{CH}), 126.9(\mathrm{CH}), 127.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.6(\mathrm{CH})$, 127.9 (CH), 128.5 (CH), 129.2 (CH), 129.6 (CH), $130.0(\mathrm{CH}), 130.8$ (CH), 131.3 (CH), 132.6 (C), 134.2 (C), 137.8 (C), 138.3 (C), 148.0 (C), 149.0 (C), 149.1 (C), 155.1 (C), 161.9 (CH); MS (EI) m/z 544, 295, 274, 144, 44. Satisfactory elemental analysis was not obtained because of instability of the compound under the analytical conditions.
(R)-N,N'-Bis(4-phenyl-2-quinolylmethylene)-1,1'-binaphthyl-2,2'-diamine: Yellow prisms; mp
 $126.0-128.0^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}=-111.9^{\circ}\left(c=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}(\mathrm{KBr})$ 3055, 2953, 2926, 1633, 1614, 1589, 1552, 1504, 1408, 1221, 1026, 968, 920, 821, 798, 769, 747, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ 6.94-7.05 $(4 \mathrm{H}, \mathrm{m}), 7.07-7.19(12 \mathrm{H}, \mathrm{m}), 7.24-7.29(4 \mathrm{H}, \mathrm{m}), 7.54-7.64(6 \mathrm{H}, \mathrm{m})$, $7.72(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.90(2 \mathrm{H}, \mathrm{s}), 8.15(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.96$ ($2 \mathrm{H}, \mathrm{s}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 119.1(\mathrm{CH}), 119.3(\mathrm{CH}), 125.7(\mathrm{CH}), 126.1$ (CH), 127.1 (CH), 127.6 (CH), 127.76 (CH), 727.78 (CH), $128.1(\mathrm{CH})$, 128.8 (CH), 129.5 (CH), 129.9 (CH), 130.1 (CH), 131.1 (CH), 132.8 (C), 134.5 (C), 138.5 (C), 148.1 (C), 148.7 (C), 149.3 (C), 155.3 (C), 161.9 (CH); MS (EI) m/z 510 ($\mathrm{M}^{+}-4$-phenylquinoline), 499, 482, 357, 295, 278, 267, 219, 204, 176, 40, 29, 12. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{34} \mathrm{~N}_{4}$: C, 87.37; H, 4.79; N, 7.84%. Found: C, 87.28; H, 5.01; N, 7.71%.

Supporting Information

(R)-N,N'-Bis(4-methyl-2-quinolylmethylene)-1,1'-binaphthyl-2,2'-diamine: Yellow prisms; mp $192.0-193.0{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}=-4.00^{\circ}\left(c=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{IR}(\mathrm{KBr})$
 3056, 2953, 2922, 2868, 1595, 1557, 1505, 1447, 1427, 1412, 1379, 1346, 1281, 1217, 1157, 1128, 1026, 961, 866, 823, 799, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.91(6 \mathrm{H}, \mathrm{s}), 7.00-7.18(6 \mathrm{H}, \mathrm{m}), 7.25-7.42(6 \mathrm{H}, \mathrm{m})$, 7.57-7.77 ($8 \mathrm{H}, \mathrm{m}$), $8.12(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.94(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 18.4\left(\mathrm{CH}_{3}\right), 119.3(\mathrm{CH}), 123.9(\mathrm{CH}), 125.4(\mathrm{CH}), 127.0(\mathrm{CH})$, 127.4 (CH), 127.9 (C), 128.3 (CH), 128.5 (CH), 129.0 (CH), 129.1 (CH), 129.8 (CH), 131.0 (CH), 132.6 (C), 134.2 (C), 144.3 (C), 148.3 (C), 148.7 (C), 154.9 (C), 126.6 (CH); MS (EI) m/z $590\left(\mathrm{M}^{+}\right), 176,138,86,69,57,43,27,17$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{4}$: C, 85.40; H, 5.12; N, 9.48 \%. Found: C, 85.63; H, 5.29; N, 9.33%.

Preparation of 4-(3,5-xylyl)-2-quinolinecarbaldehyde. 4-(3,5-Xylyl)-2-quinolinecarbaldehyde was prepared from anthranilic acid by 5 step shown in Scheme S1.

Scheme S1. Preparation of of 4-(3,5-xylyl)-2-quinolinecarbaldehyde

2-Methyl-4H-3,1-benzoxazoline-4-one was prepared according to the procedure reported in the literature. ${ }^{7}$ 2-Amino-3', 5^{\prime}-dimethylbenzophenone was synthesized according to the procedure reported for the synthesis of 2-amino-3'-chlorobenzophenone in the literature. ${ }^{7}$ To a solution of 2-methyl-4H-

Supporting Information

3,1-benzoxazoline-4-one ($2.42 \mathrm{~g}, 15 \mathrm{mmol}$) in benzene (30 mL) and diethyl ether (10 mL) was added a solution of 3,5-dimethylphenylmagnesium bromide, which was prepared from magnesium (0.301 g , 12.4 mmol) and 1-bromo-3,5-dimethylbenzene ($1.5 \mathrm{~mL}, 11.3 \mathrm{mmol}$), in diethyl ether (50 mL) over a period of 2 h at $0^{\circ} \mathrm{C}$. After stirring the mixture at room temperature for 2 h , the mixture was quenched with 2 N hydrochloric acid $(16.8 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$. A stirring was continued for 10 min at $-10^{\circ} \mathrm{C}$, and then the organic layer was separated. The organic layer was washed with water (50 mL), $5 \% \mathrm{NaOH}$ solution ($30 \mathrm{~mL} \times 2$), and then water (50 mL). The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was reflux with 6 N hydrochloric acid (7.5 mL) in ethanol (15 mL) for 10 h . After cooling the mixture to room temperature, 5 N ammonium hydroxide solution (12.1 mL) was added. The mixture was extracted with benzene (12 mL), and then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was chromatographed on silica gel with hexane-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) to give 2 -amino- $3^{\prime}, 5^{\prime}$ '-dimethylbenzophenone ($0.575 \mathrm{~g}, 37 \%$ (2 steps)).

2-Amino-3',5'-dimethylbenzophenone: Yellow needles; mp 66.0-67.0 ${ }^{\circ} \mathrm{C}$ (diethyl ether-hexane); IR (KBr) 3450, 3333, 2920, 2860, 1622, 1545, 1477, 1446, 1334, 1309, 1221, 1161, 1032, 966, 852, 785 $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37,(6 \mathrm{H}, \mathrm{s}), 6.06(2 \mathrm{H}, \mathrm{brs}), 6.58-6.62(1 \mathrm{H}, \mathrm{m}), 6.72-6.74(1 \mathrm{H}, \mathrm{m}), 7.14-7.17$ $(1 \mathrm{H}, \mathrm{m}), 7.22-7.24(2 \mathrm{H}, \mathrm{m}), 7.27-7.31(1 \mathrm{H}, \mathrm{m}), 7.45-7.47(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.3\left(\mathrm{CH}_{3}\right)$, 115.4 (CH), 116.8 (CH), 118.3 (C), $126.7(\mathrm{CH}), 132.6(\mathrm{CH}), 134.0(\mathrm{CH}), 134.5(\mathrm{CH}), 137.6(\mathrm{C}), 140.0$ (C), 150.7 (C), 199.4 (C); MS (EI) m/z 225 (${ }^{+}$), 210, 120, 105, 92, 65; HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}\left(\mathrm{M}^{+}\right):$225.1154. Found: 225.1173.

4-(3,5-Xylyl)-2-methylquinoline was synthesized by the procedure reported for the synthesis of 2-methyl-4-phenylqunoline. ${ }^{8}$ A solution of 2-amino-3',5'-dimethylbenzophenone ($1.14 \mathrm{~g}, 5.1 \mathrm{mmol}$), acetone ($0.74 \mathrm{~mL}, 10.3 \mathrm{mmol}$), and concentrated sulfuric acid (0.1 mL) was heated under reflux in acetic acid (10 mL) for 7 h . After cooling the mixture to $0{ }^{\circ} \mathrm{C}$, the solution was neutralized with concentrated ammonium hydroxide solution and the mixture was extracted with dichloromethane (30 $\mathrm{mL} x$ 3). The organic layer was dried over MgSO_{4} and evaporated in vacuo. The residue was chromatographed on silica gel with hexane-ethyl acetate ($9: 1 \mathrm{v} / \mathrm{v}$) to give 4 -(3,5-xylyl)-2methylquinoline ($1.07 \mathrm{~g}, 85 \%$).

Supporting Information

4-(3,5-Xylyl)-2-methylquinoline: Colorless needles; mp 89.5-90.0 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $\mathrm{IR}(\mathrm{KBr})$ 3003, 2916, 2860, 2361, 1701, 1589, 1556, 1508, 1448, 1406, 1373, 1319, 1292, 1259, 1222, 956, 879, $852,773,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.41(6 \mathrm{H}, \mathrm{s}), 2.77(3 \mathrm{H}, \mathrm{s}), 7.10(2 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.21(1 \mathrm{H}, \mathrm{s})$, 7.40-7.45 ($1 \mathrm{H}, \mathrm{m}$), 7.65-7.69 $(1 \mathrm{H}, \mathrm{m}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 8.07-8.09(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.3$ $\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 121.8(\mathrm{CH}), 124.9(\mathrm{C}), 125.3(\mathrm{CH}), 125.5(\mathrm{CH}), 127.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.9$ (CH), 129.6 (CH), 137.7 (C), 137.8 (C), 148.1 (C), 148.6 (C), 158.0 (C); MS (EI) m/z 247 (M ${ }^{+}$), 230, $217,202,189,165,115,101,77,49,35,24$; HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}\left(\mathrm{M}^{+}\right): 247.1361$. Found: 247.1380. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}$: C, 87.41; H, 6.93; N, 5.66 \%. Found: C, 87.20; H, 7.24; N, 5.56 \%.

4-(3,5-Xylyl)-2-quinolinecarbaldehyde was synthesized by the procedure reported for the synthesis of 4-methyl-2-quinolinecarbaldehyde. ${ }^{9}$ A solution of 4-(3,5-Xylyl)-2-methylquinoline ($1.04 \mathrm{~g}, 4.20 \mathrm{mmol}$) and $\mathrm{SeO}_{2}(0.515 \mathrm{~g}, 4.60 \mathrm{mmol})$ in 1,4-dioxane (25 mL) was heated under reflux for 6 h . After filtration of insoluble materials, the filtrate was evaporated in vacuo. The residue was chromatographed over silica gel with hexane-ethyl acetate (99: $1 \mathrm{v} / \mathrm{v}$) to give 4-(3,5-xylyl)-2-quinolinecarbaldehyde (0.966 g , $88 \%)$.

4-(3,5-Xylyl)-2-quinolinecarbaldehyde: Colorless needles; mp 112.5-114.0 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $\operatorname{IR}(\mathrm{KBr}) 3391,3001,2916,2816,2361,1979,1705,1604,1583,1462,1437,1413,1379,1359,1305$, $1267,1178,1128,1030,993,949,912,900,873,846,769 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.42(6 \mathrm{H}, \mathrm{s}), 7.12-$ $7.15(2 \mathrm{H}, \mathrm{m}), 7.15-7.17(1 \mathrm{H}, \mathrm{m}), 7.63-7.67(1 \mathrm{H}, \mathrm{m}), 7.81-7.86(1 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{s}), 8.03-8.06(1 \mathrm{H}, \mathrm{m})$, 8.30-8.32 ($1 \mathrm{H}, \mathrm{m}$), $10.3(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.4\left(\mathrm{CH}_{3}\right), 117.4(\mathrm{CH}), 126.2(\mathrm{CH}), 127.2(\mathrm{CH})$, 128.6 (C), 129.0 (CH), 130.1 (CH), 130.3 (CH), 130.6 (CH), 137.2 (C), 138.2 (C), 148.3 (C), 150.3 (C), 151.9 (C), $193.8(\mathrm{CH})$; MS (EI) m/z $261\left(\mathrm{M}^{+}\right), 233$, 218; HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}\left(\mathrm{M}^{+}\right)$: 261.1154. Found: 261.1138. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 82.73$; H, 5.79; N, 5.36 \%. Found: C, 82.68; H, 5.78; N, 5.42%.

Preparation of 4-phenyl-2-quinolinecarbaldehyde. 2-Methyl-4-phenylqunoline was prepared by the procedure reported in the literature. ${ }^{8}$ 4-Penyl-2-quinolinecarbaldehyde was synthesized by the procedure reported for the synthesis of 4-methyl-2-quinolinecarbaldehyde. ${ }^{9}$ A solution of 4-Pheny-2methylquinoline ($0.934 \mathrm{~g}, 4.30 \mathrm{mmol}$) and $\mathrm{SeO}_{2}(0.520 \mathrm{~g}, 4.70 \mathrm{mmol})$ in 1,4 -dioxane (20 mL) was

Supporting Information

heated under reflux for 15 h . After filtration of insoluble materials, the filtrate was evaporated in vacuo. The residue was chromatographed over silica gel with hexane-ethyl acetate ($99: 1 \mathrm{v} / \mathrm{v}$) to give 4 -phenyl-2-quinolinecarbaldehyde $(0.751 \mathrm{~g}, 76 \%)$.

4-Phenyl-2-quinolinecarbaldehyde: Colorless prisms; mp 92.0-94.0 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hexane); IR (KBr) $3057,2824,1711,1585,1512,1489,1446,1415,1358,1194,1124,1078,1030,908,896,783,765 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.50-7.59(5 \mathrm{H}, \mathrm{m}), 7.63-7.67(1 \mathrm{H}, \mathrm{m}), 7.82-7.86(1 \mathrm{H}, \mathrm{m}), 7.99(1 \mathrm{H}, \mathrm{s}), 8.01-8.03$ $(1 \mathrm{H}, \mathrm{m}), 8.31-8.34(1 \mathrm{H}, \mathrm{m}), 10.3(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 117.3,125.9,128.3,128.5,128.6,129.0$, 129.3, 130.0, 130.6, 137.1, 148.2, 149.7, 151.8, 193.5; MS (EI) m/z $233\left(\mathrm{M}^{+}\right), 219,204,190,178,165$, 151, 138, 77, 61, 57, 43, 32, 27, 17. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 82.38 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.00 \%$. Found: C, 82.42; H, 4.68; N, 6.03\%.

4-Methyl-2-quinolinecarbaldehyde was prepared from commercially available 2,4-dimethylquinoline by the procedure reported in the literature. ${ }^{9}$

Spectroscopic Data of 5-Hydroxymethyl-4,5-dihydroisoxazoles derived from isoxazolines 4-Me-16b, 4-Me-17b, 4-Me-18b, 4-Me-19c, and 4-Me-19e were shown below.
(4S,5S)-4-Ethyl-5-hydroxymethyl-3-phenyl-4,5-dihydroisoxazole: Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}=+133.2^{\circ}$
 ($c=0.08, \mathrm{CHCl}_{3}, 88 \%$ ee); IR (neat) 2965, 2935, 2360, 1457, 1360, 1074, 1025, $914,888,768,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95(3 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 1.58-1.69$ $(1 \mathrm{H}, \mathrm{m}), 1.73-1.83(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{brs}), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=3.4,4.3,8.0 \mathrm{~Hz})$, $3.64(1 \mathrm{H}, \mathrm{dd}, J=5.8,12.2 \mathrm{~Hz}), 3.74(1 \mathrm{H}, \mathrm{dd}, J=3.6,12.2 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{ddd}, J=3.6,4.3,5.8), 7.37-$ $7.44(3 \mathrm{H}, \mathrm{m}), 7.63-7.63(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.8\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 50.4(\mathrm{CH}), 64.3\left(\mathrm{CH}_{2}\right)$, 86.0 (CH), 126.9 (CH), 128.5 (C), 128.6 (CH), 129.9 (CH), 159.6 (C); MS (EI) m/z 205 (M+) 175, 158, 145, 128, 102, 89, 75, 38; HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right):$205.1102. Found: 205.1130. The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, i-PrOH-hexane (3:97 $\mathrm{vol} / \mathrm{vol})$, detector: UV 254 nm , Flow rate $=0.5 \mathrm{ml} / \mathrm{min}, 35^{\circ} \mathrm{C}$). $\mathrm{t}_{\text {minor }}=78.7 \mathrm{~min}, \mathrm{t}_{\text {major }}=90.3 \mathrm{~min}$.
(5S)-5-Hydroxymethyl-3-phenyl-4,5-dihydroisoxazole: Colorless prisms; mp 76.0-77.0 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $[\alpha]_{\mathrm{D}}{ }^{25}=+159.5^{\circ}\left(c=0.14, \mathrm{CHCl}_{3}, 92 \%\right.$ ee $) ; \operatorname{IR}(\mathrm{KBr}) 5348,2942,1448,1362,1103,1054,901,766$,

Supporting Information

$694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.06(1 \mathrm{H}, \mathrm{brs}), 3.29(1 \mathrm{H}, \mathrm{dd}, J=8.0,16.8 \mathrm{~Hz})$, $3.39(1 \mathrm{H}, \mathrm{dd}, J=10.8,16.8 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{dd}, J=4.6,12.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J$ $=2.9,12.0 \mathrm{~Hz}), 4.84-4.91(1 \mathrm{H}, \mathrm{m}), 7.38-7.42(3 \mathrm{H}, \mathrm{m}), 7.66-7.68(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 36.4\left(\mathrm{CH}_{2}\right), 63.7\left(\mathrm{CH}_{2}\right), 81.2(\mathrm{CH})$, $126.6(\mathrm{CH}), 128.6(\mathrm{CH})$, 129.1 (C), 130.0 (CH), 156.9 (C); MS (EI) m/z 177(M ${ }^{+}$), 146, 118, 104, 91, 78, 63. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $67.78 ; \mathrm{H}, 6.26 ; \mathrm{N}, 7.90 \%$. Found: C, $67.66 ; \mathrm{H}, 6.22 ; \mathrm{N}, 7.75 \%$. The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, i-PrOH-hexane (3:97 vol/vol), detector: UV 254 nm , Flow rate $=0.5 \mathrm{ml} / \mathrm{min}, 35^{\circ} \mathrm{C}$). $\mathrm{t}_{\text {minor }}=132.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=149.3 \mathrm{~min}$.
(4S,5S)-4-Ethoxycarbony-5-hydroxymethyl-3-phenyl-4,5-dihydroisoxazole: Colorless oil; $[\alpha]_{D}{ }^{25}$
 $=+75.3^{\circ}\left(c=0.09, \mathrm{CHCl}_{3}, 75 \%\right.$ ee $) ;$ IR (neat) $3439,3020,1736,1261,1217,925$, $771,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.18(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.95(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH})$, $3.74(1 \mathrm{H}, \mathrm{dd}, J=3.9,12.4 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=3.4,12.4 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{dq}, J=$ $3.9,7.1 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{ddd}, J=3.4,3.9,6.6 \mathrm{~Hz}), 7.35-7.46(3 \mathrm{H}, \mathrm{m}), 7.69-7.73$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 29.8\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 62.1(\mathrm{C}), 63.3\left(\mathrm{CH}_{2}\right), 85.8(\mathrm{CH})$, $126.9(\mathrm{CH}), 128.5(\mathrm{CH}), 130.2(\mathrm{CH}), 154.6$ (C), $159.0(\mathrm{C}) ;$ MS (EI) m/z 249 (M ${ }^{+}$), 218, 190, 146, 77, 37. HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right):$249.1001. Found: 249.1024. The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, i-PrOH-hexane (1: $19 \mathrm{vol} / \mathrm{vol}$), detector: UV 254 nm , Flow rate $\left.=0.5 \mathrm{ml} / \mathrm{min}, 35^{\circ} \mathrm{C}\right) . \mathrm{t}_{\text {minor }}=54.9 \mathrm{~min}, \mathrm{t}_{\text {major }}=68.5 \mathrm{~min}$.
(5S)-5-Hydroxymethyl-3-(p-methoxyphenyl)-4,5-dihydroisoxazole: Colorless prisms; mp 143.0-
 $144.0^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+125.7^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}, 90 \%\right.$ ee $)$; IR (KBr) 3357, 2940, 1701, 1612, 1519, 1366, 1265, 901, 833, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ dd, $J=10.2,16.6 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=4.6,12.2 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=3.4,12.2 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s})$, $4.81(1 \mathrm{H}, \mathrm{dddd}, J=3.4,4.6,7.8,10.2 \mathrm{~Hz}), 6.90-6.93(2 \mathrm{H}, \mathrm{m}), 7.58-7.62(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $36.7\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{3}\right), 63.8\left(\mathrm{CH}_{2}\right), 80.9(\mathrm{CH}), 114.0(\mathrm{CH}), 121.7(\mathrm{C}), 128.1(\mathrm{CH}), 156.4(\mathrm{C}), 160.9$ (C); MS (EI) m/z 207(M ${ }^{+}$), 176, 121, 91, 77, 56. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, 63.76; H, 6.32; N, 6.76 \%. Found: C, 63.47 ; H, 6.03 ; N, 6.60%. The enantiomeric excess was determined by HPLC

Supporting Information

analysis (Daicel Chiralpak AD-H, i-PrOH-hexane ($1: 19 \mathrm{vol} / \mathrm{vol}$), detector: UV 254 nm , Flow rate $=0.5$ $\left.\mathrm{ml} / \mathrm{min}, 35^{\circ} \mathrm{C}\right) . \mathrm{t}_{\text {minor }}=111.4 \mathrm{~min}, \mathrm{t}_{\text {major }}=124.2 \mathrm{~min}$.
(5S)-3-(p-Chlorophenyl)-5-hydroxymethyl-4,5-dihydroisoxazole: Colorless prisms; mp 87.0-88.0
 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane $) ;[\alpha]_{\mathrm{D}}{ }^{25}=+127.8^{\circ}\left(c=0.20, \mathrm{CHCl}_{3}, 79 \%\right.$ ee $)$; IR (KBr) 3389, 2942, 1597, 1496, 1405, 1352, 1093, 1045, 905, 834, $809 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(1 \mathrm{H}, \mathrm{dd}, J=7.6,16.6 \mathrm{~Hz}), 3.37(1 \mathrm{H}, \mathrm{dd}, J=10.7,16.6$ $\mathrm{Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=4.4,12.4 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=3.2,12.4 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{dddd}, J=3.2,4.4,7.6$, $10.7 \mathrm{~Hz}), 7.35-7.39(2 \mathrm{H}, \mathrm{m}), 7.56-7.60(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 36.3\left(\mathrm{CH}_{2}\right), 63.6\left(\mathrm{CH}_{2}\right), 81.5(\mathrm{CH})$, 81.5 (C), 127.8 (CH), 128.9 (CH), 136.0 (C), 156.0 (C); MS (EI) m/z 211(M ${ }^{+}$), 180, 111, 75, 61, 41. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{Cl}$: C, 56.75; H, 4.76; N, 6.62 \%. Found: C, 56.87; H, 4.63; N, 6.46 \%. The enantiomeric excess was determined by HPLC analysis (Daicel Chiralpak AD-H, i-PrOH-hexane ($1: 19$ $\mathrm{vol} / \mathrm{vol})$, detector: UV 254 nm , Flow rate $=0.5 \mathrm{ml} / \mathrm{min}, 35^{\circ} \mathrm{C}$). $\mathrm{t}_{\text {minor }}=68.5 \mathrm{~min}, \mathrm{t}_{\text {major }}=78.8 \mathrm{~min}$.

References

1) (a) Liu, K.-C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45, 3916. (b) Grundmann, C.; Dean, J. M. J. Org. Chem. 1965, 30, 2809.
2) (a) Suga, H.; Kakehi, A.; Mitsuda, M. Bull. Chem. Soc. Jpn. 2004, 77, 561. (b) Suga, H.; Kitamura, T.; Kakehi, A.; Baba, T. Chem. Commun. 2004, 1414. (c) Suga, H.; Nakajima, T.; Itoh, K.; Kakehi, A. Org. Lett. 2005, 7, 1431. (d) Suga, H.; Funyu, A. Kakehi, A. Org. Lett. 2007, 9, 97.
3) Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559.
4) Evans, D. A.; Schejdt, K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480.
5) Sibi, M. P.; Itoh, K.; Jasperse, C. P. J. Am. Chem. Soc. 2004, 126, 5366.
6) Ho., G.-J.; David, J. Mathre, D. J. J. Org. Chem. 1995, 60, 2271.
7) Walsh, D. A. Synthesis 1980, 677.
8) Fehnel, E. J. Org. Chem. 1966, 31, 2899.
9) Sakamoto, T.; Sakasai, T.; Yamanaka, H. Chem. Pharm. Bull. 1981, 29, 2485.
