Supporting Information for

Syntheses, Structures and Properties of Tricarbonyl (chloro)Rhenium(I)ComplexeswithRedox-ActiveTetrathiafulvalene-Pyrazole Ligands

Wei Liu,[†] Jing Xiong,[†] Yong Wang,[‡] Xin-Hui Zhou,[†] Ru Wang,[†] Jing-Lin Zuo,^{*†} and Xiao-Zeng You[†]

State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.

Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China

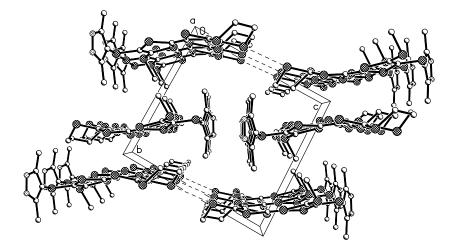
	Orbital Excitations ^{<i>a</i>}	Character	Calcd/nm	f^b	Exptl/nm
5a	279→283	ICT	388	0.0336	333
	278→282	π→π*	375	0.0426	
5a'+	274β→279β	<i>π</i> →π*	923	0.0788	823
	273β→279β	ICT	829	0.0627	
5a ²⁺	274→279	$ ICT \\ \pi \rightarrow \pi^* $	926	0.1929	822
	273→279	π→π*	922	0.1160	
5a ^{•3+}	270α→279α	π→π*	1060	0.0292	822
5a ⁴⁺	273→278	π→π*	882	0.3561	821

Table S1. Main experimental and calculated optical transitions for 5a-d and their corresponding oxidized states.

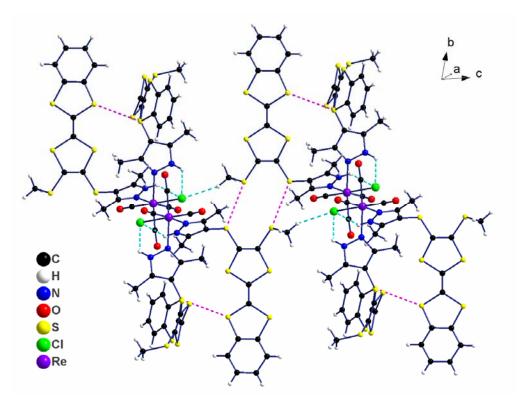
^{*a*} The molecular orbital No. involved in each transition; ^{*b*} Oscillator strength.

	Orbital Excitations	Character	Calcd /nm	f^b	Exptl /nm
5b	256→261	π→π*	357	0.0337	358(sh)
	257→260	$\pi \rightarrow \pi^*$	367	0.0349	
5b ^{•+}	251β→257β	ICT	800	0.0986	776
	252β→257β	π→π*	804	0.0451	
5b ²⁺	252→257	ICT $\pi \rightarrow \pi^*$	835	0.2012	768
	251→257	ICT $\pi \rightarrow \pi^*$	877	0.1344	
5b ^{•3+}	252α→257α	π→π*	1015	0.0124	765
5b ⁴⁺	251→257	π→π*	821	0.0053	777

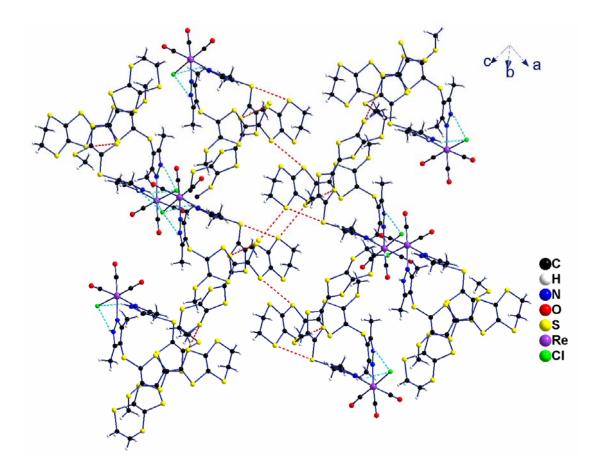
^{*a*} The molecular orbital No. involved in each transition; ^{*b*} Oscillator strength.

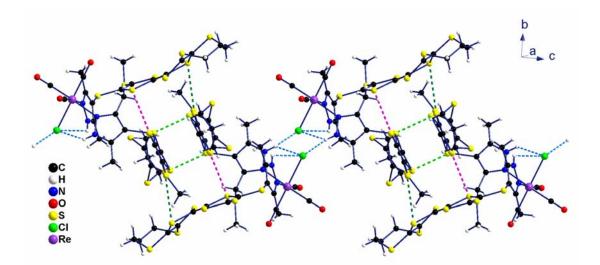

_

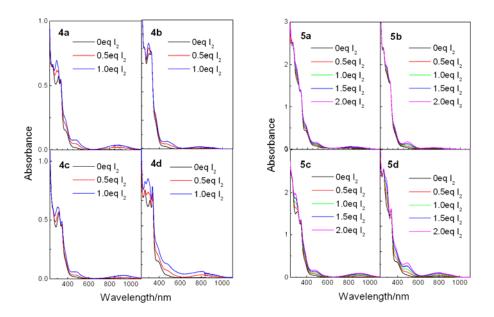
	Orbital Excitations	Character	Calcd /nm	f^b	Exptl /nm
5c	276→281	ICT	355	0.0295	343
5c*+	$271\beta \rightarrow 277\beta$	ICT	968	0.0842	906
5c ²⁺	271→277	$ICT \\ \pi \rightarrow \pi^*$	985	0.1924	909
	272→277	$ICT \\ \pi \rightarrow \pi^*$	1011	0.1731	
5c ^{•3+}	$274\beta \rightarrow 277\beta$	<i>π</i> →π*	937	0.0544	909
	275β→276β	π→π*	954	0.3298	
5c ⁴⁺	271→277	ICT	893	0.1683	903


^{*a*} The molecular orbital No. involved in each transition; ^{*b*} Oscillator strength.

	Orbital Excitations	Character	Calcd /nm	f^b	Exptl /nm
5d	285→289	π→π*	388	0.0367	337 392
	284→287	<i>π</i> →π*	392	0.0242	
5d*+	279β→285β	ICT	852	0.0875	815
	280β→285β	π→π*	903	0.0587	
5d ²⁺	279→285	ICT π→π*	929	0.1303	813
	280→285	$ ICT \\ \pi \rightarrow \pi^* $	936	0.2113	
5d* ³⁺	283β→285β	π→π*	881	0.1647	812
5d ⁴⁺	279→285	ICT	892	0.0015	814


^{*a*} The molecular orbital No. involved in each transition; ^{*b*} Oscillator strength.


Figure S1. The packing diagram of compound **4d** view along the *a* axis(the dotted line representing the S…S non-bonded contacts less than 3.7 Å).


Figure S2. The packing diagram of compound **5b**. The dotted line representing the S…S non-bonded contacts (red) less than 3.7 Å and the H-bonding (blue).

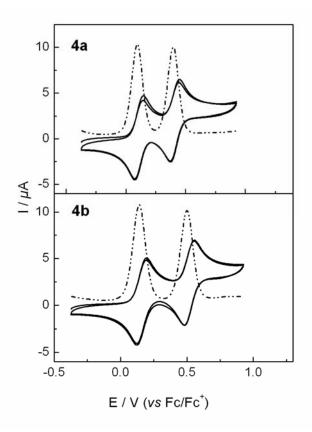
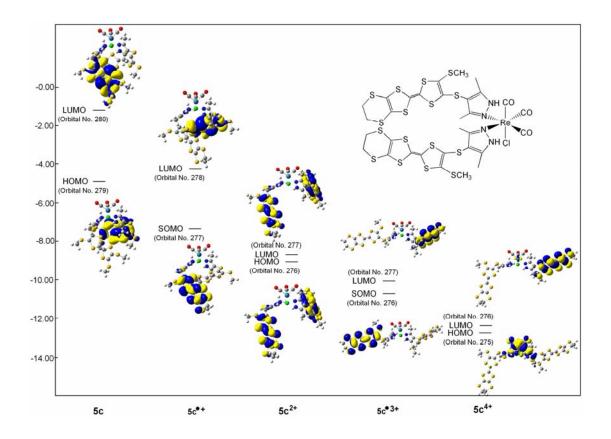

Figure S3. The packing diagram of compound **5c**. The dotted line representing the S…S non-bonded contacts (red) less than 3.7 Å and the H-bonding (blue).


Figure S4. The packing diagram of compound **5d**. The dotted line representing the S…S non-bonded contacts (red and green) less than 3.7 Å and the H-bonding (blue).



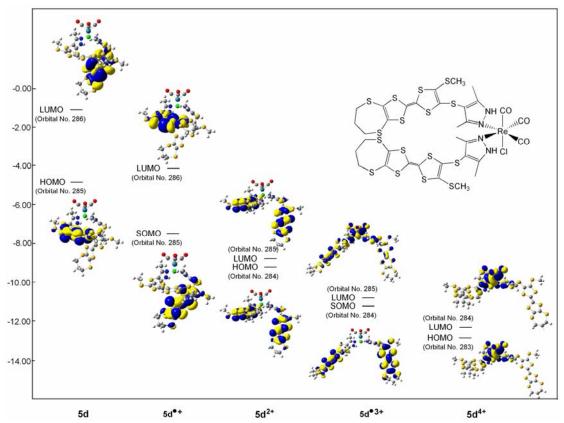

Figure S5. UV-vis absorption spectra for **4a–d** (4×10^{-5} M) and **5a–d** (4×10^{-5} M), in the presence of varying amounts of I₂, measured in CH₂Cl₂.

Figure S6. Cyclic voltammogram (solid line) and differential pulse voltammogram (dash-dotted line) for compounds **4a** and **4b** (10^{-3} M) , measured in CH₂Cl₂ (vs Fc/Fc⁺). The scan rate for CV measurements was 50 mV/s; the step increment and pulse width for DPV measurements were 4 mV and 0.05s, respectively.

Figure S7. Frontier orbitals for complexes **5b–d** in the neutral, radical cation, dication, trication and tetracation states.