Supporting Information

Shape-selective Adsorption and Fluorescent Sensing of Aromatics in a Flexible Network of Tetrakis[(4methylthiophenyl)ethynyl]silane and AgBF₄

Guo Huang^{*a*}, *Chen Yang*^{*a*}, *Zhengtao Xu*^{*,a}, *Haohan Wu*^{*b*}, *Jing Li*^{*b*}, *Matthias Zeller*^{*c*}, *Allen D. Hunter*^{*c*}, *Stephen Sin-Yin Chui*, ^{*d*} *and Chi-Ming Che*^{*d*}

^a Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.

^b Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854.

^c Department of Chemistry, Youngstown State University, One University Plaza,

Youngstown, Ohio 44555.

^d Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

zhengtao@cityu.edu.hk

^{*}Author to whom correspondence should be addressed.

Figure S1. View of the crystal structure of **1** along the c axis (solvent molecules are omitted). Red balls: Ag; green balls: S. blue balls: N; sky blue balls: F; orange balls: B.

Figure S2. Top: Simulated He filling of a single pore segment (left) and packing of these segments separated by BF_4 ions (right) in **1**. The estimated neck dimensions are 2.3 Å (neck 1) and 2.1 Å (neck 2), respectively, measured from center to center of the two He atoms. Color scheme: BF_4 , yellow tetrahedron; F, green ball; He, light grey ball. Other atoms are omitted for clarify. Bottom: Simulated benzene filling of the pores. Each segment is occupied by three benzene molecules. Color scheme: BF_4 , yellow tetrahedron; F, green ball; C, dark grey; H, white.

Figure S3. X-ray diffraction patterns (Cu K α , $\lambda = 1.5418$ Å, 298 K) for powder samples. a): calculated pattern from the single crystal structure (single crystal data collected at 100 K); observed patterns for bulk samples of b) **1** (TMPES·AgBF₄·3C₆H₆); c) an apohost (TMPES·AgBF₄); d) a benzene-filled sample (TMPES·AgBF₄·C₆H₆); e) a toluene-filled sample (TMPES·AgBF₄·C₆H₅CH₃); f) a nitrobenzene-filled sample (TMPES·AgBF₄·C₆H₅NO₂); g) a chlorobenzene-filled sample (TMPES·AgBF₄·C₆H₅Cl); h) an anisole-filled sample (TMPES·AgBF₄·C₆H₅OCH₃); i) an ethylbenzene-filled sample (TMPES·AgBF₄·C₆H₅OCH₃); j) a 1-bromo-4-fluorobenzene-filled sample (TMPES·AgBF₄·C₆H₄Br).

Figure S4. ¹H NMR spectra of (a) an apohost sample (TMPES·AgBF₄); (b) a benzenefilled sample (TMPES·AgBF₄·C₆H₆); (c) a chlorobenzene-filled sample (TMPES·AgBF₄·C₆H₅Cl); (d) a 1-bromo-4-fluorobenzene-filled sample (TMPES·AgBF₄·C₆H₄Br); (e) a toluene-filled sample (TMPES·AgBF₄·C₆H₅CH₃); (f) a nitrobenzene-filled sample (TMPES·AgBF₄·C₆H₅OCH₃); (g) an anisole-filled sample (TMPES·AgBF₄·C₆H₅OCH₃). (h) an ethylbenzene-filled sample (TMPES·AgBF₄·C₆H₅OCH₃). (h) an ethylbenzene-filled sample

Figure S5. Room-temperature solid state emission spectra (excitation wavelength $\lambda_{ex} = 360$ nm) from: a) an apohost sample (TMPES·AgBF₄); b) a benzene-filled sample (TMPES·AgBF₄·C₆H₆); c) a toluene-filled sample (TMPES·AgBF₄·C₆H₅CH₃); d) a chlorobenzene-filled sample (TMPES·AgBF₄·C₆H₅Cl); e) an anisole-filled sample (TMPES·AgBF₄·C₆H₅OCH₃); f) an ethylbenzene-filled sample (TMPES·AgBF₄·C₆H₅OCH₃); g) a 1-bromo-4-fluorobenzene-filled sample (TMPES·AgBF₄·C₆H₅C₂H₅); g) a 1-bromo-4-fluorobenzene-filled sample